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Abstract: The molecular weight (MW) of an enzyme is a critical parameter in enzyme-constrained
models (ecModels). It is determined by two factors: the presence of subunits and the abundance
of each subunit. Although the number of subunits (NS) can potentially be obtained from UniProt,
this information is not readily available for most proteins. In this study, we addressed this gap
by extracting and curating subunit information from the UniProt database to establish a robust
benchmark dataset. Subsequently, we propose a novel model named DeepSub, which leverages
the protein language model and Bi-directional Gated Recurrent Unit (GRU), to predict NS in homo-
oligomers solely based on protein sequences. DeepSub demonstrates remarkable accuracy, achieving
an accuracy rate as high as 0.967, surpassing the performance of QUEEN. To validate the effectiveness
of DeepSub, we performed predictions for protein homo-oligomers that have been reported in
the literature but are not documented in the UniProt database. Examples include homoserine
dehydrogenase from Corynebacterium glutamicum, Matrilin-4 from Mus musculus and Homo sapiens,
and the Multimerins protein family from M. musculus and H. sapiens. The predicted results align
closely with the reported findings in the literature, underscoring the reliability and utility of DeepSub.

Keywords: homo-oligomers; subunit; deep learning; protein language model

1. Introduction

Protein oligomerization is a well-established phenomenon responsible for their func-
tionality in biological systems, encompassing eukaryotic and prokaryotic organisms, in-
volving approximately 30% of total proteins [1]. Protein oligomers have recently garnered
significant interest in the fields of structural biology [2], chemical biology [3], and neu-
rodegeneration [4]. These oligomers usually consist of a limited number of subunits
(NS), ranging from two to ten, offering substantial combinatorial potential, particularly
through both hetero-oligomerization and homo-oligomerization [5]. Furthermore, it is well-
established that homo-oligomers play crucial roles in mediating and regulating processes
such as gene expression [6], enzyme function [7], ion channels [8], receptors [9], and cell–cell
adhesion [10]. Therefore, understanding the homo-oligomers is vital at the molecular level
to comprehend the physiological functions of proteins and design molecular regulators for
their modulation [11].
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Furthermore, in ecModels, the turnover number (kcat) and MW of an enzyme impose
constraints on the fluxes of reactions catalyzed by the enzyme, thereby crucially impact-
ing the predictive accuracy of ecModels. In conventional enzyme-constrained modeling
frameworks like GECKO [12], enzymes are typically assumed to function as monomers,
with their MW derived solely from the amino acid sequence, which deviates from reality.
ECMpy and ETGEMs utilize curated information from the UniProt [13] database regarding
protein subunit composition to accurately assign NS to a subset of proteins within the
model, such as dimers or tetramers [14,15]. However, the descriptions of protein subunit
composition in the UniProt database are limited, not comprehensive across all species, and,
even for model organisms, they lack complete coverage. While an increasing number of
studies have focused on developing artificial intelligence methods (such as DLKcat [16],
TurNup [17], UniKP [18], etc.) to predict kcat and enhance its coverage in models, relatively
few have addressed MW.

Two primary factors influence the final MW assigned to an enzyme involved in a
specific reaction: whether the protein consists of subunits (as indicated by an “and” relation-
ship in the gene–protein reaction, or GPR, associations) and the abundance of each subunit.
Although obtaining the MW of a protein may seem straightforward through databases like
UniProt or computational methods based on protein sequences, the MW values obtained
from these sources typically represent monomers. For instance, 6-phosphogluconate dehy-
drogenase encoded by gene b2029 in Escherichia coli is a homodimer, resulting in an MW of
102.962 kDa rather than 51.481 kDa. Additionally, many enzymes comprise subunits en-
coded by different genes, denoted by “and” relationships in genome-scale metabolic models
(GEMs). However, the GPR relationships often lack information regarding the number
of each subunit in the protein complex. For example, Succinyl-CoA synthetase is a het-
erotetramer containing two alpha subunits (encoded by b0729 with an MW of 29.777 kDa)
and two beta subunits (encoded by b0728 with an MW of 41.393 kDa). Consequently,
the MW of this enzyme complex should be 142.34 kDa instead of 71.17 kDa. Although
the number of each subunit can potentially be retrieved from UniProt, this information is
missing for many proteins. Using E. coli as an example, there are currently 902 proteins
with clear homo-oligomeric states in the Swiss-Prot database, among which only 238 are
monomers, with the remainder being oligomers. As a result, obtaining quantitative in-
formation on enzyme subunit composition is challenging, often leading to incorrect MW
values in published ecModels, which, in turn, affects the prediction accuracy of ecModels.

