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Abstract: The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common
non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and
is related to several health complications. The traditional treatment for trichomoniasis is the use of
drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an
increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in
the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds
O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have
shown a higher trichomonacide activity. In this study, we determined the effect on the expression level
of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX,
G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis
(CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in
trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology,
motility and virulence. These results align with the trichomonacidal activity of the compounds, with
benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 µM. These results are
promising for potential future therapeutic applications.

Keywords: trichomoniasis; benzimidazole; metabolism; reference gene; trichomonacidal drugs

1. Introduction

Trichomonas vaginalis (T. vaginalis) is a flagellate parasite that causes trichomoniasis,
a sexually transmitted disease (STD) of worldwide importance, reporting 276 million
new cases annually. Trichomoniasis is the most common nonviral STD [1], even more
common than chlamydia, gonorrhea, and syphilis infections combined [2,3]. T. vaginalis
is an extracellular parasite and resides in the urogenital tract of both women and men; it
can cause vaginitis and urethritis, respectively. However, acute infections are associated
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with pelvic inflammatory disease, increased risks of human immunodeficiency virus (HIV)
infection, and adverse pregnancy outcomes. The first-line treatment against trichomoniasis,
in most countries, is based on 5-nitroimidazole drugs such as metronidazole (MTZ) and
tinidazole (TNZ) [4–6]. This family of drugs is highly effective against most microaerophilic
or anaerobic microorganisms. In 1959, MTZ was the first 5-nitroimidazole introduced as a
treatment for T. vaginalis infection [7]. However, just three years later, the first failure in
treatment with this drug was reported [8]. Later, in 2004, TNZ was approved in the USA
for the treatment of T. vaginalis infection, itself belonging to the 5-nitroimidazole family of
drugs [9,10].

To date, 5-nitroimidazoles are the only oral medications with demonstrated trichomonacidal
activity and that have been approved by the Food and Drug Administration (FDA) [11].
When the standard MTZ treatment fails, there are two alternatives: receiving a higher,
often toxic dose of MTZ [12,13], or changing to TNZ, which is not easily accessible for
all patients due to availability within countries and costs [14,15]. In addition, allergy
to MTZ or TNZ can preclude their use in certain persons with trichomoniasis; allergic
reactions such as Stevens–Johnson syndrome or anaphylaxis can occur in response to
5-nitroimidazoles [16–18]. The limited catalog of drugs available to treat trichomoniasis
infections makes it necessary to search for new compounds with trichomonacidal activity,
and better treatment options are urgently needed for patients infected with resistant strains
to metronidazole or persons with hypersensitivity to the 5-nitroimidazole drugs.

In this way, the benzimidazole (1H-benzimidazole or 1,3-Benzodiazole) scaffold is
a privileged structure in new drug design and discovery; it is a nitrogen-containing het-
erocyclic compound consisting of benzene and imidazole rings, which have gained sig-
nificance in the field of medicinal chemistry due to their extensive range of pharmaco-
logical activities, such as antibacterial, anti-inflammatory, antiviral and antiprotozoal,
among others [19]. However, the antiprotozoal properties of this group have not been
extensively studied. In this sense, our research group previously reported the synthesis
and trichomonacidal activity of two compounds derived from 1H-benzimidazole named
O2N-BZM7 and O2N-BZM9 [20]. Besides this, it was also discovered that these ben-
zimidazole compounds inhibit the recombinant and bifunctional glucose-6-phosphate
dehydrogenase-6-phosphogluconolactonase (G6PD::6PGL) enzyme of T. vaginalis. The
therapeutic mechanisms of action of the cited compounds are still undefined or only par-
tially known. Therefore, a better understanding of the mechanisms of action of compounds
O2N-BZM7 and O2N-BZM9 in T. vaginalis is necessary. In this work, we evaluate the effects
of compounds on T. vaginalis metabolism in culture, as well as the time required to exert its
trichomonacidal effect. Moreover, the genetic expression patterns in T. vaginalis cultures
exposed to compounds O2N-BZM7 and O2N-BZM9 are evaluated against trophozoites
exposed to MTZ and trophozoites without exposure to compounds.

2. Results and Discussion
2.1. Activity Trichomonacidal of Benzimidazole Derivative Compounds

Previous work in our research group identified two potent trichomonacide compounds,
benzimidazole derivatives 6-nitro-2-[(pyridin-2-yl)methanesulfinyl]-1H-benzimidazole and
2-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methanesulfinyl}-6-nitro-1H-benzimidaz-
ole [20], which are named here O2N-BZM7 and O2N-BZM9, respectively (Figure 1).

To evaluate the trichomonacidal effects of benzimidazole derivative compounds
O2N-BZM7 and O2N-BZM9, we assessed the survival of T. vaginalis that was cultivated
in a medium containing the compounds and MTZ (positive control). The results show
that both compounds O2N-BZM7 and O2N-BZM9 reduced the trophozoites viability by
100% at 15 µM after 24 h incubation; this same behavior was observed with the drug
metronidazole, suggesting that these benzimidazole derivatives could be used as potential
antiparasitics. Besides this, it is interesting to mention that the trophozoites treated with
3.9 µM of O2N-BZM7 and O2N-BZM9 decreased T. vaginalis viability by 63% and 60%,
respectively (Figure 2). Moreover, both compounds reduced the trophozoites viability by
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>80% at 7.8 µM after 24 h exposure, exhibiting a concentration-dependent inhibition, with
an IC50 value of 5.8 µM for O2N-BZM7 and 3.8 µM for O2N-BZM9. As expected, the treat-
ment with a diluent of 0.6% DMSO and negative controls did not induce any reduction in
viability; the trophozoites showed negative staining with trypan blue and displayed good
morphology and motility. On the other hand, the MTZ treatment completely eliminated
the viability and exhibited positive trypan blue staining with an IC50 value of 3.5 µM.
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Figure 2. In vitro trichomonacidal activity of benzimidazole-derived compounds. IC50 values
for antiparasitic activities of O2N-BZM7, O2N-BZM9, and MTZ. Values were obtained in three
independent assays. Error bars represent S.D. between replicates, and standard errors were lower
than 5%.

