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Abstract: A new approach to the many-electron correlation problem, termed the

method of moments of coupled-cluster equations (MMCC), is further developed and

tested. The main idea of the MMCC theory is that of the noniterative energy cor-

rections which, when added to the energies obtained in the standard coupled-cluster

calculations, recover the exact (full configuration interaction) energy. The MMCC ap-

proximations require that a guess is provided for the electronic wave function of interest.

The idea of using simple estimates of the wave function, provided by the inexpensive

configuration interaction (CI) methods employing small sets of active orbitals to define

higher–than–double excitations, is tested in this work. The CI-corrected MMCC meth-

ods are used to study the single bond breaking in HF and the simultaneous breaking

of both O–H bonds in H2O.
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1 Introduction

One of the most important problems in coupled-cluster (CC) theory [1–7] is extension of the

standard single-reference CC (SRCC) method to quasi-degenerate electronic states. Potential

energy surfaces (PESs) involving bond breaking represent a particularly challenging problem in

this area.

The standard SRCC methods, including the popular CCSD (CC singles and doubles)

approach [8] and its CCSD[T] [9, 10], CCSD(T) [11], and CCSD(TQf) [12] extensions, in which

the effects due to triply or triply and quadruply excited clusters are estimated using the arguments

originating from the many-body perturbation theory (MBPT), fail to describe bond dissociation

(cf., e.g., Refs. 6, 7, 13–27). On the other hand, the genuine multi-reference CC (MRCC) ap-

proaches, which have specifically been designed to describe quasi-degenerate electronic states and

which have showed some promise in studies of molecular PESs (cf., e.g., Refs. 28–37), are far

from being developed to a point where we could use them in routine calculations. There also are

several problems with the genuine MRCC methods, including, for example, the existence of mul-

tiple intruder solutions that lack physical interpretation and that may cause serious convergence

problems in actual calculations [38], and the difficulties associated with generalizing the genuine

MRCC methods to larger reference spaces (see, e.g., Refs. 36, 37 for a discussion).

Several attempts have been made to remove the pervasive failing of the standard SRCC approx-

imations at larger internuclear separations, while avoiding the conceptual and practical problems

associated with the use of genuine MRCC methods. The representative examples include the exter-

nally corrected CC methods of Paldus and co-workers [6, 10, 39–49] (see, also, Ref. 50), the active-

space CC approaches of Adamowicz, Piecuch, Bartlett, and their collaborators [14, 19, 51–62], the

orbital-optimized CC methods of Head-Gordon et al. [23, 24], the perturbative CC approaches

based on the partitioning of the similarity-transformed Hamiltonian of Gwaltney and Head-

Gordon [25–27], the state-selective MRCC approach of Mahapatra et al. [63, 64], the Brillouin-

Wigner MRCC approach of Hubač and co-workers [65–70], and the method of moments of coupled-

cluster equations (MMCC) of Kowalski and Piecuch [7, 16–22] (see Refs. 22, 71, 72 for the excited-

state extensions; cf. Refs. 18, 37 for the genuine multi-reference generalization). In this pa-

per, we focus on the single-reference MMCC approach, which, according to several preliminary

studies [7, 16–22], allows us to accurately calculate molecular PESs involving bond breaking, while

retaining the simplicity and ease-of-use of the popular noniterative SRCC approximations, such

as CCSD(T).

The main idea of the ground-state MMCC formalism [7, 16–18, 22] is that of the noniterative

energy correction which, when added to the energy obtained in the standard SRCC calculations,

such as CCSD or CCSDT (the CC approach with singles, doubles, and triples), recovers the exact
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(full configuration interaction or full CI) energy. It has been demonstrated that the MMCC formal-

ism allows us to renormalize the existing noniterative SRCC approximations, such as CCSD[T],

CCSD(T), CCSD(TQf), and CCSDT(Qf) [12], so that they can correctly describe entire ground-

state PESs in situations where the standard arguments based on MBPT, on which the CCSD(T),

CCSD(TQf), and similar approximations are based, completely fail [7, 16–22]. In our view, the

MMCC formalism represents an interesting idea in the area of new CC methods for molecular

PESs that needs to be developed and tested further.