Experimental approaches are typically employed to determine the NS of proteins,
such as X-ray and neutron scattering, mass spectrometry, size exclusion chromatography,
gel filtration, dynamic light scattering, analytical ultracentrifugation, and fluorescence
resonance energy transfer [19]. While effective, these methods can be costly and labor-
intensive. To address these challenges, computational protocols have emerged, often
leveraging solved crystal structures as a starting point. However, these methods have
limitations, particularly in cases where experimental structures are unavailable [20]. Recent
advancements in deep learning have shown promise in predicting protein’s quaternary
state. Protein language models, utilizing computational natural language processing
techniques for proteins, have successfully captured secondary structure, protein cellular
localization, and other features from amino acid sequences [21]. This raises the question:
can a protein’s quaternary state be inferred solely from its sequence? Orly et al. introduced
“QUEEN” [21], a study exploring the use of the pretrained model Evolutionary Scale
Modeling 2 (ESM2) [22] for predicting protein quaternary state from sequences. However,
we have observed over 50% of protein fragments in the training dataset. Consequently,
employing QUEEN for direct prediction of homo-oligomeric states for whole-length protein
might yield unreliable outcomes.

In this research, we present a new model named DeepSub for NS prediction based
on the protein language model and Bi-directional GRU. We compared the performance
of DeepSub with QUEEN and found that DeepSub consistently outperforms the latter,
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achieving an accuracy rate of 96.7%. Furthermore, case studies show that DeepSub can
successfully predict subunit structure for proteins not included in the UniProt database.

2. Results and Discussion
2.1. Processing and Analyzing Datasets Extracted from UniProt

Initially, we extracted 570,420 entries from the UniProt (Swiss-Prot) database. After
removing 278,953 entries without subunit descriptions and filtering out 71,191 entries de-
scribed by sequence similarity (ECO: 0000250), we processed the remaining 220,276 entries
using specific keywords (Table S1) and obtained 101,801 entries. Next, entries with de-
scriptions containing “By similarity”, “Probable”, or “Potential” were filtered out, resulting
in a dataset comprising 96,324 entries (https://github.com/tibbdc/DeepSub/tree/main/
DATA, accessed on 26 March 2024). An analysis of the label distribution within the dataset
unveiled a significantly elevated proportion of homodimers and monomers compared to
other homo-oligomers. Overall, even-numbered homo-oligomers were more prevalent than
odd-numbered homo-oligomers (Figure 1A). Furthermore, we performed a species-specific
analysis on four extensively studied organisms with the collected data and found that the
proportion of proteins with a precise homo-oligomer state available is relatively low, with
the highest being 20% in Escherichia coli (Figure 1B). Homodimers are found most prevalent
across the four species, with proportions of 58.45%, 61.66%, 54.71%, and 45.01% in Homo
sapiens, Mus musculus, Saccharomyces cerevisiae (S288c), and E. coli (strain K12), respectively.
E. coli exhibits the richest diversity in multimers, but H. sapiens lacks homododecamer, M.
musculus lacks homooctamers, homodecamer, and homododecamer, and S. cerevisiae lacks
homodecamer and homoheptamer (Table S2).
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In addition, we investigated the distribution of NS for proteins with the same EC
number (a total of 2575 EC numbers). Among them, 78.28% of the EC numbers were
associated with only one NS, while 16.61% of the EC numbers had two NS (Figure 1D). In-
terestingly, we found that there are nine EC numbers with the most diverse homo-oligomer
states, namely 1.15.1.1, 2.5.1.41, 2.7.7.7, 3.2.1.21, 3.4.11.5, 3.5.1.4, 3.6.1.1, 3.6.1.15, and 4.2.1.1
(Table 1). These proteins have the same EC number but different NS, reflecting their diver-
sity in multimeric structures. Among these nine EC numbers, the enzymes with the highest
counts are 1.15.1.1 superoxide dismutase, 2.7.7.7 DNA-directed DNA polymerase, and
3.6.1.1 inorganic diphosphatase. The evolutionary histories of these enzymes are notably
extensive, indicating the possible emergence of diverse homo-oligomeric states throughout
prolonged evolutionary processes (Figure 1C).