O2N-BZM9 was 1.6-fold more effective at killing T. vaginalis than O2N-BZM7. This
more significant effect could be related to the chemical structures of the compounds; the
O2N-BZM9 compound contains a fluorinated functional group binding to pyridine hetero-
cyclic (trifluoroethoxy –OCH2CF3), which probably improved its trichomonicidal activity. It
has been reported that the inclusion of fluorine atoms in pharmaceutical products increases
the potency, selectivity, metabolic stability, and pharmacokinetics of the drugs, which are
called fluoro-pharmaceutical compounds [21,22]. The successes related to using the fluoro-
pharmaceutical compounds have been related to the physicochemical properties of the C–F
bond [23], such as high bond strength, polarity, and the minimal steric hindrance of the flu-
orine atom. In medicinal chemistry, incorporating fluorine into therapeutic drug candidates
significantly enhances their biological activities compared to non-fluorinated molecules [24].
For example, in a study by Soria-Arteche et al. [25], a group of benzimidazole-based com-
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pounds were synthesized, and it was found that the compound 6-chloro-1-methyl-N-(5-
nitrothiazol-2-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxamide induced high
trichomonicidal activity (IC50 = 0.041 µM); besides this, this activity was increased by the
addition of a trifluoromethyl group at the 2 position of the benzimidazole ring [25]. In this
way, given the IC50 results obtained for drug candidates O2N-BZM7 and O2N-BZM9, it is
clear that the activity of fluoro-compound O2N-BZM9 is better than that of O2N-BZM7.

2.2. Kinetic Growth of Trichomonas vaginalis

The data obtained from the kinetic growth curve show that both compounds tested
reduced trophozoite viability by >50% in the 24 h of incubation, compared with the negative
control (Figure 3). When the trophozoites were counted after 6 h of incubation, it was
observed that the compounds negatively affected the proliferation of T. vaginalis from
this first point of evaluation, since the number of trophozoites was lower compared to the
control trophozoites without treatment (Inset, Figure 3). It has, thus, been confirmed that the
compound O2N-BZM9 inhibits the growth of T. vaginalis more drastically than compound
O2N-BZM7. This effect is exacerbated after 12 h of incubation and is maintained until 48 h
(Figure 3). After this time, it can no longer be confirmed that the effect of reduced viability
is related to the compounds, since in the trophozoite growth curve without treatment, after
48 h, the number of trophozoites decreased drastically. The next objective of this work was
to determine the effects of the compounds on the expression levels of metabolic genes in
T. vaginalis; thus, based on the results of the growth kinetics, we set a 24 h incubation time
to carry out the following assays.
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2.3. Selection of Reference Genes for RT-qPCR Analysis in Trichomonas vaginalis

To accurately detect relative gene expression levels in biological samples via reverse
transcription–quantitative polymerase chain reaction (RT-qPCR), it is necessary to use
reference genes, which must show expression stability. However, it has been shown that
the transcription levels of housekeeping genes like tubulin (TUB), actin (ACT), glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH), and the 18S rRNA gene [26,27] can change
significantly under some specific conditions [26,28,29]. Due to the above, in the present
work, we compare the expression stabilities of fifteen candidate reference genes (CK, PFK,
ALDO, TPI, GAPDH, ENOL, PK, G6PD, 6PGDH, TKT, TALDO, PFOR, NADHOX, ACT, and
TUB) (Table 1) to identify the most stable one and propose it as a reference gene to measure
expression levels in T. vaginalis cultures via RT-qPCR.

Table 1. Primers and their parameters obtained via endpoint PCR and RT-qPCR.

