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Abstract: Extracellular vesicles (EVs) are tools for intercellular communication, mediating molec-
ular transport processes. Emerging studies have revealed that EVs are significantly involved in
immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers
systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although
extensive research has been conducted on animals, the complex inflammatory mechanisms that
cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have
focused on secreted exosomes, which are small extracellular vesicles from various body cells, and
have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes
undergo changes in content, concentration, and function, which significantly affect the metabolism of
endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in
the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis.
This review explores the contributions of activated immune cells and diverse body cells’ secreted
exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers
for predicting organ failure in septic shock.

Keywords: sepsis; vital organ dysfunction; circulating exosomes; pathophysiology; molecular
biomarkers; septic shock

1. Introduction

Sepsis is a serious medical condition that can result in life-threatening organ dys-
function if left untreated [1]. It is crucial to recognize the symptoms and understand its
progression, underlying pathology, and available treatment options. Early symptoms of
sepsis can initially present with non-specific symptoms such as fever, chills, rapid breath-
ing, increased heart rate, and confusion. As sepsis progresses, symptoms may include
a significant drop in blood pressure (septic shock), difficulty breathing, decreased urine
output, altered mental status, and organ dysfunction. If not promptly treated, sepsis can
progress to severe sepsis or septic shock, where multiple organs fail due to inadequate
blood flow and oxygen delivery. Sepsis is triggered by an infection, which may be bacterial,
fungal, or viral. The infection causes the release of inflammatory mediators (such as cy-
tokines) that activate the immune system excessively [2]. Excessive inflammation can lead
to microvascular dysfunction, tissue damage, and impaired organ function. In addition, the
dysregulation of coagulation pathways can occur, leading to disseminated intravascular
coagulation (DIC), which further complicates the condition. Treatment options are very
limited; therefore, it is crucial to promptly administer broad-spectrum antibiotics in order to
target the underlying infection. Intravenous fluids are given to restore adequate blood flow
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and blood pressure [3]. In cases of septic shock, medications such as norepinephrine may
be needed to raise blood pressure. Patients frequently require oxygen therapy, mechanical
ventilation, and renal replacement therapy (dialysis) to support failing organs. In some
cases, corticosteroids may be employed to modulate the immune response. Sepsis is a
leading cause of mortality and multiple organ failure in intensive care units [4]. It is a
dysregulated systemic inflammatory response triggered by pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) upon infection,
which is mediated through pattern recognition receptors (PRRs) [5]. Despite intensive
research, deciphering the intricate inflammatory pathogenesis underlying sepsis-induced
organ dysfunction remains a challenge. Recent efforts have focused on understanding the
role of secreted exosomes in complex pathological processes (Figure 1), aiming to identify
biomarkers associated with their multifaceted pathophysiology [6–11]. Consequently, sep-
sis is a medical emergency that requires early recognition and aggressive treatment, thus
underscoring the unmet need for new therapies.
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Figure 1. Exosome biogenesis and their diverse molecular contents: Exosome-releasing multivesicular
bodies (MVBs) are formed in donor cells through a multistage process involving endocytosis through
the plasma membrane, formation of early and late endosomes, enrichment of exosomes with specific
membrane proteins, and packaging with molecular cargo such as mRNAs, miRNAs, proteins, and
lipids during MVB maturation. Ultimately, MVBs fused to the donor cell membrane and exosomes
are released into the extracellular space. Exosomes can enter recipient cells through specific protein–
protein interactions, such as ligand–receptor binding, or by direct fusion with the plasma membrane.
Once inside the host cell, exosomes release their macromolecular cargo into the cytoplasm, affecting
signaling pathways and translation. They can also generate regulatory proteins, such as transcription
factors, which switch specific target genes on or off.

2. Biogenesis of Exosomes and Cargo Packaging

EVs are classified into three main categories based on size, membrane markers, bio-
genesis, and release pathways. These categories are microvesicles, exosomes, and apoptotic
bodies [12]. The secretion of EVs containing miRNA is not a random or collateral event (as
occurs with apoptotic bodies) but, rather, an event that is desired by the cells to facilitate
intercellular communication [13]. Recent research suggests that each subgroup includes
multiple subpopulations, which likely have distinct biological roles and different effects
on recipient cells [14,15]. Exosomes are smaller in diameter (30 to 150 nm) compared to
microvesicles. They form through the inward budding of intracellular endosomes within
the cytoplasm, leading to the creation of multivesicular bodies (MVBs) [6,16]. These MVBs
ultimately release exosomes into the extracellular space following fusion with the cell
membrane (Figure 1) [15].
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Exosomes, depending on their cargo, regulate cellular homeostasis by affecting sig-
naling pathways and enzyme reactions, thereby modulating the function and cellular
phenotype of the recipient cells [17,18]. However, it is important to note that the biochemi-
cal contents of exosomes can vary significantly depending on the cell type, pathological
conditions, and environment [19]. The metabolic and functional state of the recipient cells
can also play a role in determining the biological effects of exosomes [20]. Exosomes transfer
their functional cargo to recipient cells through different mechanisms, such as endocytosis,
membrane fusion, or phagocytosis. Studies suggest that exosomes found in bodily fluids
may contain molecules related to diseases, making them potential biomarkers for various
human diseases such as sepsis, cancers, neurodegenerative diseases, and autoimmune
disorders [6,7,17]. Additionally, the composition and concentration of exosomes in body
fluids are directly correlated with the pathophysiological state of the originating cells [4,10].