Table 1. The EC numbers with the most diverse NS.

EC Number Protein Name Protein Counts Subunits Labels

1.15.1.1 superoxide dismutase 126 1, 2, 3, 4, 6

2.5.1.41 phosphoglycerol
geranylgeranyltransferase 11 1, 2, 4, 5, 6

2.7.7.7 DNA-directed DNA polymerase 217 1, 2, 3, 4, 6
3.2.1.21 beta-glucosidase 12 1, 2, 4, 6, 8
3.4.11.5 prolyl aminopeptidase 8 1, 2, 3, 4, 6
3.5.1.4 amidase 6 1, 2, 4, 6, 8
3.6.1.1 inorganic diphosphatase 116 1, 2, 3, 6, 12
3.6.1.15 nucleoside-triphosphate phosphatase 16 1, 2, 4, 6, 12
4.2.1.1 carbonic anhydrase 13 1, 2, 3, 4, 6

Moreover, we paired proteins with the same EC number and conducted pairwise
sequence alignment. As shown in Figure 1D, it can be observed that, when NS is the same
(label_match is True), the overall similarity is higher than the case when NS is different.
However, a considerable proportion of protein pairs with the same NS exhibit less than 30%
sequence similarity. At the same time, there is also a considerable proportion of proteins
with over 30% similarity but different NS. So, relying solely on sequence similarity (e.g., a
threshold of 30%) to predict the oligomeric state of proteins may not always be reliable, a
point that has been mentioned in earlier research [21] as well.

2.2. Cross-Validation on the Training Set

To comprehensively assess the performance of the DeepSub model, we employed
the 10-fold cross-validation. The entire training set is randomly divided into 10 parts. In
each round, nine parts are used for training while the rest is used for testing. As shown in
Table 2, the 10-fold cross-validation demonstrates that DeepSub’s prediction performance is
exceptionally good, with minimal fluctuations. The average macro-accuracy reached 97%;
additionally, there was a macro-recall rate of 0.897 and a macro-F1 score of 0.905. These
metrics collectively demonstrate the model’s superior prediction accuracy and stability.
Subsequently, we evaluated the performance of DeepSub in predicting subunit categories
and found that it failed to predict heptamers accurately. This is mainly attributed to the
scarcity of heptamer samples in our dataset, comprising only 14 instances. The small sample
size severely limits the model’s ability to perform well in this category and impacts its
overall predictive accuracy. This underscores the necessity in future studies to augment the
sample size for individual subunit categories, thereby enhancing the model’s generalization
capabilities and improving prediction accuracy.
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Table 2. Ten-fold cross-validation on the training set.