Gen
Symbol 5′-3′Sequence Amplicon

Size Tm RT-qPCR
E (%) Slope R2

CK
FW: ACAACAGGAGCCGGAGATG

97
59.18

RV: AGCAGCACAACCTCTCTTTG 58.40 ND ND ND

PFK
FW: TGCAGTTCTCTCTAGTGGCC

116
59.10

RV: CACGGAAGCCACCAGTAATG 58.91 101 −3.296 0.964

ALDO
FW: AAGTCACTCGGTCTCTGCAA

125
58.96

RV: TTGACGGAGGCTGTGATGAT 59.1 98.5 −3.356 0.991

TPI
FW: GGCAAGTGGGACGATGTTG

122
59.12

RV: TTAGCAGCAAGGATGTCACG 58.27 94.4 −3.464 0.995

GAPDH
FW: CCAAGTTGTCGCTATCCACG

114
59

RV: TGCTTAGCCTCATCGACTGT 58.81 90.3 −3.577 0.996

ENOL
FW: ACAGGTGTTGGTGAAGCTCT

124
59.16

RV: AGCACATTCCCTTGAGAGCT 59 110 −3.055 0.975

PK
FW: CCACAAGCAAACACTCGACA

109
59

RV: CTCCAACTTGCCAACACGAA 59 114.8 −3.042 0.989

G6PD
FW: ATTCTCACGTCTCCACCAGG

109
59.1

RV: GTCATCGTAGCCACCAGAGA 58.9 117 −3.068 0.959

6PGDH
FW: CGATGGTGGCAACTCTCACT

122
60

RV: CTCTTCACCGCCGGAGATAC 60.1 104 −3.226 0.991

TALDO
FW: TCCTCAAGATTGTCCCAGGC

123
59.3

RV: TCTTGATTCCGGCTTCGTGA 59.3 111 −3.07 0.994

ACT
FW: GTCAAGCTTCTCACAGAGCG

123
58.9

RV: GGCCTTCTCCATTTCAGCAT 58.2 90.4 −3.574 0.998

TUB
FW: CTTCCGTGGCCGTATGTCAT

115
60

RV: GCAGATAGCGGACTTGACGT 60 97.1 −3.392 0.998

PFOR
FW: CCAGATCACACCACTCGACT

121
59.1

RV: TTCCCAGTTCTTGCCCTCTT 58.9 105 −3.188 0.942

NADHOX
FW: ATTGGCTTGGCGTCCTTGAT

118
60.3

RV: TCGACGAGAACTGCACCTTC 60.0 118 −3.045 0.92

ND: Not determined.

2.4. Evaluation of the Specificity and Efficiency of the Primer Pairs

The quality of the total RNA extracted from the T. vaginalis culture was assessed using
denaturing electrophoresis. The three bands of 5S rRNA, 18S rRNA, and 28S rRNA were
revealed in the gel agarose 2% (Figure 4A). Subsequently, cDNA synthesis was carried
out, and the cDNA synthesized from RNA isolated from T. vaginalis trophozoites without
exposure to compounds was used to validate the efficiency of the primers designed for this
study. The endpoint PCR was performed with 100 ng of cDNA; then, the specificity of the
primers for candidate genes was evaluated via 2% agarose gel electrophoresis. For genes
CK, PFK, ALDO, TPI, GAPDH, ENOL, PK, G6PD, 6PGDH, TALDO, PFOR, NADHOX, ACT,
and TUB, a single band of the expected size was obtained; these results indicate that neither
primer–dimers nor non-specific amplification products were generated (Figure 4B). For
the TKT gene, the expected amplification product was not obtained with 100 ng of cDNA
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(Figure 4B, lane 11). Due to this, the PCR reaction was repeated with a gradient of cDNA
concentrations (100–500 ng); however, we were unable to obtain the expected PCR product,
so this last gene was eliminated from subsequent studies.
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Post-amplification melting curve analysis is a way to check real-time PCR reactions
for primer–dimer artifacts and to ensure reaction specificity. The melting curve analysis
allows us to identify the presence of primer–dimers because they generally exhibit a lower
melting temperature than the amplicon, and the primer–dimers reduce PCR efficiency.
Therefore, the melting curves were obtained to confirm the specificity of the fourteen
primers selected. The results generated for the genes ALDO, TPI, GAPDH, ENOL, PK,
G6PD, 6PGDH, TALDO, PFOR, NADHOX, ACT, and TUB show a single well-defined peak,
indicating that no primer–dimers or unexpected amplicons were observed; however, this
was not observed with the CK gene, where a secondary peak was observed (Figure 5),
so this last gene was eliminated from subsequent studies. The Tm value from the genes
ranged from 73.31 ◦C (G6PD) to 81.73 ◦C (PFOR). Subsequently, to determine the correlation
coefficient (R2), the DNA calibration curves of the five-fold dilution series were used for
each candidate reference gene, and the amplification efficiency (E) of each primer pair was
evaluated; the parameters obtained by endpoint PCR and RT-qPCR are shown in Table 1.
The R2 values ranged from 0.92 to 0.998, with all values being greater than 0.998 for ACT
and TUB, and the E values ranged from 90.3% for GAPDH to 118% for NADHOX. The
efficiency values obtained in this study for the primers are within the values established
in the literature, indicating that the desirable range for the PCR efficiencies calculated by
serial dilution experiments of standard curves should be 90% to 110%, correlating with a
slope between −3.1 and −3.58 [30–32].
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Figure 5. Melting curves of the reference candidate genes. The curves were determined via RT-qPCR;
after completing the amplification cycles, the reaction was subjected to a temperature gradient from
60 to 95 ◦C. Detection was performed with SYBR green, and each of the experiments was performed
with 4 independent replicates. The Tm values of the RT-qPCR products of the tested genes are shown
in the graphs of the corresponding genes.
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2.5. Expression Stabilities of Candidate Reference Genes

To select the ideal reference gene for the normalization of the gene expression assays
in T. vaginalis, the raw Ct values were used to measure the expression levels of the thirteen
candidate genes. The expression levels of candidate reference genes are presented in
Figure 6. Diverse levels of mRNA copy number were observed for these genes, with
the Ct values ranging from 18 cycles (ACT) to 32 cycles (PFOR); accordingly, the ACT
gene presented the highest expression level, whereas the PFOR gene had the lowest level.
The Ct values were the lowest for ACT, TUB, TPI, and GAPDH genes, indicating higher
expression levels. By contrast, the PFOR, G6PD, and ENOL genes showed the highest
Ct value and, consequently, lower levels of expression.
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Figure 6. The distribution of Ct values of the 13 candidate reference genes generated via qRT-PCR in
T. vaginalis. The Ct values for each reference gene were tested in all samples. The boxes indicate the
25th and 75th percentiles, and the lines in the center of the boxes represent the medians. The upper
and lower horizontal lines indicate the maximum and minimum values, respectively, and the small
squares represent the average values.