Exosomes contain several characteristic protein markers, including CD63, CD9, and
CD81, as well as specific membrane components such as cholesterol, sphingomyelin,
and phosphatidylinositol [21]. Exosomes carry a complex array of membrane-associated
proteins, oligomeric proteins, functional mRNA, miRNA, DNA fragments, and lipids,
indicating their potential functional diversity [12]. The proper sorting and packaging of
cargo into exosomes represents a fundamental process in the biogenesis and function of
exosomes. The ESCRT (Endosomal Sorting Complex Required for Transport) machinery
is a collection of protein complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) that are
involved in the formation of ILVs within MVBs. Cargo sorting and packaging into ILVs
primarily rely on the ESCRT machinery, which recognizes and sequesters specific cargo
proteins into budding vesicles. ESCRT complexes recognize ubiquitinated proteins on the
endosomal membrane and facilitate their sorting into ILVs. The ESCRT machinery interacts
with specific protein and lipid components to promote ILV formation and cargo encapsula-
tion. On the other hand, ESCRT-independent pathways involve alternative mechanisms
for cargo sorting and vesicle formation. Lipid-based microdomains, tetraspanin-enriched
domains, and other protein complexes can contribute to cargo sorting and vesicle budding.
Cargo selection in ESCRT-independent pathways is likely to involve lipid raft domains,
specific protein–protein interactions, or RNA-mediated sorting. ESCRT-independent vesi-
cle budding can occur through membrane curvature induced by specific lipid–protein
interactions or through the action of other protein complexes. It is indisputable that al-
ternative membrane remodeling proteins (e.g., SPG7) contribute to vesicle formation and
release. ESCRT-dependent pathways are characterized by post-translational modifications,
including ubiquitin-mediated cargo recognition and selective sorting. ESCRT-independent
pathways, on the other hand, may rely on lipid microdomains, protein–protein interac-
tions, or RNA-based mechanisms for cargo selection. In conclusion, ESCRT-dependent
and ESCRT-independent mechanisms represent alternative pathways for cargo sorting and
vesicle formation during exosome biogenesis. Understanding these pathways is essential
for elucidating how exosomes communicate with cells and contribute to disease processes
(Figure 2). Selective packaging of microRNAs (miRNAs) and messenger RNAs (mRNAs)
into exosomes involves intricate mechanisms that govern cargo sorting and loading [22].
Certain motifs or structural features within miRNAs can influence their selective packaging
into exosomes. Exosome-associated RNA-binding proteins and lipid components may
recognize specific sequences or secondary structures of miRNAs. RNA-binding proteins,
such as hnRNPA2B1, Ago2, and others, interact with miRNAs and facilitate their load-
ing into exosomes [23]. Components of ESCRT and related proteins play roles in sorting
miRNA into exosomes. The ESCRT machinery can interact with RNA-binding proteins and
specific membrane domains to facilitate the encapsulation of miRNAs into intraluminal
vesicles (ILVs) within multivesicular bodies (MVBs). Specific RNA-binding proteins and
complexes, such as ELAVL1 (HuR), hnRNPs, and Ago2, interact with mRNAs and regulate
their sorting into exosomes [24]. These proteins can recognize mRNA sequences, localiza-
tion signals, or secondary structures, determining their inclusion in the exosome cargo. The
ESCRT machinery and related components contribute to sorting mRNAs into ILVs during
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exosome biogenesis [25]. Understanding these processes is crucial for elucidating the roles
of exosomal RNAs in intercellular communication, disease pathogenesis, and potential
therapeutic applications.
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Figure 2. Upregulated exosomal RNA cargoes in sepsis: MiRNAs and long non-coding RNAs
(lncRNA), including circular RNAs, are listed next to the organs in which they were discovered.
MiRNA target genes are listed next to the corresponding miRNA. The organ-specific sections (7.1–7.5)
provide more details and protein factors of exosome cargoes.

3. Significantly Altered Exosomal Cargo in Sepsis

During sepsis, immune and non-immune cells become activated and release exosomes
extensively [10,26]. Plasma exosomes in sepsis patients have been extensively studied,
revealing significant differences in their biochemical composition, functions, and circulation
levels compared to those in a healthy state [7,27]. During sepsis, altered exosomes exhibit
elevated levels of pro-inflammatory, anti-inflammatory, and pro-coagulant properties
(Table 1).

Table 1. Exosomal cargo, including proteins, mRNAs, miRNAs, and lncRNAs, in sepsis. Target genes
and the resulting pathophysiological changes are included.

Source/
Model Exosomal Cargo Expression in

Sepsis Target Gene Pathophysiological Change Ref.

Proteins

Human Variety of cytokines/
chemokines Up ND

Modulate inflammation by
regulating target proteins in

inflammatory signaling
pathways

[28,29]

Human HSPs Up ND Work as DAMPs to induce
inflammation [28]
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Table 1. Cont.

Source/
Model Exosomal Cargo Expression in

Sepsis Target Gene Pathophysiological Change Ref.

Human HMGB1 Up ND

Mediates the release of
inflammatory factors via
acting on immune cells,

pyroptosis pathways, and
phosphorylating nuclear

factor-kB

[28]

Human SPTLC3 Up ND

Involved in sphingolipid
metabolism, with a negative

correlation with the
progression of sepsis

[30]

Mice, Human ATF3 Up Noxa and Bnip3

An early diagnostic
biomarker for

sepsis-induced acute kidney
injury

[31]

Human Histones Up CXCL9
and CXCL10

Specifically target
monocytes in human blood,

which evokes the
mobilization of the

chemotactic chemokines
from these cells

[32]

Human NADPH oxidase, NO
synthase Up ND

Induce endothelial cell
apoptosis and regulation of
sepsis-induced metabolic

alterations

[6]

mRNAs

Human
MPO, PRDX3, SOD2,
FOXM1, SELS, and

GLRX2
Up ND

Regulation of
sepsis-induced oxidative

stress
[33]

Contd. . .

Human DNMT1, DNMT3A,
DNMT3B Up ND

Regulate gene expression by
modifying DNA

methylation and altering
transcription

[30]

miRNAs

Human

miR-1-3p, miR-21-3p,
miR-221-3p,
mirR-129-5p,
miR-222-3p,
miR-221-5p,
miR-155-5p,

miR-1247-3p,
miR-148a-5p, and

miR-222-5p

Up
SERP1, SORBS2,

BAK1, P53,
PTEN

Induce endothelial cell
dysfunction and regulates

sepsis-related cardiac
dysfunction through

modulating target genes

[28,30,34,35]

Human
et-7b-5p, let-7c-5p,

miR-122-5p,
miR-1227-3p

Up ND

Modulate inflammatory
signaling pathways and the

cell cycle by regulating
target proteins in sepsis

[6,23,28]

Mice

miR-16, miR-17,
miR-20a, miR-20b,
miR-26a, miR-26,

miR-106a, miR-106b,
miR-195, miR-451

Up SIRPa, CDK6,
cyclin E1, IFN-b

Regulate macrophage
infiltration, phagocytosis,

pro-inflammatory cytokine
secretion, and G1/S-phase
progression by targeting

specific genes

[36]
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Table 1. Cont.