Fold mPrecision mRecall mACC mF1

1 0.882 0.861 0.970 0.871
2 0.946 0.958 0.970 0.948
3 0.976 0.916 0.970 0.937
4 0.883 0.857 0.970 0.870
5 0.977 0.9648 0.972 0.970
6 0.8795 0.870 0.971 0.875
7 0.876 0.862 0.970 0.869
8 0.879 0.856 0.968 0.867
9 0.980 0.964 0.969 0.971
10 0.880 0.864 0.969 0.871
Average 0.916 ± 0.047 0.897 ± 0.048 0.97 ± 0.001 0.905 ± 0.046

2.3. Comparison with QUEEN

We conducted comparisons with the deep learning method QUEEN. The test results,
as shown in Figure 2, demonstrate the exceptional overall performance of DeepSub. The
mACC of DeepSub reached 0.967, significantly outperforming QUEEN, which attained a
score of only 0.718 (Figure 2). Furthermore, DeepSub demonstrated superior performance
in terms of mRecall, with a score of 0.890, indicating its strong capability in correctly
identifying positive cases of subunits (Figure 2). The model also achieved high scores in
precision and mF1 score as well, with 0.977 and 0.917, respectively (Figure 2). These metrics
collectively reflect the high accuracy of the DeepSub model in NS prediction. In addition,
the results on the test dataset are highly consistent with those of the 10-fold cross-validation,
demonstrating the excellent generalization ability of the DeepSub model.
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2.4. Case Study

Furthermore, we conducted predictions for protein oligomers that were reported in the
literature but not recorded in the UniProt database. Firstly, crystal structures of homoserine
dehydrogenase (HSDs), which plays a pivotal role in the aspartate pathway [23], from
multiple microbial sources have been elucidated, revealing a catalytic mechanism wherein
the enzyme exists as either a dimer or a tetramer [24,25]. However, the crystal structure
of CgHSD (P08499, the HSD of Corynebacterium glutamicum) remains unreported, and
the subunit structure is absent from UniProt databases. DeepSub predicts CgHSD to
be a homotetramer, consistent with prior research confirming its oligomeric state via
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size-exclusion chromatography (SEC) [26]. However, QUEEN incorrectly predicts it as a
homodimer in this particular example (Table 3).

Table 3. NS prediction for cgHSD, Matrilin-4, Multimerin-1, and Multimerin-2.

Organism Uniprot ID Complex QUEEN DeepSub

Corynebacterium
glutamicum P08499 - 4 2

Mus musculus O89029 Matrilin-4 complex 1 3
Homo sapiens O95460 Matrilin-4 complex 1 3
Mus musculus B2RPV6 Multimerin-1 complex 2 3
Homo sapiens Q13201 Multimerin-1 complex 2 3
Mus musculus A6H6E2 Multimerin-2 complex 2 3
Homo sapiens Q9H8L6 Multimerin-2 complex 2 3

Furthermore, Matrilin-4 represents the most recently identified member of the matrilin
family, characterized by von Willebrand factor-A-like domains and serving as extracellu-
lar matrix adapter proteins [27]. DeepSub predicts that Matrilin-4 in Mus musculus and
Homo sapiens form homotrimeric structures, while QUEEN predicts it to be a monomer
(Table 3). A previous study has demonstrated that, in M. musculus, SDS-PAGE analysis,
MALDI-TOF mass spectrometry, and electron microscopy confirmed the production of
Matrilin-4 homotrimers in 293-EBNA cells transfected with Matrilin-4 cDNA [28]. Electron
microscopy revealed that the trimeric form exhibits similarities to the bouquet-like shape
observed in other matrilins, featuring a compact center from which stalk-like structures
with globular ends extend [28]. These findings validate the accuracy of DeepSub’s predic-
tions. Subsequently, we utilized AlphaFold-Multimer [29] to predict the protein structure of
the Matrilin-4 in M. musculus. The prediction unveiled a trimeric structure of the complex,
exhibiting resemblances to a bouquet-like shape (Figure 3B). This structure encompasses
the C-terminal coiled-coil domains and the N-terminal vWFA-like domains (Figure 3A,B),
aligning with previously documented observations in electron microscopy [28].
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Lastly, Multimerins, comprising Multimerin-1 and Multimerin-2, form a two-member
family characterized by a shared C-terminal globular domain of C1q (gC1q) domain
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typical of the gC1q/TNF superfamily, alongside a unique N-terminus cysteine-rich EMI
domain [30]. Multimerin-1, a large, soluble, disulfide-linked homopolymeric protein, is
expressed in megakaryocytes, platelets, and endothelial cells [31]. On the other hand,
Multimerin-2, an extracellular matrix glycoprotein, has an elusive function, although
Marastoni et al. observed its significant impact on endothelial cell (EC) migration and
the organization of a functional vessel network [32]. The crystal structure of Multimerins
in M. musculus and H. sapiens remains unreported, and subunit structure information is
absent from UniProt databases. While DeepSub predicts that Multimerins in both species
form trimers, the alternative method, QUEEN, suggests dimers (Table 3). Verdone et al.
pioneered the determination of the three-dimensional NMR solution structure of the human
EMILIN1 gC1q homotrimer [33], revealing striking homology to the gC1q domains of
several other members of the C1q/TNF superfamily. Furthermore, we conducted structure
alignment [34] between the trimeric structure predicted and the human EMILIN1 gC1q
homotrimer. The result showed a TM-score of 0.586, indicating the presence of a gC1q
homotrimer in the predicted trimer.