Subsequently, an evaluation and comparison of the standard deviations of gene ex-
pression was carried out using the BestKeeper tool (https://www.ciidirsinaloa.com.mx/
RefFinder-master/, accessed on 15 October 2023). The NADHOX, ENOL, G6PD, 6PGDH,
and PK genes indicated less variation based on the calculated deviations (lower disper-
sion Ct), while the GAPDH, ACT, and PFK genes had larger dispersion values (Table 2).
Afterward, to evaluate the stability of the expression of the thirteen genes proposed as
candidates, we used four statical algorithms—the comparative ∆Ct method, NormFinder,
geNorm, and RefFinder—to rank the candidate reference genes according to their expres-
sion stability [30–32].

The geNorm analysis was used to calculate the expression stability value (M) for
each candidate reference gene; a low M value indicates more stable gene expression. In
the set of 13 candidate genes, all showed an M value less than 1, while ACT (0.234),
GAPDH (0.234), TUB (0.289), TPI (0.320), ALDO (0.337), and PK (0.480) had the lowest
M values. In contrast, the M value of NADHOX was the highest (0.897), suggesting
that ACT, GAPDH, TUB, TPI, ALDO, and PK present the most stable expressions. The
stabilities of the thirteen candidate reference genes were also calculated with NormFinder
tool (https://www.ciidirsinaloa.com.mx/RefFinder-master/, accessed on 15 October 2023),
and the evaluated expression stabilities are shown in Table 2. Based on the results, the five
most stable reference genes, according to NormFinder, were PK, TALDO, TUB, ALDO, and

https://www.ciidirsinaloa.com.mx/RefFinder-master/
https://www.ciidirsinaloa.com.mx/RefFinder-master/
https://www.ciidirsinaloa.com.mx/RefFinder-master/
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TPI, while the least stable genes were NADHOX, ENOL, and 6PGDH. The results derived
with the comparative ∆Ct method are similar to those of NormFinder, identifying PK, TUB,
TALDO, ALDO, and TPI as more stable genes and NADHOX, ENOL, and 6PGDH as less
stable genes.

Table 2. Ranking of candidate reference genes in order of expression stability.

GeNorm M Comparative
∆Ct Method NormFinder Ranking

ACT 0.234 PK 0.73 PK 0.195 PK 2.43
GAPDH 0.234 TUB 0.75 TALDO 0.387 TUB 3.57

TUB 0.289 TALDO 0.75 TUB 0.490 TALDO 3.83
TPI 0.320 ALDO 0.76 ALDO 0.495 GAPDH 4.56

ALDO 0.337 TPI 0.79 TPI 0.578 ACT 4.98
TALDO 0.400 GAPDH 0.82 GAPDH 0.649 ALDO 5.03

PK 0.480 ACT 0.85 ACT 0.690 TPI 5.62
PFK 0.540 PFK 0.93 PFK 0.693 NADHOX 6.45

PFOR 0.616 PFOR 0.95 PFOR 0.721 G6PD 6.84
G6PD 0.726 G6PD 1.02 G6PD 0.828 ENOL 7.18

6PGDH 0.807 6PGDH 1.06 6PGDH 0.893 PFOR 7.48
ENOL 0.861 ENOL 1.07 ENOL 0.928 6PGDH 7.95

NADHOX 0.897 NADHOX 1.08 NADHOX 0.944 PFK 8.66

Among all the genes analyzed, NADHOX, ENOL, and 6PGDH were classified as the
most unstable references by all programs (Table 2). However, we observed that the stability
rankings of the thirteen candidate reference genes we selected, obtained via the comparative
∆Ct method and NormFinder, were different from the rankings determined via geNorm
and BestKeeper; as such, the results for expression stability obtained with the comparative
∆Ct, NormFinder and geNorm algorithms were integrated using the RefFinder tool. The
PK and TUB genes were ranked as the most stable, and the PFK and 6PGDH genes were
the least stable.

2.6. Validation Candidate Reference Genes

Using RefFinder, we were able to select the most stable (PK, TUB, and TALDO) and
unstable (6PGDH, ENOL, and NADHOX) candidate internal reference genes in T. vaginalis.
To verify the feasibility of these internal reference genes, the patterns of expression of
the PFOR gene in response to exposure to ferric ammonium sulfate were determined,
since it has been reported that PFOR expression increases with ferric ammonium sulfate
treatment [33,34]. The most stable reference gene, PK, was selected for the validation
assay. With the reference gene PK, the overexpression of PFOR could be observed when
trophozoites were exposed to 100, 200, and 300 µM of NH4Fe(SO4)2, with a significant
difference (p < 0.05) between the three treatments concerning the trophozoites grown in
the conventional medium without ferric ammonium sulfate (Figure 7A). These results
correlate with the expression of the PFOR protein previously determined by Rivera-Rivas
and Rossana Arroyo [34], who determined the expression of the PFOR protein via Western
blot, and reported that the anti-TvPFO50r antibody detected a 120 kDa pyruvate–ferredoxin
oxidoreductase (PFOR) with greater intensity in the iron-rich condition than in the normal
iron and restricted iron conditions [34]. It has been reported that T. vaginalis requires
high exogenous iron conditions for its survival, metabolism, and proliferation [33,35,36].
We then corroborated the increase in proliferation levels after culturing the trophozoites
in increasing concentrations of iron (100, 200 and 300 µM). The results show that with
100 and 200 µM of Fe, the proliferation increased by 2.5- and 2.8-fold in comparison with
the conventional TYM medium (Figure 7B). After measuring the expression levels of the
PFOR gene using PK as a reference gene and finding overexpression, we propose PK as a
new reference gene to measure gene expression levels in T. vaginalis cultures.
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Figure 7. Analysis of PFOR gene expression and proliferation of T. vaginalis trophozoites treated with
ferric ammonium sulfate. (A) RT–qPCR for relative quantitation of PFOR transcripts under different
iron conditions was performed via the 2−∆∆Ct method using 100 ng of template cDNA from parasites
grown in media of conventional TYM and three concentrations of NH4Fe(SO4)2, where the PK gene
was used as a reference. (B) Number of trophozoites counted after incubation for 24 h in conventional
TYM medium and supplemented with 100, 200, and 300 µM ferric ammonium sulfate. The asterisk
indicates a significant difference (p < 0.05) in the expression of PFOR mRNA under different iron
conditions. These experiments were performed in triplicates at least two times with similar results.