Source/
Model Exosomal Cargo Expression in

Sepsis Target Gene Pathophysiological Change Ref.

Mice
miR-19a, miR-21,

miR-27a, miR-126,
miR-146b, miR-200

Up TNF-α and
IL-17A

Induce immunosuppression
in sepsis by suppressing
target genes’ expression

[29]

Human

miR-125b-5p,
miR-21-5p,
miR-30a-5p,
miR-100-5p,
miR-122-5p,

miR-193a-5p,

Up ND

Induce myocardial
dysfunction and apoptosis

in endothelial cells, and may
thus contribute to the

vascular abnormalities
commonly observed in

patients with sepsis

[37]

Mice miR-23b Up NF-κB, IL-17
Regulates the

NF-κB-mediated activation
of vascular endothelial cells

[38]

Mice

miR-126-3p,
miR-122-5p,

miR-146a-5p,
miR-145-5p,
miR-26a-5p,
miR-150-5p,
miR-222-3p,
miR-181a-5p

Up TLR7-MyD88 Mediate the cytokine
production [39,40]

Mice

miR-34a-5p,
miR-122-5p,
miR-145-5p,

miR-146a-5p,
miR-210-3

Up IL-6, TNF-a,
IL-1b, and MIP-2

Induce complement
activation, cytokine

production, and leukocyte
migration in sepsis

[39]

Mice miR-499-5p Up EIF4E

Able to regulate
sepsis-induced

cardiomyopathy by
targeting EIF4E

[41]

Human miR-122 Up ND
Levels correlated with

short-term mortality in sepsis
patients

[42]

Contd. . .

Mice miR-193b Down NF-κB
p65/HDAC3

Systemic exosomal
miR-193b-3p delivery

attenuates the inflammatory
response by acetylation of

the NF-κB p65
via suppressed expression

and activity of HDAC3

[43]

Mice miR-181b Down NF-kB

Regulates NF-kB-mediated
endothelial cell activation

and vascular inflammation
in response to

pro-inflammatory stimuli

[44]

Human miR-21 Up Involved in the regulation of
late sepsis [29]
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Table 1. Cont.

Source/
Model Exosomal Cargo Expression in

Sepsis Target Gene Pathophysiological Change Ref.

Human miR-155 Up ND

Positive regulator of
inflammation by virtue of its

potent upregulation in
multiple immune cell

lineages by TLR,
inflammatory cytokines,

and specific antigens

[45]

Human miR-15a Up ND

Upregulated miR-15a
downregulates the

LPS-induced inflammatory
pathway

[46]

Mice miR-574-5p Up ND A good predictor for sepsis
prognosis [47]

Human miR-133a Up ND Correlation between the
levels of miR-133a and

sepsis severity
[48]

lncRNAs

Human TUG1 Down

miR-142-
3p/Sirtuin 1 axis

and
NF-kB

Decreasing its expression
may contribute to the

development of
sepsis-associated acute

kidney injury via
modulating target genes

[29]

Human TapSAKI Up
miR-22/

PTEN/TLR4/NF-
kB

Promotes inflammation
injury in HK-2 cells [49]

Human
Mice MALAT1 Up SAA3,miR-12b

TNF-a expression in
LPS-induced septic
cardiomyocytes via

activation of target gene

[50]

Mice Hotairm1 Up S100A
Support of myeloid-derived
suppressor cells’ expansion

during sepsis
[51]

Human NEAT1 Up miR-22-3p
The upregulation of NEAT1
was related to the severity of
acute kidney (AKI) in sepsis

[52]

These properties (i.e., cargo) directly contribute to pathophysiological processes, including changes in cell
metabolism, endothelial dysfunction, coagulation disorders, and cardiovascular dysfunction [6,28,53].

4. Alteration in Cell Metabolism

Cellular metabolism involves both anabolic and catabolic processes that maintain
physiological equilibrium and produce essential chemical energy (ATP) for cellular func-
tions [54]. In septic cells, there is a heightened demand for glucose to fulfill their biosyn-
thetic and bioenergetic needs [55]. This alteration occurs as cells switch from oxidative
phosphorylation to glycolysis, which is mediated by hypoxia-inducible factor-1α (HIF-1α).
As a result, this change disrupts the normal balance between catabolism and anabolism, con-
tributing to the pathophysiology of sepsis and the manifestation of clinical symptoms [56].
Sepsis induces the production of exosomes that contain HIF-1α, which has a profound
effect on cytokine production, cellular metabolism, and adaptation [56]. Additionally,
studies have shown significantly increased levels of HIF-1 mRNA in exosomes isolated
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from the blood of patients with septic shock [56]. Research suggests that HIF derived from
exosomes has potential as a promising biomarker for sepsis [6,56,57].

Exosomes deliver metabolites (e.g., glucose, amino acids, lipids, and nucleotides)
in addition to proteins, lipids, and nucleic acids to recipient cells, influencing various
aspects of cellular metabolism [58]. Exosomes can also transfer glucose transporters,
enzymes, and regulators involved in glucose metabolism [59]. Delivered lipids and lipid-
modifying enzymes can influence lipid metabolism and storage in recipient cells. Transfer
of metabolites via exosomes can supplement cellular energy production, biosynthesis
pathways, and other metabolic processes in recipient cells. Exosomal miRNAs can target
specific genes involved in metabolic regulation, thereby altering cellular metabolism in
recipient cells [60]. Further research into exosome-mediated metabolic regulation will
deepen our understanding of cellular communication and metabolic homeostasis.