The MMCC energy correction is expressed in terms of the generalized moments of CC equations,

i.e., the SRCC equations projected on the excited configurations whose excitation level exceeds

that defining a given SRCC approximation. For example, if we would like to improve the results of

the CCSD calculations by adding the noniterative MMCC correction to the CCSD energy, we must

calculate the generalized moments of the CCSD equations, i.e., the CCSD equations projected on

higher–than–doubly excited configurations. In addition, in order to calculate the MMCC energy

correction, we have to suggest an approximate form of the electronic wave function |Ψ〉. In

our earlier studies of the ground-state MMCC approach, we focused on very simple guesses for

|Ψ〉, obtained in low-order MBPT calculations. This allowed us to formulate the renormalized

and completely renormalized CCSD(T), CCSD(TQf), and CCSDT(Qf) approaches [7, 16–22]. In

this paper, we consider a possibility of approximating the wave function |Ψ〉 that enters the

MMCC energy correction by wave functions obtained in inexpensive CI calculations. In analogy

to the externally corrected CC methods [6, 10, 39–50], in which non-CC wave functions are used

to provide information about higher–than–doubly excited clusters, we call the resulting MMCC

schemes the externally corrected MMCC methods. The CI-corrected MMCC approaches discussed

in this work are tested in pilot calculations for the potential energy curve of HF and simultaneous

breaking of both O–H bonds in H2O.

2 Theory and Computational Details

2.1 The Method of Moments of Coupled-Cluster Equations: An Overview of the Ground-State

Formalism

In the SRCC theory, we represent the ground-state wave function of an N -electron system, de-

scribed by the Hamiltonian H, in the following way:

|Ψ〉 = eT |Φ〉, (1)

where T is the cluster operator and |Φ〉 is an independent-particle-model reference configuration

(usually, the Hartree-Fock determinant). In the exact theory, T is a sum of all many-body cluster
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components that can be written for a given N -electron system. In the standard SRCC approxima-

tions, the many-body expansion of cluster operator T is truncated at some, conveniently chosen,

excitation level. Thus, if A represents the standard SRCC approximation and if mA (mA < N)

is the corresponding excitation level that defines method A, the formula for the cluster operator

T (A) used in calculations with method A is as follows:

T (A) =
mA∑

n=1

Tn , (2)

where Tn, n = 1, . . . ,mA, are the many-body components of T (A). The CCSD method is obtained

by setting mA = 2; in the CCSDT method, mA = 3, etc.

The cluster operator T (A) of method A is obtained by solving the standard SRCC equations,

Q(A)(HeT (A)

)C |Φ〉 = 0, (3)

where subscript C designates the connected part of the corresponding operator expression and

Q(A) is the projection operator onto the subspace of all excited configurations described by T (A),

i.e.,

Q(A) =
mA∑

n=1

Qn, (4)

with Qn representing the projection operator onto the subspace of n-tuply excited configurations

relative to reference |Φ〉. Once the system of equations, Eq. (3), is solved for T (A), the energy is

calculated using the well-known formula

E(A) = 〈Φ|(HeT (A)

)C |Φ〉. (5)

The main idea of the ground-state MMCC theory is that of the noniterative energy correction

δ(A) ≡ E − E(A), (6)

which, when added to energy E(A), obtained in the standard CC calculations with method A,

recovers the corresponding exact (full CI) energy E. The main purpose of the approximate MMCC

calculations is to estimate correction δ(A), so that the resulting MMCC energy,

EMMCC = E(A) + δ(A), (7)

is close to the corresponding exact energy E.

We have recently demonstrated that correction δ(A) can be expressed in terms of the generalized

moments of the SRCC equations, i.e., the SRCC equations projected on the excited configurations
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whose excitation level exceeds that defining a given SRCC approximation [7, 16–18, 22]. The

precise mathematical definition of the generalized moments of the SRCC equations is as follows:

M(j)
J (mA) = 〈Φ(j)

J |(HeT (A)

)C |Φ〉, (8)

where |Φ(j)
J 〉 designate the j-tuply excited configurations relative to |Φ〉. The generalized moments

M(j)
J (mA) that enter the formula for correction δ(A) are those with j > mA [clearly, the M(j)

J (mA)

moments with j = 1, . . . ,mA vanish; cf. Eq. (3)]. We obtain [7, 16–18, 22],

δ(A) ≡ E − E(A) =
N∑

n=mA+1

n∑

j=mA+1

〈Ψ|Qn Cn−j(mA) Mj(mA)|Φ〉/〈Ψ|eT (A)|Φ〉, (9)

where

Cn−j(mA) = (eT (A)