2.7. Level Expression Genes in Trichomonas vaginalis

T. vaginalis is a protist that does not contain mitochondria, and in which glycolysis
is a dominant metabolic process [37,38], with glucose being the main source of energy.
Therefore, some studies on new trichomonacidal drugs have focused on the inhibition of
enzymes involved in metabolic pathways that catabolize glucose, for example, glycolysis
and the pentose phosphate pathway [39–41], since it is hypothesized that disrupting the
glucose-catalyzing pathways could result in a reduction in the viability of T. vaginalis. Since
it was previously reported that compounds O2N-BZM7 and O2N-BZM9 are inhibitors of
the recombinant G6PD::6PGL enzyme of T. vaginalis [20], it is now of interest to study the
effects of the compounds on the expression profiles of the metabolic genes in the parasite.

A gene expression assay based on RT-qPCR was performed to evaluate the transcrip-
tion levels of metabolic genes on benzimidazole-derivative-treated T. vaginalis trophozoites
incubated for 24 h, and trophozoites incubated with 3.5 µM MTZ (IC50 value) were used
for comparison. The results reveal that among the glycolytic genes that were evaluated,
the expression levels of the ALDO and GAPDH transcripts were significantly reduced after
treatments with both O2N-BZM7 and O2N-BZM9 for 24 h (Figure 8A); however, the effect
was more substantial with compound O2N-BZM9 than when using T. vaginalis without
treatment on the expression of GAPDH, with a fold change of 0.194 and a 5-fold decrease,
respectively. In addition, O2N-BZM9 also exhibited a 3.3-fold reduction in the transcription
of the TPI gene, reducing the transcript levels to approximately 2-fold lower than that
exhibited by MTZ (Figure 8A). On the other hand, O2N-BZM9 significantly increased the
CK and ENOL transcripts in T. vaginalis, with fold changes of 1.6 and 1.5, respectively, while
after the treatment with O2N-BZM7, the levels of expression of CK and ENOL remained
the same as in the negative control. Regarding MTZ, it increased the transcription of CK
1.2-fold, and ENOL showed the same level of expression as T. vaginalis without treatment.
Finally, we evaluated the expression levels of the PFK gene, and no differences were ob-
served between trophozoites exposed to O2N-BZM7 and O2N-BZM9 and those without
treatment, while MTZ induced a decrease in the expression of PFK (1.3-fold).
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Figure 8. Relative expressions of metabolic and structural genes in Trichomonas vaginalis assessed
via RT-qPCR. Comparison of gene expression carried out between trophozoites of T. vaginalis with-
out treatment used as the negative control, trophozoites of T. vaginalis exposed to the compound
O2N-BZM7, and trophozoites of T. vaginalis exposed to the compound O2N-BZM9, using PK as a
reference gene. (A) glycolytic genes. (B) Pentose phosphate pathway genes. (C) Hydrogenosomal
and structural genes. The asterisk indicates a significant difference (p < 0.05) in the expression. Error
bars indicate ± SD values of three replicates.

In general, MTZ induced a reduction in the expression levels of the glycolytic genes
PFK, ALDO, TPI, and GAPDH and an increase in the ENOL gene, while the CK gene was
not affected in terms of its expression levels. Between the two benzimidazole compounds,
the one that had the greatest effect on expression levels was O2N-BZM9, which reduced the
expressions of ALDO, TPI, and GAPDH and increased CK and ENOL, while the PFK gene
remained the same as in the negative control. These results confirm the trichomonacidal
activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an
IC50 of 4.8 µM.
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T. vaginalis obtains its energy through the fermentative metabolism of carbohydrates,
which involves the oxidation of glucose to produce acetate, adenosine triphosphate (ATP),
and molecular hydrogen [42–44]. This pathway starts in the cytoplasm, where glucose
undergoes glycolysis to form pyruvate, which is passively transported into hydrogeno-
some (Figure 9), after which the pyruvate–ferredoxin oxidoreductase (PFOR) enzyme
catalyzes the oxidation of pyruvate by iron–sulfur proteins (ferredoxin, Fdx) to produce
acetyl-CoA. ATP production follows through substrate-level phosphorylation catalyzed by
the ASCT/SCS cycle, wherein two enzymes participate: acetate–succinate CoA-transferase
(ASCT) and succinyl-CoA synthetase (SCS) (Figure 9). Our results show an overexpression
of the gene carbohydrate kinase gene (CK)—the first reaction occurring in the preparative
phase of glycolysis—in trophozoites exposed to compounds O2N-BZM7 and O2N-BZM9,
while ALDO, TPI, and GAPDH were down-regulated and PFK remained unchanged;
however, the metabolites (glyceraldehyde-3P, fructose-6P) produced by the enzymes en-
coded by these genes can be acquired from the pentose phosphate pathway (PPP). The
increased expression of CK, the enzyme that phosphorylates the glucose to produce glucose-
6-phosphate, after O2N-BZM7 and O2N-BZM9 treatment could act like a signal to redirect
the metabolic flow towards the PPP, probably due to the parasites requiring an increase
in intermediaries to continue proliferation, because it has been reported that glucose
metabolism is necessary for the cellular division of T. vaginalis [45]. A similar effect was
observed for the ENOL gene after benzimidazoles were used to treat T. vaginalis tropho-
zoites. The ENOL enzyme participates in the penultimate reaction of glycolysis, and its
function is the reversible dehydration of 2-phosphoglycerate to phosphoenolpyruvate [46],
after which phosphoenolpyruvate is dephosphorylated to produce one molecule of pyru-
vate and adenosine triphosphate (ATP) via the catalytic reaction of pyruvate kinase (PK);
the pyruvate is a necessary component required to continue the production of ATP in
hydrogenosome; the overexpression of ENOL is probably due to the decrease in ATP, al-
though this must be confirmed experimentally via the measurement of metabolites such as
phosphoenolpyruvate, pyruvate, ADP and ATP.