5. Endothelial and Cardiovascular Dysfunctions

Endothelial cells play a crucial role in regulating vascular function, including the
production of nitric oxide (NO), a key signaling molecule involved in vascular homeostasis
[61]. Exosomes released by endothelial cells can contribute to intercellular communication
and may impact NO production and vascular function through various mechanisms.
Endothelial cells produce NO through the action of endothelial nitric oxide synthase
(eNOS), which converts L-arginine into NO and citrulline [62]. NO is a potent vasodilator
that regulates blood vessel tone, inhibits platelet aggregation, and promotes endothelial
integrity. Exosome-derived miRNAs regulate eNOS expression and activity in recipient
cells [63]. Exosomal lipid components can also modulate eNOS function or NO release
in target cells [64]. Strategies to enhance NO’s bioavailability or restore endothelial cell
function via exosome-based therapies are being explored for cardiovascular diseases [65].
When vascular endothelial cells encounter PAMPs, such as lipopolysaccharides (LPSs), they
activate various inflammatory mediators through PRRs, inducing a state of both pro- and
anti-inflammatory imbalance in sepsis [4]. This dysregulation significantly contributes to
septic shock and organ dysfunction, and it ultimately serves as a predictor of mortality in
sepsis [30,66,67]. Detecting early-stage endothelial and cardiovascular dysfunctions could
be crucial for implementing effective control measures during the initial phase of sepsis.

Research has revealed the multiple roles of exosomes derived from various cells (such
as monocytes, platelets, erythrocytes, neutrophils, and endothelial cells) that are activated
during sepsis and influence both the physiology and pathophysiology of endothelial
cells [8,28]. Some of the effects of these exosomes include promoting excessive nitric oxide
production, lesion formation, intravascular calcifications, plaque progression, inflammation,
and coagulation. Conversely, other components within exosomes contribute to vascular
protection and endothelial regeneration [28,68,69]. Therefore, exosomes present a promising
avenue for therapeutics, potentially serving as a novel tool for detecting and managing
endothelial and cardiovascular dysfunctions [68].

6. Coagulation Disorders

Disorders in blood coagulation in sepsis are influenced by exosomes, which act as
crucial messengers in inflammatory signaling through cell-to-cell communication [10].
These exosomes contribute to the three primary characteristics of coagulation disorders
in sepsis: activation of coagulation, disruption of anticoagulant systems, and imbalances
in fibrinolytic systems [10]. In sepsis, exosomes derived from platelets containing pro-
coagulant elements such as phosphatidylserine and tissue factors have been found to
significantly contribute to activating coagulation by orchestrating the assembly of blood-
clotting enzyme complexes and initiating the coagulation cascade [10,68]. Recent research
suggests that exosomes from different cell types, such as leukocytes, endothelial cells, and
red blood cells, play important roles in mediating coagulation disorders during sepsis by
modulating both pro- and anti-inflammatory reactions [28,70]. Numerous studies have
elucidated the relationship between various exosomal components and sepsis-induced co-
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agulopathy [10,20,28,68,70]. These studies have highlighted specific exosomal components
strongly associated with sepsis-induced coagulation disorders, including tissue factors,
phosphatidylserine, neutrophil extracellular traps (DNA and histone), damage-associated
molecular patterns (such as chromosomal DNA, nucleosome, mitochondrial DNA, high-
mobility group box 1 protein, and heat shock proteins), complements, messenger RNA,
and microRNA.

7. Exosome Circulation and Its Implications in Sepsis-Induced Vital Organ Dysfunction

Several studies have described the pathophysiological mechanisms that cause sepsis,
which are mainly characterized by dysregulated inflammatory responses and oxidative
stress resulting from the activation of PRRs on recipient cells. The activation takes place
immediately after the binding of the PAMPs and DAMPs [4,71–73]. PAMPs, such as LPSs
found in the outer membrane of Gram-negative bacteria, are essential structures for micro-
bial pathogenicity [74]. Conversely, DAMPs are molecules released during inflammatory
stress or from dying cells during sepsis [72]. PRRs are ubiquitous cell surface receptors
expressed in various cell types, including immune effector cells, endothelial cells, epithelial
cells, and myocytes [75]. These receptors chiefly recognize intricate immune molecules. Toll-
like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors,
retinoic acid-inducible gene (RIG)-like receptors, mannose-binding lectins, and scavenger
receptors are receptors that initiate various signaling pathways involved in inflammation,
adaptive immunity, and cellular metabolism during sepsis [75]. The uncontrolled inflam-
matory responses and oxidative stress result in vascular endothelial dysfunction, cellular
metabolic alterations, and coagulation irregularities. These factors collectively lead to multi-
organ dysfunction [71,76,77]. Studies on sepsis have highlighted changes in the contents
and functions of exosomes. Exosomes transport high levels of cytokines and DAMPs, such
as tissue factors, nucleosomes, mitochondrial DNA, high-mobility group box 1, heat shock
proteins, histones, adenosine triphosphate, extracellular RNA, and phosphatidylserine,
which play crucial roles in inducing systemic inflammation and thrombogenesis [6,10,78,79].
Research on cell lines exposed to LPS, animal models injected with LPS, and human septic
patients has shown that sepsis-induced exosomes contain increased levels of inflammatory
cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-12, IL-15, IL-17, TNF-α, and IFN-γ,
which promote the synthesis of secondary mediators, migration of inflammatory cells,
and collateral tissue damage [8,28,80]. Additionally, these studies indicate the presence
of anti-inflammatory cytokines, such as IL-4 and IL-10, in exosomes [81]. These cytokines
modulate immunosuppressive pathways in later stages, which may lead to imbalances
between pro-inflammatory and anti-inflammatory states. Several studies have highlighted
numerous miRNAs within septic exosomes from patients, LPS-treated macrophages, or
septic mice. These miRNAs regulate dysregulation of the inflammatory response by target-
ing proteins in inflammatory signaling pathways such as toll-like receptors, P38-mitogen
activated protein kinase (MAPK), and necrosis factor-kappa β (NF-κB) [6,28]. Comparisons
between exosomes from septic patients and healthy individuals revealed differential expres-
sion of various miRNAs associated with disease severity and mortality [28,30,34,35,37–43].
Moreover, in sepsis, exosomes have distinct compositions of miRNAs, mRNAs, proteins,
and lipids compared to their healthy counterparts. These differences can have significant
pathological effects on the lungs, kidneys, liver, cardiovascular system, and central nervous
system, which can lead to consequential injuries (Figure 2).