)n−j (10)

represents the (n− j)-body component of the wave operator eT (A)
, defining the SRCC approxima-

tion A, and

Mj(mA)|Φ〉 ≡ Qj(HeT (A)

)C |Φ〉 =
∑

J

M(j)
J (mA) |Φ(j)

J 〉. (11)

All this means that if we, for example, want to correct the results of the CCSD calculations (the

mA = 2 case) and recover the full CI energy by adding the noniterative correction δ(A) to the

CCSD energy, we have to calculate the generalized moments of the CCSD equations, i.e., the

CCSD equations projected on triply, quadruply, pentuply, and hextuply excited configurations,

or, symbolically, the quantities

Mj(2)|Φ〉 = Qj(HeT1+T2)C |Φ〉, (12)

where T1 and T2 are the singly and doubly excited clusters resulting from the CCSD calculations

and j = 3 − 6 (Mj(2)|Φ〉 = 0 for j > 6).

The original proof of Eq. (9) has been based on the Fundamental Theorem of the Formalism

of β-Nested Equations [7], which describes mathematical relationships between multiple solutions

of the SRCC equations representing different levels of CC theory (CCSD, CCSDT, etc.). An

elementary derivation of Eq. (9), based on a simple asymmetric energy expression, termed the

MMCC functional, i.e.,

Λ[Ψ] = 〈Ψ|(H − E(A))eT (A)|Φ〉/〈Ψ|eT (A)|Φ〉, (13)

introduced in Ref. 16, has been given in Appendix A of Ref. 16. The possibility of applying the

MMCC functional in direct calculations of noniterative corrections to standard SRCC energies

has recently been examined in Refs. 73, 74.
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Equation (9) is the basic equation of the ground-state MMCC formalism. There are two

main elements of Eq. (9): the aforementioned generalized moments of CC equations and the

wave function |Ψ〉, which in the exact MMCC theory represents the exact ground-state wave

function. The generalized moments of CC equations can easily be determined, once we know the

corresponding cluster operator T (A). The remaining issue is what do we do with |Ψ〉. This issue

is addressed in the next subsection.

2.2 The MMCC(mA,mB) Approximations. The CI-Corrected MMCC(2,3) and MMCC(2,4)

Methods

The MMCC formula for the energy correction δ(A), Eq. (9), is expressed in terms of the exact

ground-state wave function |Ψ〉, which we usually do not know (if we knew the exact |Ψ〉, we

would not have to perform any calculations !). In approximate MMCC methods, designated

as the MMCC(mA,mB) schemes, wave functions |Ψ〉 are evaluated by performing, for example,

limited CI calculations.

In the MMCC(mA,mB) approximations, we use wave functions |Ψ〉, whose CI expansions do

not contain higher–than–mB-tuply excited components (mB < N). This assumption reduces the

summation over n in Eq. (9) to
mB∑

n=mA+1

, so that the MMCC(mA,mB) energies, EMMCC(mA,mB),

are calculated according to the following formula [7, 16–18, 22]:

EMMCC(mA,mB) = E(A) + δ(mA,mB), (14)

where

δ(mA,mB) =
mB∑

n=mA+1

n∑

j=mA+1

〈Ψ|Qn Cn−j(mA) Mj(mA)|Φ〉/〈Ψ|eT (A)|Φ〉. (15)

When mB = N and when |Ψ〉 is exact, we obtain the exact MMCC theory described in the previous

subsection. Clearly, we must assume that mB > mA to obtain a nonzero value of δ(mA,mB).

The lowest-order approximations belonging to the MMCC(mA,mB) hierarchy are the

MMCC(2,3) and MMCC(2,4) approaches [7, 16–18, 22]. In the MMCC(2,3) and MMCC(2,4)

methods, we use corrections δ(2, 3) and δ(2, 4) to improve the results of the CCSD calculations.