Interestingly, the O2N-BZM9 here manifested a stronger reduction in the transcription
of 6PGDH than in the corresponding trophozoites without treatment (Figure 8B). Notably,
the expression of the 6PGDH gene was almost completely inhibited by O2N-BZM9 at
the IC50 concentration tested (4.8 µM), while O2N-BZM7 decreased the expression of
6PGDH 1.3-fold. In contrast, trophozoites treated with MTZ exhibited a 1.5-fold increase
in gene expression levels of 6PGDH (Figure 8B). Regarding the levels expression of the
enzymes involved in the PPP, we observed a 1.2-fold increase in G6PD::6PGDL, which
is the gene that codes the first protein of the PPP; this same behavior was observed in
trophozoites treated with O2N-BZM9 (1.3-fold increase), while the O2N-BZM7 reduced
the expression of G6PD::6PGDH 1.3-fold. For trophozoites in the presence of MTZ, a
1.5-fold increase was observed. Regarding the TKT and TALDO genes, which encode
proteins that catalyze reactions in the non-oxidative phase of the PPP, the study revealed
that trophozoites exposed to MTZ exhibited a 1.2-fold decrease and a 4-fold increase in
TKT and TALDO transcripts, respectively. At the same time, the compound O2N-BZM9
induces a 2.4-fold increase in TKT gene expression, and with the O2N-BZM7 compound,
no change in the level of expression was observed. Finally, it is interesting to note that
benzimidazole compounds (O2N-BZM7 and O2N-BZM9) decrease TALDO expression
by around 1.5-fold. Regarding the levels of expression observed with MTZ, it has been
described that MTZ induces oxidative stress in T. vaginalis, so the parasites probably
increase G6PD::6PGDH transcription levels to combat this, since the enzyme G6PD::6PGDH
produces a 6-phosphogluconate molecule and NADPH, which serves as a substrate for
enzymes that function as O2 scavengers, including ferredoxins (FR) (Figure 9). This same
behavior was observed in relation to the compound O2N-BZM9, suggesting it probably
also induces oxidative stress in the parasite. With these results, it can be hypothesized
that the mechanisms of action of benzimidazole compounds could be different from those
of metronidazole.
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Figure 9. Principal pathways of the energy metabolism, and antioxidant and pentoses phosphate pro-
duction, in the parasite Trichomonas vaginalis. The glucose is catalyzed by glycolysis to form pyruvate,
which is passively transported into the hydrogenosome; then, the pyruvate–ferredoxin oxidoreduc-
tase (PFOR) enzyme catalyzes the oxidation of pyruvate by iron–sulfur proteins (ferredoxin, Fdx) to
produce acetyl-CoA. ATP production follows through a substrate-level phosphorylation catalyzed by
the ASCT/SCS cycle, in which two enzymes participate: acetate–succinate CoA-transferase (ASCT)
and succinyl-CoA synthetase (SCS). The red arrows ↑ (increased expression) and ↓ (decreased expression).

When trophozoites were exposed to MTZ, they showed 1.8-fold and 1.4-fold reductions
in the expression levels of the PFOR and NADHOX genes, respectively (Figure 8C). These
results agree with those previously reported by Leitsch et al. [47], who demonstrated that
the activity of NADH oxidase decreases drastically in T. vaginalis treated with MTZ [47].
Conversely, the O2N-BZM7 and O2N-BZM9 compounds exhibited an increase in the
transcription of PFOR and NADHOX compared to the corresponding trophozoites without
treatment (Figure 8C). T. vaginalis contains some enzymes that are key to the elimination
of oxygen, which is toxic for this parasite, and thus prevent the deactivation of essential
enzymes such as PFOR, as well as hydrogenases such as NADPH oxidase (NADPHOX) and
NADHOX [48–50], also named flavin reductase enzymes. Since NADHOX has been shown
to reduce oxygen to water, its upregulation could contribute significantly to improvements
in oxygen scavenging. Apparently, benzimidazole compounds manifest a redox imbalance
(increase in reactive oxygen species) in T. vaginalis, since the overexpression of the NADHOX
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gene is observed, as well as the G6PD::6PGL gene, whose encoded protein participates in
the generation of molecules of NADPH, which, through the activity of the enzyme flavin
thioredoxin reductase (TrxR) and the nucleotide NADPH, reduce H2O2 to H2O.