7.1. Central Nervous System (CNS)

Septic shock and septic encephalopathy are among the primary causes of impaired con-
sciousness in patients with sepsis [82]. Sepsis-related encephalopathy is characterized by
diffuse cerebral dysfunction resulting from the systemic inflammatory response to infection.
It can occur independently of other causes, such as liver or renal dysfunction, even without
direct infection in the CNS [6,82]. Exosome-related information from the CNS is primarily
available from animal models. Studies in mice treated with LPS indicate that exosomes
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are released and present in significant quantities in the cerebrospinal fluid, suggesting
their role in molecular transport across the blood–brain barrier during sepsis [83,84]. More-
over, certain exosome components, such as miR-146a and miR-155, stimulate microglia
and astrocytes, leading to the secretion of pro-inflammatory cytokines and other factors
(Figure 2). This contributes to inflammation, oxidative stress, and nitric oxide production
in the brain [83–85]. Exosomes, whether circulating or released locally, can induce brain
inflammation, which directly contributes to encephalopathy and may cause systemic im-
mune dysfunction [6]. In the context of sepsis, exosomes released from immune cells, such
as microglia and astrocytes in the brain, may contribute to the pathogenesis and progres-
sion of neurological complications associated with sepsis. These exosomes can transport
pro-inflammatory cytokines, damage-associated molecular patterns (DAMPs), and microR-
NAs, which can induce neuroinflammation, disrupt the blood–brain barrier, and impair
neuronal function [86–88]. Conversely, some research indicates that exosomes may also
have neuroprotective effects during sepsis. They can carry anti-inflammatory molecules,
neurotrophic factors, and other molecules that promote neuronal survival and repair [89].
Additionally, exosomes derived from stem cells or other therapeutic sources show potential
for mitigating sepsis-induced brain injury by modulating immune responses, promoting
tissue repair, and enhancing neuronal resilience [90]. Overall, the role of exosomes in the
brain during sepsis is complex and multifaceted. Further research is needed to elucidate the
specific mechanisms by which exosomes influence neurological outcomes in septic patients,
as well as to explore their potential as therapeutic targets or agents for neuroprotection in
this context.

7.2. Cardiovascular System

In the heart and vascular system, exosomes participate in intercellular communication
and homeostasis under normal physiological conditions, in addition to playing a role in
mediating inflammation and tissue injury during sepsis [91]. Exosomes derived from
cardiac cells, such as cardiomyocytes and cardiac fibroblasts, play essential roles in cardiac
remodeling, angiogenesis, and the regulation of cardiac function [92]. These exosomes
carry signaling molecules, such as growth factors (e.g., VEGF, FGF), microRNAs, and
proteins involved in extracellular matrix remodeling, which modulate cellular responses
and contribute to cardiac adaptation to stress (Figure 2) [93]. Furthermore, endothelial-
derived exosomes are critical for maintaining vascular integrity, regulating vascular tone,
and mediating intercellular crosstalk between endothelial cells and other vascular cell
types [94]. These exosomes can transfer bioactive molecules, including nitric oxide, en-
dothelial nitric oxide synthase (eNOS), and angiogenic factors, which modulate vascular
function and angiogenesis [95]. Heart failure and dysfunction are significant causes of
death in septic patients. Sepsis-induced cardiomyopathy is a major contributor to septic
shock, along with hypovolemia [96]. This condition results from various factors, including
pro-inflammatory mediators, mitochondrial dysfunction, oxidative stress, altered calcium
regulation, abnormal autonomic nervous activity, and endothelial dysfunction [97,98].
Recent research suggests that exosomes may contribute to cardiac damage during sep-
sis [6]. Elevated levels of exosomes derived from platelets, leukocytes, and endothelial
cells have been observed in sepsis patients, as well as in chronic vascular diseases such as
atherosclerosis, and they exacerbate inflammation and microvascular permeability [53,80].
Studies on exosome cargoes from septic patients have highlighted increased levels of ac-
tivities such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, leading
to the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS),
causing oxidative stress [97,99]. Exosomes also carry nitric oxide (NO) and peroxynitrite,
which induce myocardial dysfunction in isolated heart and muscle preparations [100,101].
In sepsis-induced cardiomyopathy models, in vivo experiments suggest that inhibiting
exosome release can improve cardiac function, indicating a potential clinical impact on
this condition [102]. During sepsis, the balance between pro-inflammatory and protective
effects of exosomes in the cardiovascular system may be disrupted, leading to endothelial
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dysfunction, microvascular thrombosis, and myocardial depression. Understanding the
dynamic interplay between different populations of exosomes and their cargoes in the
context of sepsis-induced cardiovascular dysfunction is crucial for developing targeted
diagnostic and therapeutic strategies. Additionally, exosomes hold promise as potential
biomarkers for the early detection and monitoring of sepsis-associated cardiovascular
complications [103]. Analysis of exosomal cargo, such as specific microRNAs or proteins
associated with cardiac injury and inflammation, may provide valuable insights into the
pathophysiology of sepsis-induced cardiac dysfunction and help guide clinical decision-
making. In summary, exosomes play diverse and intricate roles in both physiological and
pathological processes in the heart and vascular system, including their involvement in
sepsis-induced cardiovascular dysfunction. Further research into the mechanisms under-
lying exosome-mediated communication and their therapeutic potential is warranted to
improve the management of sepsis and its associated cardiovascular complications.