The MMCC(2,3) energy expression has the following form [7, 16–18, 22]:

EMMCC(2, 3) = ECCSD + δ(2, 3), (16)

where ECCSD is the CCSD energy and

δ(2, 3) = 〈Ψ|Q3 M3(2)|Φ〉/〈Ψ|eT1+T2|Φ〉 , (17)
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with T1 and T2 representing the singly and doubly excited clusters obtained in the CCSD calcu-

lations. According to Eq. (11), the M3(2)|Φ〉 quantities entering Eq. (17) can be expressed in

terms of the projections of the CCSD equations on triply excited configurations. We obtain,

M3(2)|Φ〉 =
∑

i<j<k

a<b<c

Mabc
ijk(2)|Φabc

ijk〉 , (18)

where

Mabc
ijk(2) = 〈Φabc

ijk |(HeT1+T2)C |Φ〉, (19)

with |Φabc
ijk〉 representing the triexcited configurations relative to |Φ〉. Here and elsewhere in the

present paper, we use the standard notation in which i, j, k, l, . . . represent the spin-orbitals oc-

cupied in |Φ〉 and a, b, c, d, . . . are the unoccupied spin-orbitals. In the MMCC(2,3) approach, we

assume that the CI expansion of the wave function |Ψ〉 that enters Eq. (17) does not contain

higher–than–triexcited components.

The MMCC(2,4) method represents a natural extension of the MMCC(2,3) scheme in which,

in addition to the triexcited moments of the CCSD equations, Mabc
ijk(2), Eq. (19), we also consider

the quadruply excited moments,

Mabcd
ijkl (2) = 〈Φabcd

ijkl |(HeT1+T2)C |Φ〉, (20)

where |Φabcd
ijkl 〉 are the quadruply excited configurations. In the MMCC(2,4) approximation, we

assume that the CI expansion of the wave function |Ψ〉 does not contain higher–than–quadruply

excited components. The MMCC(2,4) energy is calculated as follows [7, 16, 17, 22]:

EMMCC(2, 4) = ECCSD + δ(2, 4), (21)

where

δ(2, 4) = 〈Ψ|{Q3 M3(2) + Q4 [M4(2) + T1M3(2)]}|Φ〉/〈Ψ|eT1+T2|Φ〉 . (22)

The M3(2)|Φ〉 quantities are the same as in the MMCC(2,3) approximation [cf. Eq. (18)]. The

M4(2)|Φ〉 quantities can be expressed in terms of the quadruply excited moments of the CCSD

equations defined by Eq. (20). We have,

M4(2)|Φ〉 =
∑

i<j<k<l

a<b<c<d

Mabcd
ijkl (2)|Φabcd

ijkl 〉 . (23)

Different types of the MMCC(2,3) and MMCC(2,4) approximations are obtained by making

different choices for |Ψ〉 in Eqs. (17) and (22) [7, 16–18, 22]. We can, for example, choose the low-

order MBPT expressions to represent |Ψ〉, obtaining the so-called renormalized and completely
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renormalized CCSD[T], CCSD(T), and CCSD(TQ) methods mentioned in the Introduction. As

shown in Refs. 7, 16–22, these new approaches represent promising computational tools that re-

move the pervasive failing of the standard CCSD[T], CCSD(T), and CCSD(TQf) approximations

at larger internuclear separations, while preserving the “black-box” character of the noniterative

SRCC methods. Slightly modified versions of the original renormalized and completely renormal-

ized CC methods, introduced by us in Refs. 7, 16, 17, have recently been examined in Ref. 75.

The analytic gradients for the renormalized CCSD(T) approach have been developed by Stanton

et al. [76].

We can also think of using the limited CI methods to define wave functions |Ψ〉 in Eqs. (17)

and (22). An interesting possibility (suggested, for the first time, in Ref. 7 and examined, in

detail, in this paper) is offered by the active-space CISDt and CISDtq approximations, in which

higher–than–doubly excited components of |Ψ〉 are defined through active orbitals. We use the

CISDt approach to calculate wave function |Ψ〉 for the MMCC(2,3) calculations, while the CISDtq

method is used to determine |Ψ〉 for the MMCC(2,4) calculations.

In order to calculate the CISDt and CISDtq wave functions, we divide the available spin-orbitals

into core spin-orbitals (i, j, k, l, . . . ), active spin-orbitals occupied in |Φ〉 (I, J, K, L, . . . ), active

spin-orbitals unoccupied in |Φ〉 (A, B, C, D, . . . ), and virtual spin-orbitals (a, b, c, d, . . . ).