2.5. Web Platform

DeepSub was built entirely on cloud-based architecture (Figure 4). We used a three-
tier architecture (the front presentation tier, logic computation tier, and data storage tier)
to build our web server on Amazon Web Services. The data storage tier manages the
persistent storage of our platform, including AWS DynamoDB and AWS S3, which store
user-uploaded input files, parameters, and jobs. The front presentation tier represents the
components users directly interact with, which is hosted by the AWS S3 static website
functionality and accelerated by AWS CloudFront. The logic computation tier manages
requests from external systems and performs the prediction.
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3. Materials and Methods
3.1. Datasets

We have observed discrepancies between the tabular data and the web-based data
provided by UniProt, particularly in cases where the NS of a protein is inferred through
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similarity calculations. These evidence data are not displayed in the tabular format. There-
fore, we have adopted an alternative approach: directly parse XML files to retrieve data.
We used Python’s XML parsing library to handle data from UniProt, specifically extracting
detailed biological information about proteins to generate a structured dataset, such as
the UniProt ID for each protein entry, descriptions of protein NS, protein sequences, EC
numbers, as well as evidence types, and specific subunit evidence related to NS. To handle
large-scale XML files efficiently, we utilized the iterparse method from the lxml library. This
approach alleviates the memory burden when parsing each entry element and maintains
high processing efficiency. During parsing, relevant information of each entry is precisely
extracted and structured into a dictionary, which is then appended to an accumulating data
list. Furthermore, we promptly clear related XML elements after processing each entry
to optimize memory usage further. This method ensures the accuracy and integrity of
data processing while guaranteeing efficiency and optimized memory usage throughout
the process.

We removed proteins that lacked descriptions of subunits and filtered the subunit
evidence indicating NS using sequence similarity in manual assertions, denoted in UniProt
by Term ID (ECO:0000250). Then, we observed that NS of proteins are described using
terms like monomer or homodimer and extracted data containing the following 10 subunit
labels: monomer, homodimer, homotrimer, homotetramer, homopentamer, homohexamer,
homoheptamer, homooctamer, homodimer, and homo-dodecamer. However, multiple
types of subunit labels may appear in the description. For example, the UniProt entry
“O15537” corresponds to the retinoschisin in Homo sapiens. In its “interaction” term, it
is described as “Homooctamer of 4 homodimers; disulfide-linked (PubMed:15644328,
PubMed:19849666). The homooctamer has a flat, cogwheel structure with a diameter
of about 14 nm (PubMed:27798099, PubMed:26812435, PubMed:27114531). Two stacked
octamers can assemble to form a hexadecamer (PubMed:27798099, PubMed:26812435,
PubMed:27114531)”. Labels assigned based solely on the subunit labels “homooctamer”
and “homodimers” would be incorrect for this protein. To reduce the number of false
positive samples in the dataset, we conducted a systematic review of the “interaction”
terms in the UniProt and summarized a mapping between keywords and NS as a criterion
for data screening (Table S1). This mapping is used to filter data based on specific keywords
and assign labels. For instance, by using the specific keyword “Homooctamer of”, the
retinoschisin (O15537) would be assigned as “8”. To ensure data reliability, we only matched
data from Swiss-Prot, the reviewed items in UniProt.