7.3. Lungs

Exosomes have emerged as important mediators of pulmonary inflammation and
injury in the context of sepsis (Figure 2). During sepsis, a dysregulated immune response
to infection can lead to acute lung injury (ALI) or its more severe form, acute respiratory
distress syndrome (ARDS). During sepsis, the lungs are highly susceptible to systemic
inflammatory dysregulation, which can result in ALI or ARDS [104]. This vulnerability
often occurs alongside multiple organ failure, particularly acute kidney injury, which fur-
ther increases sepsis-associated mortality [104]. In sepsis, inflammatory molecules such
as DAMPs and PAMPs can negatively impact the alveolar–capillary barrier, leading to
pulmonary edema, fluid influx, and subsequent lung injury [105]. Recent studies in septic
patients and animals have highlighted the significant roles of exosomes and other extra-
cellular vesicles in both promoting and reducing the inflammatory processes of sepsis
in the lungs [106]. For example, when wild-type mice were treated with exosomes from
septic human patients, the expression of endothelial nitric oxide synthase (eNOS), extra-
cellular superoxide dismutase (SOD), cyclooxygenase-2 (COX-2), and NF-κB in the heart
and lungs increased compared to treatment with exosomes from healthy controls [80].
Additionally, eCIRP has been identified in exosomes isolated from septic mice or patients
and has been linked to the induction of acute ALI in sepsis [107]. Exosomes produced
by pulmonary structural cells, immunoregulatory cells, and stem cells were found to be
increased in the bronchoalveolar lavage fluid (BALF) of infectious ALI mice [108]. These
exosomes have been shown to significantly contribute to lung inflammation in various
ALI models [108]. Exosomes and microvesicles loaded with miR-155 were secreted in the
BALF and serum of LPS-challenged macrophages. This secretion induced expression of
TNF-α and IL-6 in the lungs, caused lung endothelial cell apoptosis, and disrupted the
alveolar–capillary barrier [109]. The effects of serum exosomes from septic patients on
LPS-induced pulmonary dysfunction in animal models have drawn considerable attention
for proposing novel therapeutic approaches to managing sepsis-induced multiple organ
dysfunctions [79]. Exosomes derived from mesenchymal stem cells (MSCs) or other thera-
peutic sources possess anti-inflammatory, immunomodulatory, and tissue repair properties.
These exosomes can attenuate pulmonary inflammation, enhance alveolar fluid clearance,
and promote tissue regeneration, thereby mitigating lung injury and improving survival
in experimental models of sepsis-induced ALI/ARDS [110]. Overall, exosomes play a
complex and multifaceted role in the pathogenesis of pulmonary complications during
sepsis. Further research is needed to elucidate the specific mechanisms by which exo-
somes contribute to sepsis-induced lung injury, and to explore their potential as diagnostic
biomarkers or therapeutic targets in sepsis-associated pulmonary diseases. Understanding
the dynamic interplay between different populations of exosomes and their cargoes in
the lung microenvironment may provide new insights into the pathophysiology of sepsis
and facilitate the development of novel strategies for the prevention and treatment of
sepsis-induced lung injury.
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7.4. Liver

Exosomes secreted by various liver cell types, including hepatocytes, immune cells,
and endothelial cells, play crucial roles in intercellular communication and the regulation of
immune responses in the liver (Figure 2). During sepsis, a systemic inflammatory response
to infection, the liver plays a central role in host defense and the clearance of pathogens and
their byproducts. Exosomes have emerged as important mediators of hepatic inflammation
and injury in the context of sepsis. However, they have also been implicated in inducing
septic liver dysfunction due to elevated bilirubin concentrations and the occurrence of
coagulation disorders [111,112]. This dysfunction directly contributes to the genesis and
exacerbation of dysfunction in other vital organs during sepsis [111,113]. Elucidating the
pathophysiology and clinical manifestations of sepsis-associated liver dysfunction could
standardize diagnostic panels for early and precise diagnosis. Studies have shown that
exosomes and other EVs released from macrophages, neutrophils, hepatocytes, and liver
sinusoidal endothelial cells are involved in sepsis-associated liver dysfunction [114–116].
For example, in mice, exosomes from macrophages challenged with LPS were taken up
by hepatocytes, which subsequently stimulated the production and secretion of mature
interleukin-1 beta (IL-1β) and IL-18 through NLRP3 inflammasome and caspase-1 activa-
tion [117,118]. This process resulted in the infiltration of macrophages and neutrophils, as
well as elevated serum levels of AST, ALT, and LDH [117,118]. Research on human and
animal models has indicated that exosomes released by various hepatic cells, including
hepatocytes and Kupffer cells, contain DAMPs such as HMGB1 and HSP90. These activate
TLRs and subsequently upregulate the expression of pro-inflammatory genes in Kupffer
cells [117,119,120]. Studies on exosomal miR-155 have identified its role as a regulator
of inflammation, targeting multiple components of the pro-inflammatory cytokine pro-
duction cascade in the liver [27]. Its upregulation in inflammatory conditions or in the
liver under LPS and/or TLR9 ligand stimulation suggests its involvement in liver dys-
function [27]. Exosomal miR-103-3p from LPS-activated macrophages targets Krüppel-like
factor 4 (KLF4), increasing the expression of α-SMA, TGF-β, and Col1a1 in hepatic stel-
late cells, contributing to chronic liver dysfunction or liver fibrosis post-sepsis [121]. It is
challenging, if not impossible, to differentiate exosomes derived from sepsis from those
originating from previous liver damage or sepsis-induced liver damage. The impact of
altered cargo, including miRNAs and proteins in exosomes and other extracellular vesicles
during sepsis, on acute and chronic liver dysfunction remains an area requiring further
exploration [122]. Furthermore, exosomes released from injured or stressed hepatocytes
may exacerbate liver injury by inducing apoptosis, oxidative stress, and hepatic stellate
cell activation [123]. These exosomes can also carry microRNAs and other molecules that
regulate gene expression and contribute to the pathogenesis of liver dysfunction during
sepsis. Conversely, some studies suggest that certain populations of exosomes may have
protective effects on the liver during sepsis. Exosomes derived from mesenchymal stem
cells (MSCs) or other therapeutic sources possess anti-inflammatory, immunomodulatory,
and tissue repair properties. These exosomes can attenuate hepatic inflammation, reduce
hepatocyte apoptosis, and promote tissue regeneration, thereby mitigating liver injury and
improving survival in experimental models of sepsis-induced liver dysfunction [123].