Once active orbitals are selected, we define the CISDt and CISDtq wave functions, |ΨCISDt〉 and

|ΨCISDtq〉, respectively, as follows [7, 71, 72]:

|ΨCISDt〉 = (C0 + C1 + C2 + c3)|Φ〉, (24)

|ΨCISDtq〉 = (C0 + C1 + C2 + c3 + c4)|Φ〉, (25)

where C0|Φ〉, C1|Φ〉, and C2|Φ〉 are the reference, singly excited, and doubly excited components

of |ΨCISDt〉 and |ΨCISDtq〉 and

c3|Φ〉 =
∑

I>j>k

a>b>C

cabC
Ijk |ΦabC

Ijk 〉, (26)

c4|Φ〉 =
∑

I>J>k>l

a>b>C>D

cabCD
IJkl |ΦabCD

IJkl 〉. (27)

Thus, in the CISDt method, we construct wave function |Ψ〉 by including all singles and doubles

from |Φ〉 and a relatively small set of internal and semi-internal triples containing at least one

active occupied and at least one active unoccupied spin-orbital indices. In the CISDtq approach,

we also include a relatively small set of quadruples containing at least two active occupied and at

least two active unoccupied spin-orbital indices [see Eqs. (26) and (27)]. As in all CI approaches,

the CI expansion coefficients defining |ΨCISDt〉 and |ΨCISDtq〉 are determined variationally.
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If No (Nu) is the number of active orbitals occupied (unoccupied) in |Φ〉 and if no (nu) is the

number of all occupied (unoccupied) orbitals, the number of triples included in the CISDt and CIS-

Dtq calculations is NoNun
2
on

2
u, which is a relatively small prefactor times the number of doubles.

Clearly, the number of triples used in the CISDt and CISDtq calculations is a small fraction of all

triples, if the number of active orbitals is small. Similarly, the number of quadruples considered

in the CISDtq calculations, i.e., N2
o N2

un2
on

2
u, represents a small fraction of all quadruples. Thus,

the CISDt and CISDtq approaches provide us with inexpensive sources of wave functions |Ψ〉 for

calculating corrections δ(2, 3) and δ(2, 4), respectively. The most expensive NoNun
2
on

4
u steps in

the CISDt calculations are considerably less expensive than typical steps characterizing multi-

reference methods or the n3
on

5
u steps characterizing the CISDT and CCSDT approaches. Once

|ΨCISDt〉 is determined by performing the CISDt calculations, the cost of computing the noniter-

ative correction δ(2, 3) is NoNun
2
on

3
u, which is usually much less than the cost of calculating the

standard (T) correction of the CCSD(T) approach. Similarly, the most expensive N2
o N2

un2
on

4
u steps

of the CISDtq method are significantly less expensive than the n4
on

6
u steps of the CISDTQ and

CCSDTQ approximations. Again, once |ΨCISDtq〉 is determined, the cost of computing correction

δ(2, 4) (after suitable diagram factorization; cf. Ref. 12) represents a small fraction of the cost

associated with the (Q) correction of the CCSD(TQf) approach, if the number of active orbitals

is small.

Choosing the CISDt and CISDtq wave functions |Ψ〉 in Eqs. (17) and (22) should be particularly

useful in the context of studies of bond breaking. The CISDt approach should provide us with a

qualitatively correct description of the single bond breaking (as, e.g., in HF), whereas the CISDtq

method seems appropriate for a double bond breaking or for the simultaneous breaking of two

single bonds (e.g., two O–H bonds in H2O).

It should be noted that the CISDt and CISDtq approaches, which are used to generate wave

functions |Ψ〉 for the MMCC(2,3) and MMCC(2,4) calculations, can be regarded as the CI analogs

of the active-space CC approaches, such as CCSDt [19, 61, 62] or SSCCSD(T) [14, 51–60] and

CCSDtq [61] or SSCCSD(TQ) [54–57], which are known to provide excellent description of bond

breaking [14, 19, 57, 61, 62]. Although the numbers of triples and quadruples used in the CISDt and

CISDtq calculations are identical to the numbers of triples and quadruples used in the CCSDt and