Finally, the trophozoites exposed to MTZ showed decreased levels of expression of
ACT and TUB (1.7- and 1.5-fold, respectively); however, once again, the effect of reducing
these structural genes was more perceptible in the trophozoites exposed to the compound
O2N-BZM9, which induced 40- and 11-fold reduction in ACT and TUB, respectively. While
compound O2N-BZM7 produced a 2-fold decrease in TUB expression, ACT expression
remained at the same levels as in the negative control. The genes ACT and TUB encode
two structural proteins—actin and tubulin—which have been described to be crucial for
morphogenesis, mitosis, and virulence in T. vaginalis [51–54]. Tubulin has been detected in
the axostyle, flagella, costa, pelta, and basal body structures that contribute to the parasite’s
motility [55]. Actin is essential to T. vaginalis’ morphological transformation through the
formation of filopodia and pseudopodia, and the attachment to host cells to establish
infection (cytoadherence) [51,56]. Therefore, O2N-BZM9 compounds probably principally
induce alterations in their motility and morphology, and consequently cause death. Besides
this, the parasite’s virulence is also negatively affected by reductions in its cytoadherence.

3. Materials and Methods
3.1. Parasite and Culture Conditions

The T. vaginalis trophozoites (ATCC30001) were cultivated in Diamond’s
Trypticase–Yeast–Maltose (TYM) medium, pH 6.0, supplemented with 10% sterile heat-
inactivated horse serum and incubated under microaerophilic conditions in screw-capped
glass tubes at 37 ◦C with 5% CO2 for 24 h. When the culture reached 90% confluency, the
trophozoites were incubated at 4 ◦C for 15 min, collected by centrifugation at 375× g for
5 min and washed with sterile PBS (15 mM phosphate buffer and 154 mM NaCl, pH 7.0);
then, the viability, motility and morphology of the parasites were evaluated under light
microscopy and by the trypan blue (0.4%) exclusion assay to ensure that minimum viability
of 95% had been reached before proceeding to trichomonacidal assays.

3.2. Trichomonacidal Activity of Compounds

Drug susceptibility assays were performed to evaluate the trichomonacidal potential of
compounds derived from 1H-benzimidazole (O2N-BZM7 and O2N-BZM9) as previously
described [20]. For the assay, tubes of 1.5 mL were seeded with an initial density of
2.6 × 104 trophozoites/mL on TYM. Then, O2N-BZM7 and O2N-BZM9 that had been
previously diluted in dimethylsulfoxide (DMSO) were added into the tubes at different
concentrations (0, 2, 5, 10, and 50 µM), and the tubes were incubated at 37 ◦C with 5%
CO2. After 24 h of culture, the tubes were incubated for 10 min on ice to detach the
trophozoites, and using an aliquot (1:1, v/v) and trypan blue (0.4%), the trophozoites were
counted in a Neubauer chamber and were evaluated for motility, morphology, and viability.
Trophozoites cultured without compounds, with 0.6% DMSO (diluent) or metronidazole
(3.5 µM), were the negative and positive controls, respectively, for the growth of parasites.
The concentrations of the compounds were plotted against the corresponding percentages
of inhibition, and the inhibitory concentration 50 (IC50) was calculated using GraphPad
Prism 8.0.1 software.

3.3. Effects of Compounds on Trichomonas vaginalis Growth Kinetic

To ascertain the time required for the compounds to exert antiparasitic activity against
T. vaginalis, kinetic growth curves of the trophozoites were developed in the absence and
presence of the compounds. Once more, the 1.5 mL tubes were prepared according to the
methodology above. The IC50 of each compound was added to each tube and incubated at
37 ◦C in 5% CO2 for 96 h. The viability and number of trophozoites were monitored under
an optical microscope at 6, 12, 18, 24, 48, 72, and 96 h using the trypan blue dye exclusion
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test (0.4%). Trophozoite viability for cultures of trophozoites without the compound was
100%. The assays were carried out independently in triplicate.

3.4. Validation and Selection of Reference Genes for RT-qPCR Analysis in Trichomonas vaginalis
3.4.1. Primer Design

Fifteen candidate genes were evaluated for their applicability as a reference in
RT-qPCR assays to determine gene expression profiles in T. vaginalis cultures (Table 3). The
sequences for primer design were obtained from GenBank and then compared to the se-
quences reported in the Trichomonas genome database (https://trichdb.org/trichdb/app/
/, accessed on 15 January 2023). The primer pairs were designed based on mRNA sequences
of different genes using the program Primer3 (http://primer3.ut.ee, accessed on 15 January
2023) with the following parameters: length 18–22 bp, GC content 45 to 55%, Tm 60 ± 2 ◦C,
and product size 60 to 120 bp. The primer pairs were also evaluated for primer–dimer
formation using the OligoEvaluator™ tool (http://www.oligoevaluator.com/AddUser.jsp,
accessed on 15 January 2023).

Table 3. Genes analyzed in this study.