7.5. Kidneys

Exosomes have emerged as important mediators of renal inflammation and injury in
the context of sepsis (Figure 2). Exosomes derived from immune cells, such as macrophages,
neutrophils, and dendritic cells, contribute to the propagation of inflammation in the kid-
neys during sepsis [124]. These exosomes carry pro-inflammatory cytokines, chemokines,
and damage-associated molecular patterns (DAMPs) that activate renal epithelial cells,
resident immune cells, and endothelial cells, leading to the recruitment of inflammatory
cells and the amplification of the immune response. During sepsis, the development of
acute kidney injury (AKI) is a common and serious complication that can lead to increased
morbidity and mortality [125]. Exosomes containing cytokines are produced by different
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types of cells, such as immune cells, endothelial cells, and tubular epithelial cells, when
their PRRs are activated by PAMPs or DAMPs during sepsis in the context of AKI [6,125].
Exosomes containing cytokines have been identified as direct mediators that trigger kidney
inflammation in sepsis. Studies on sepsis patients and animal models have highlighted
the pivotal roles of exosomes’ prothrombotic, pro-inflammatory, and immunomodulatory
properties in the development of AKI. For example, exosomes released by macrophages
challenged with LPS contain histones, which act as DAMPs and induce inflammatory re-
sponses that damage kidney tubular cells [6,125,126]. The exosomes induced by sepsis have
RNA contents, including miRNA19b-3p, which can activate specific pathways and promote
inflammation, contributing significantly to the development of AKI [6]. Exosomes found
in urine and circulation are potential targets for treating sepsis-induced AKI due to their
involvement in organ damage [127]. Certain populations of exosomes may have protective
effects on the kidneys during sepsis. Exosomes derived from mesenchymal stem cells
(MSCs) or other therapeutic sources possess anti-inflammatory, immunomodulatory, and
tissue repair properties. These exosomes can attenuate renal inflammation, reduce tubular
cell apoptosis, and promote tissue regeneration, thereby mitigating kidney injury and im-
proving survival in experimental models of sepsis-induced AKI. Exosomes have garnered
interest as potential diagnostic biomarkers for sepsis-induced renal dysfunction [128].

8. Biomedical Application of Sepsis-Induced Exosomes

Mesenchymal stem cells (MSCs) are a type of adult stem cell found in various tissues,
including bone marrow, adipose tissue, and umbilical cord blood [129]. Mesenchymal
stem cells (MSCs) have gained considerable attention in the field of regenerative medicine
due to their distinctive characteristics. They have the capacity to differentiate into vari-
ous cell types, regulate immune responses, and facilitate tissue repair. These properties
make them a promising candidate for therapeutic applications. In the context of sepsis,
MSCs have shown promise as a potential therapy for mitigating the dysregulated immune
response and tissue damage associated with this life-threatening condition. MSCs exert
their therapeutic effects through various mechanisms, including in a paracrine manner
(e.g., immunomodulation, anti-inflammatory effects, and tissue repair) [50]. These effects
stem back to the secretion of anti-inflammatory cytokines (e.g., IL10), transforming growth
factor-beta (TGF-β), and indoleamine 2,3-dioxygenase (IDO), which can dampen the inflam-
matory cascade and promote tissue healing. Among these paracrine mediators, exosomes
have generated significant interest due to reports of their therapeutic effects. Stem cell
exosomes can potentially avoid the safety risks involved in the delivery of cell therapies.
The biomedical application of exosomes induced by sepsis presents promising prospects
in both the diagnostic and therapeutic realms (Figure 3) [130]. Exosomes, which are small
extracellular vesicles, have significant potential as biomarkers for sepsis due to their disease-
dependent composition and concentration in biofluids [130]. Their cargo, which contains
sepsis-related information, makes them valuable indicators for diagnosis and prognosis in
septic conditions [131,132]. Recent research has emphasized the therapeutic advantages
of exosomes from mesenchymal stem cells (MSCs) in reducing sepsis-induced organ dys-
function [133]. These exosomes transport RNAs and proteins to target cells, demonstrating
potential therapeutic effectiveness in preventing sepsis-related complications [134]. MSC
exosomes have a safer profile compared to their parent cells, can be stored without losing
their function, and possess other advantageous characteristics [135].

Exosomes have diverse application prospects in sepsis, such as early diagnosis, dy-
namic disease monitoring, targeted therapy, and potential utilization as a vaccine platform
for sepsis prevention [135,136]. However, to fully characterize their biological functions
and establish their viability as a treatment option in clinical settings [137], it is crucial to
further develop and optimize methods for exosome isolation. Although there are promis-
ing applications, there are still several unanswered questions about the precise functions
of exosomes during sepsis, under both physiological and pathological conditions. It is
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essential to address these knowledge gaps to fully harness the potential of exosomes in
managing sepsis and improving patient outcomes.
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9. Future Direction of MSC Exosome Therapeutic Approach

MSC exosome (MSC-Exo) therapy, which involves the use of exosomes derived from
mesenchymal stem cells, has the potential to impact various aspects of future medicine,
including the following:

1. Precision Medicine: With advancements in our understanding of the mechanisms of
action and refining isolation techniques, MSC-Exo therapy could become more personalized.
Tailoring exosome payloads to target specific diseases or individual patient characteristics
may enhance treatment efficacy and minimize adverse effects.

2. Diverse Therapeutic Applications: MSC-Exo therapy might find applications across
a wide range of medical conditions beyond those already explored. These could include
neurological disorders, cardiovascular diseases, autoimmune conditions, and even cancer.
Clinical trials and preclinical research may uncover novel therapeutic avenues for MSC-Exo
in diverse medical fields.

3. Regulatory Approval and Standardization: As research progresses and more clinical
evidence accumulates, regulatory agencies may establish guidelines for the development
and approval of MSC-Exo-based therapies. Standardization of isolation methods, character-
ization techniques, and quality control measures will be crucial for ensuring safety, efficacy,
and reproducibility.

4. Combination Therapies: MSC-Exo therapy could be integrated with other treatment
modalities such as gene editing, drug delivery systems, or tissue engineering strategies to
enhance therapeutic outcomes. Synergistic effects between MSC-Exo and complementary
therapies could lead to more robust regenerative responses or targeted interventions.

5. Non-Invasive Delivery Routes: Innovations in delivery methods could enable non-
invasive administration of MSC-Exo, such as inhalation, topical application, or targeted
delivery using nanoparticles or biomaterial scaffolds. These approaches may improve
patient compliance, reduce procedural risks, and enable targeted delivery to specific tissues
or organs.