3.2. The model Architecture of DeepSub

The model architecture of DeepSub is shown in Figure 5. Firstly, semantic representa-
tions of protein sequences are obtained through ESM2 [22], which is an advanced protein
language model aimed at understanding and predicting the structure and function of
proteins [35]. Subsequently, the downstream NS prediction tasks are learned using an archi-
tecture based on a Bi-directional GRU and an attention layer [36]. Lastly, the output from
the attention layer is connected to a fully connected output layer with a Softmax activation
function corresponding to the number of categories, resulting in the probability of each
category. In our study, we first represent the input protein sequence P(resi1, resi2, ..., resil),
where the length of the protein sequence is l. Next, we apply the ESM2 model to embed
the protein sequence, resulting in a matrix of dimensions l × n, where n = 1280 represents
the embedding dimension of the protein. To further process this matrix, we perform a
pooling operation to compress its dimensions from l × 1280 to 1 × 1280. This processed
matrix is then used as the input for the Bi-directional GRU layer, which contains 128 hidden
units. The bi-directional structure of the GRU layer allows the model to capture sequence
dependencies from both forward and backward directions, and this complete view of
context often performs better in sequence tasks. This GRU component of this process can
be represented as:

Hgru = fgru(x) (1)
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where H gru ∈ Rˆ(1×H) is the output from the GRU layer, is the function of the bidirec-
tional GRU layer, and x ∈ Rˆ(1×1280) is the result of applying a pooling layer to the ESM2
embeddings of the input protein sequence.
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The second key component of the model is an attention layer. This mechanism, widely
used in deep learning, allows the model to give varying degrees of attention to each
input element based on its importance. In our model, our attention layer is configured
with 32 attention heads. This means the model can pay attention to multiple parts of
the sequence simultaneously at each timestep, thus endowing the model with greater
expressive capability. This process can be represented as:

H_attention = f _attention
(

Hgru
)

(2)

where H_attention ∈ Rˆ(1×A) is the output from the attention layer, is the function of the
attention layer, and Hgru is the output from the previous Bi-directional GRU layer.

The final part of the model is a fully connected layer. It takes the output from the
attention layer and transforms it into the model’s final prediction. Mathematically, this can
be represented as:

Y = f _ f c(H_attention) (3)

where Y is the final output of the model, f _ f c is the function of the fully connected layer,
and H_attention is the output from the previous attention layer. Therefore, the entire model
can be represented by the following formula:

Y = f _ f c
(

f _attention
(

fgru(X)
))

(4)

The above model structure combines the temporal processing capability of Recurrent
Neural Networks and the context attention capability of the attention mechanism, enabling
us to effectively extract useful features from the input protein sequence representation and
incorporate important contextual information into the final representation.
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3.3. Model Training

We divided the dataset into training and testing sets in an 8:2 ratio. The design
and construction of the DeepSub model exemplify the fusion of advanced technologies
in contemporary bioinformatics and computational biology. Developed in Python 3.10,
it integrates the biological data processing capabilities of Biopython 1.79 and operates
efficiently within the cudatoolkit 11.8 environment. DeepSub incorporates TensorFlow
2.14.0 and PyTorch 2.2.0, two leading deep learning frameworks at its core. Trained on the
NVIDIA GeForce GTX A6000 graphics card with 48 GB of memory, DeepSub benefits from
powerful parallel computing and large-scale data handling capabilities. During training,
the learning rate is set at 0.001, aimed at precise model optimization through gradual
weight adjustments. The model undergoes 200 training epochs, ensuring ample time for
learning and feature extraction from the data. A batch size 1024 accelerates training by
processing large volumes of data in each iteration. A dropout rate of 0.5 is implemented to
prevent overfitting, balancing complexity with improved generalization capabilities.