GenBank
Accession Number Gene Annotation Gen Symbol Function

XM_001579622.1 Carbohydrate kinase CK Kinase in glycolysis
XM_001581728.2 Phosphofructokinase PFK Kinase in glycolysis
XM_001315350.2 Aldolase IIB ALDO Oxidoreductase in glycolysis
XM_001320301.2 Triosephosphate isomerase TPI Isomerase in glycolysis

XM_001581066.2 Glyceraldehyde-3-phosphate
dehydrogenase GAPDH Oxidoreductase in glycolysis

XM_001325471.2 Enolase ENOL Lyase in glycolysis
XM_001329865.2 Pyruvate kinase PK Oxidoreductase in glycolysis
XM_001321943.2 Glucose-6-phosphate 1-dehydrogenase G6PD Oxidoreductase in pentose phosphate
XM_001323727.2 Phosphogluconate dehydrogenase 6PGDH Oxidoreductase in pentose phosphate
XM_001326902.1 Transketolase TKT Transferase in glycolysis
XM_001330311.2 Transaldolase TALDO Transferase in glycolysis

XM_001321286.2 Pyruvate–ferredoxin oxidoreductase
proprotein PFOR Oxidoreductase in hydrogenosome

XM_001315387.2 Diflavin flavoprotein A
(NADH oxidase) NADHOX O2-Detoxifying enzyme

XM_001321203.2 Tubulin beta 4 chain TUB Cytoskeletal structural protein
(Flagella, median body, ventral disc)

XM_001301716.2 Actin ACT Cytoskeletal structural protein
(all cell)

3.4.2. PCR Efficiency and Specificity

The specificities of the primer pairs were verified by endpoint PCR, using cDNA from
T. vaginalis trophozoites as the template and the enzyme Q5™High-Fidelity DNA poly-
merase (New England, BioLabsinc, Beverly, MA, USA), with the following amplification
conditions: 30 s at 95 ◦C; 30 cycles of 10 s at 95 ◦C, 30 s at 61 ◦C, and 30 s at 72 ◦C; finally,
10 min at 72 ◦C. The amplified fragments were separated by electrophoresis in a 2% (w/v)
agarose gel, dyed with GelRed (Nucleic Acid Gel, Biotium, Fremont, CA, USA), and visual-
ized on a MultiDoc-It (UVP). To confirm the specificity of the primers and determine the
efficiency of the PCR reaction, RT-qPCR analysis was carried out on a StepOne™ Real-Time
PCR System and a Fast SYBR® Green Master Mix Kit (Applied Biosystems, Foster City, CA,
USA), applying a 5-fold serial dilution consisting of five concentrations of cDNA, beginning
at 100 ng; we then constructed standard curves to determine amplification efficiencies (E)
for each candidate reference gene. Once the reaction cycles were completed, the melting
curves for each gene were obtained, and the reactions were heated in a temperature range
of 60 ◦C to 95 ◦C.

https://trichdb.org/trichdb/app//
https://trichdb.org/trichdb/app//
http://primer3.ut.ee
http://www.oligoevaluator.com/AddUser.jsp
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3.4.3. Validating Candidate Reference Genes

The objective of this assay was to identify a gene that presents constant and invariant
expression in all samples, such that its expression cannot be modified by the study condi-
tions or by experimental treatments. For this analysis, the Ct values obtained for each of the
candidate reference genes were used to monitor the stability of the genes via four statistical
methods: Normfinder [57], Genorm [58], and the comparative delta–Ct method [59]. In
this way, the best genes were identified and referenced for data normalization in RT-qPCR
analysis. It is essential to mention that the rankings of reference genes tested using different
algorithms may change. To resolve this issue, we used RefFinder [60], an analysis program
that employs algorithms to comprehensively evaluate and classify reference genes based
on experimental data.

3.4.4. RNA Extraction, cDNA Synthesis, and Quantitative PCR (qPCR)

Total RNA was extracted from T. vaginalis parasites treated with compounds
O2N-BZM7 and O2N-BZM9 (5.8 µM and 3.8 µM, respectively) for 24 h, respectively,
using the Trizol reactive agent (Thermo Fisher Scientific, Waltham, MA, USA). RNA con-
tamination and degradation were monitored on 2% agarose gels, and RNA purity and
concentration were measured with a NanoPhotometer® spectrophotometer (IMPLEN,
Westlake Village, CA, USA). Reverse transcription (RT) was carried out using Oligo dT18
for first-strand synthesis (Thermo Fisher Scientific, Waltham, MA, USA) and reverse tran-
scriptase (Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR using the SYBR Green
qPCR Master Mix (Bio-Rad, Hercules, CA, USA) was performed on a One-Step Real-Time
PCR system (Applied Biosystems). The PK gene was used as an internal control for the
normalization of gene expression in all experimental groups.

3.5. Probit Analyses

Probit analyses were performed using the data on T. vaginalis growth with different
concentrations of the compounds and metronidazole. This permitted the calculation of
IC50 values. We used the GraphPad Prism 4 package to perform the one-way analysis of
variance for data.

4. Conclusions

The compounds O2N-BZM7 and O2N-BZM9 showed good trichomonicidal activity
on trophozoites, with O2N-BZM9 being the most potent, showing a low IC50 value similar
to those of the reference MTZ drugs (3.8 and 3.5 µM, respectively), the compound could be
effective at low concentrations and therefore show lower systemic toxicity when adminis-
tered to the patient. The compound O2N-BZM9 has fluorine atoms in its structure, which
likely improves its antiparasitic activity. Regarding the expression profiles of metabolic
genes, genes involved in redox balance (NADHOX, G6PD::6PGL) were overexpressed,
as well as the gene that participates in the first reaction of glycolysis (CK). On the other
hand, structural genes such as ACT and TUB showed decreased expression in trophozoites
treated with the compound O2N-BZM9, which could affect their morphology, motility,
and virulence. These results are promising for potential future therapeutic applications of
compounds O2N-BZM7 and O2N-BZM9, such as trichomonacidal drugs.
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