6. Long-Term Monitoring and Follow-Up: Longitudinal studies will be essential
to assess the long-term safety, durability, and potential side effects of MSC-Exo therapy.
Monitoring patient outcomes over extended periods will provide insights into the per-
sistence of therapeutic effects, potential immunogenicity, and any risks associated with
repeated administration.
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7. Cost-Effectiveness and Accessibility: As manufacturing processes mature and
economies of scale are realized, MSC-Exo therapy may become more cost-effective and
accessible to a broader patient population. Efforts to optimize production workflows,
reduce manufacturing costs, and streamline regulatory pathways could contribute to
broader adoption and affordability.

8. Bioengineering and Biomimicry: Advances in bioengineering techniques may enable
the design of synthetic exosome mimetics or engineered MSCs optimized for exosome
production. These engineered systems could offer improved scalability, customization, and
control over therapeutic payloads, opening up new possibilities for precision medicine and
regenerative therapies.

Overall, the future of MSC-Exo therapy holds tremendous potential for revolutionizing
regenerative medicine and addressing unmet medical needs across various clinical domains.
However, realizing this potential will require continued interdisciplinary collaboration,
robust clinical evidence, regulatory support, and technological innovation [138].

10. Exosomes for Pathogen-Directed Therapy

As per its definition, sepsis is a host overreaction to a microbial infection that causes
damage to the body itself. In the preceding sections, our focus has been on host-directed
therapies that aim to minimize the damage caused by sepsis, including the mitigation of the
process and tissue regeneration. The development of new drugs and delivery methods is
crucial in addressing the issue of antibiotic resistance. It is worth considering that by using
MSC-based exosomes, it may be possible to target the infectious agents [139,140]. Exosomes
can be modified or engineered to express targeting molecules, such as peptides or antibodies
that can recognize and bind to microbial pathogens [141,142]. This targeting can enable the
delivery of therapeutic cargo directly to infected cells or pathogens, which can minimize off-
target effects and maximize efficacy [143]. On the other hand, it is noteworthy that exosomes
can be loaded with antimicrobial agents such as antimicrobial peptides, small molecules, or
nucleic acid-based therapeutics (e.g., miRNAs) that specifically target essential pathways
or components of the pathogen [144]. By utilizing these antimicrobial compounds, we can
disrupt microbial growth, replication, or virulence, resulting in clearance or inhibition of the
pathogen. The synergistic effects between exosomes and antimicrobial drugs can potentially
potentiate their antimicrobial activity, reduce the development of drug resistance, and
improve overall therapeutic efficacy. Overall, exosome therapy directed towards pathogens
has emerged as a promising strategy to combat microbial infections, offering targeted and
versatile approaches to enhance antimicrobial efficacy while minimizing adverse effects on
host tissues. However, it is important to note that further research and development efforts
are needed to fully realize the potential of this innovative therapeutic approach.

11. Challenges in the Field of Extracellular Vesicle Research

Although extracellular vesicles, including exosomes and microvesicles, offer great
promise, they do present a number of challenges for researchers in the field. These chal-
lenges can affect various aspects of exosome research, including the following:

1. One of the primary challenges in exosome research is the development of robust
and reproducible methods for isolating and purifying exosomes from biological fluids
or cell cultures. Current isolation techniques, such as ultracentrifugation, size-exclusion
chromatography, and polymer-based precipitation methods, often have limitations in terms
of yield, purity, and preservation of exosome integrity.

2. Exosome heterogeneity: Exosomes represent a heterogeneous population of vesicles
that vary in size, cargo, and cellular origin. This heterogeneity presents challenges in
standardizing exosome isolation and characterization protocols.

3. Exosome characterization: Comprehensive analysis of exosomes is required to
ascertain their size distribution, morphology, surface markers, and cargo contents (proteins,
lipids, nucleic acids). However, many current techniques for EV characterization, such as
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electron microscopy, nanoparticle tracking analysis, and flow cytometry, have limitations
in sensitivity, specificity, and reproducibility.

4. Cargo profiling and functional studies are essential for understanding the cargo
carried by exosomes, including microRNAs (miRNAs), messenger RNAs (mRNAs), and
proteins. These studies are crucial for elucidating the roles of exosomes in intercellular
communication and disease pathogenesis.

5. Standardization and quality control: The absence of standardized protocols for
exosome isolation, characterization, and functional assays impedes the reproducibility and
comparability of research findings across different studies. The establishment of guidelines
and quality control measures for exosome research is crucial for advancing the field and
translating EV-based therapies to clinical applications.

6. The biological complexity of exosomes and their in vivo applications present
significant challenges. Factors such as biodistribution, clearance mechanisms, and immune
responses to exosomes must be thoroughly investigated to ensure the safety and efficacy of
EV-based therapies.

The challenges associated with extracellular vesicle research can be addressed through
interdisciplinary collaboration among scientists, engineers, and clinicians. Additionally,
concerted efforts should be made to establish standardized protocols, quality control
measures, and regulatory frameworks for exosome-based therapies.

12. Conclusions

During the progression of sepsis, exosomes released from activated cells play a crucial
role in facilitating cellular communication and impacting key pathophysiological mech-
anisms that underlie vital organ dysfunctions. These mechanisms include coagulation
and thrombosis, angiogenesis, oxidative stress, immune modulation, and inflammation.
However, although exosomes have been acknowledged to be involved, their internal and
external molecular contents and their relation to the multifaceted pathophysiologies of vital
organ dysfunctions during sepsis remain largely unexplored. Comprehensive future inves-
tigations, in both preclinical and clinical settings, are necessary to address this knowledge
gap and elucidate the potential regulatory influence of exosomal contents on the primary
pathophysiological events characterizing sepsis. Combining host- and pathogen-directed
exosome therapy with conventional antimicrobial agents or other therapeutic modalities
may enhance treatment outcomes. Such research endeavors hold promise for unveiling
novel therapeutic strategies aimed at intervening in the progression of sepsis, potentially
reducing mortality rates and hospitalizations associated with this critical condition.
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