3.4. Baseline Models

The QUEEN model utilizes the Qsbio training dataset and employs the ESM-2 model
for protein embedding as its foundation. The classification component is handled by a
multilayer perceptron (MLP) configured with specific parameters. In this classifier, the
activation function “identity” is used, meaning that the output layer directly outputs a
result without any activation processing. However, the retraining code for the QUEEN
model is not publicly available; the production model of QUEEN was used in this study.

3.5. Loss Function

In this task, we use a loss function that is commonly used for multi-classification
problems. This function calculates the cross-entropy between the true distribution and the
predicted distribution. The specific formula is as follows:

H(p, q) = −Σp(x)logq(x) (5)

where p is the true distribution, q is the predicted distribution, Σ is the summation over all
categories, x is a specific category, p(x) is the probability of category x in the true distribution,
and q(x) is the probability of category x in the predicted distribution.

3.6. Evaluation Metrics

To assess the performance of the model, four commonly used metrics were calcu-
lated and defined: mACC (macro-average accuracy), mPrecision (macro-average precision),
mRecall (macro-average recall), and mF1 (macro-average F1 score).

mACC =
∑n

i=1
TPi+TNi

TPi+TNi+FPi+FNi

n
, n = 1, 2, 3, · · · , N (6)

mPrecision =
∑n

i=1
TPi

TPi+FPi

n
, n = 1, 2, 3, · · · , N (7)

mRecall =
∑n

i=1
TPi

TPi+FNi

n
, n = 1, 2, 3, · · · , N (8)

mF1 =
2 × mPrecision × mRecall

mPrecision + mRecall
(9)

where TPi, TNi, FPi, and FNi denote the numbers of true positive, true negative, false
positive, and false negative samples for the ith class, respectively.
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4. Conclusions

In traditional protein databases, information is typically organized around genes or
proteins, including repositories of protein structures. However, in reality, homo-oligomers
do not function as individual monomers, and their structures and characteristics vary sig-
nificantly from those of monomers. AlphaFold-Multimer can predict the three-dimensional
structure of protein complexes using amino acid sequences as input but requires the users
to know the NS. For homo-oligomers, knowing the specific oligomeric state is essential
when preparing the sequence file. However, in practical applications, researchers often
encounter challenges in determining the actual NS of the target protein, which can hinder
the attainment of optimal results. In this study, we obtained sequences and correspond-
ing NS for monomeric and oligomeric proteins from UniProt. Leveraging deep learning
techniques and the protein language model, we developed DeepSub to predict NS in homo-
oligomers based solely on amino acid sequences, thereby aiding in the prediction of true
protein structures.

Furthermore, the MW of an enzyme represents a critical parameter in ecModels.
Obtaining quantitative information on enzyme subunit composition is challenging, often
resulting in inaccurate MW values in published ecModels. The method proposed in this
study for predicting protein NS can effectively address this limitation, which is crucial for
enhancing the accuracy and reliability of ecModels.

Although our method demonstrates high precision in many aspects, it still faces certain
limitations. Primarily, our data originate solely from the UniProt database, which currently
offers an insufficient volume of data, particularly for samples like heptamers, which are
limited to only 14 instances, as discussed in Section 2.2. This highlights the need for
future studies to increase the sample size for specific subunit categories, thereby improving
the model’s generalization capabilities and predictive accuracy. Additionally, there is
room for improvement in the interpretability of our method. We will strive to introduce
an interpretative mechanism into the model to identify the key residues influencing the
conformation. This will not only enable us to more accurately understand the scientific
principles behind the prediction results but also enhance the practicality of our method,
laying a stronger foundation for future scientific research.
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