CCSDtq calculations (provided that we use the same active space in all these calculations) and al-

though the most expensive NoNun
2
on

4
u and N2

o N2
un2

on
4
u steps of the CISDt and CISDtq calculations

are of the same type as the most expensive steps characterizing the CCSDt and CCSDtq methods,

the CISDt and CISDtq approaches are less expensive than the CCSDt and CCSDtq methods. As

is always the case, when we are comparing the CI and CC approaches, the prefactors defining

the NoNun
2
on

4
u and N2

o N2
un2

on
4
u scalings of the CISDt and CISDtq methods are smaller than the

prefactors defining the analogous scalings of the CCSDt and CCSDtq approaches. The absence
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of nonlinear terms in the CISDt and CISDtq equations and their presence in the CCSDt and

CCSDtq equations also contribute to the lower cost of the CISDt and CISDtq calculations, when

compared with the corresponding CCSDt and CCSDtq calculations. In consequence, the CISDt-

based MMCC(2,3) method and the CISDtq-based MMCC(2,4) approach are less expensive than

their CCSDt and CCSDtq counterparts. It is also very easy to adapt the CISDt and CISDtq equa-

tions to the spin and spatial symmetries (a difficult thing to do in the CCSDt, CCSDtq, and, as a

matter of fact, many CC approximations) and our considerable experience with the CISDt/CISDtq

and CCSDt/CCSDtq calculations indicates that it is easier to converge the CISDt/CISDtq equa-

tions compared to the CCSDt/CCSDtq equations at larger internuclear separations (although

a considerable progress has been made in improving the convergence of the CCSDt/CCSDtq

equations [61, 62]). It is true that the CISDt and CISDtq methods are much less accurate than the

CCSDt and CCSDtq approaches. However, the CISDt and CISDtq methods are sufficiently good

to provide us with relatively inexpensive and yet quite reasonable choices of spin- and symmetry-

adapted wave functions |Ψ〉 for the MMCC(2,3) and MMCC(2,4) calculations. Another advantage

of using the CISDt and CISDtq methods (not examined in this work, but also important) is an

easy access to excited electronic states, which can be subsequently used to construct the highly

successful MMCC(2,3) and MMCC(2,4) corrections to excited-state energies [22, 71, 72]. Thus, the

CISDt-based MMCC(2,3) approach and the CISDtq-based MMCC(2,4) method, considered in this

work, represent an interesting new way of incorporating the triples and quadruples effects in the

SRCC calculations, which might be viewed as a very useful alternative to the existing active-space

CCSDt and CCSDtq methods. The CI-corrected MMCC(2,3) and MMCC(2,4) approaches are

also the alternatives to the recently proposed renormalized and completely renormalized CCSD(T)

and CCSD(TQ) approximations [7, 16–22]. Finally, we can view the CI-corrected MMCC(2,3)

and MMCC(2,4) methods as noniterative approximations to the reduced MRCCSD (RMRCCSD)

method of Refs. 43–49. In the RMRCCSD approach, the ground-state multi-reference CI (MRCI)

wave function is used to extract information about triply and quadruply excited clusters of the

SRCC theory, which are, in turn, employed to correct the CCSD equations. In the CI-corrected

MMCC(2,3) and MMCC(2,4) approaches, we solve the standard CCSD equations in the absence

of terms containing T3 and T4 clusters, and use the triply and quadruply excited moments of the

CCSD equations and simple, MRCI-like, CISDt and CISDtq wave functions to construct non-

iterative a posteriori corrections δ(2, 3) and δ(2.4), which are subsequently added to the CCSD

energy.

2.3 The Remaining Computational Details

The CI-corrected MMCC(2,3) and MMCC(2,4) methods have been implemented within our sys-

tem of CC programs. The required CCSD calculations were performed with the orthogonally
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spin-adapted [10, 77–80] CCSD code described elsewhere [35]. The triply and quadruply ex-

cited moments of the CCSD equations, used in the CISDt-based MMCC(2,3) and CISDtq-based

MMCC(2,4) calculations, MabC
Ijk (2) and MabCD

IJkl (2), respectively, were calculated with the new

code obtained by modifying the computer program described in Ref. 16. The CISDt and CIS-

Dtq calculations were performed with the computer programs described elsewhere [7, 71, 72]. All

our programs are interfaced with the gamess code [81], which is used to generate the restricted

Hartree-Fock (RHF) molecular orbitals (MOs) and to transform atomic integrals to MO basis.

The correctness of the CISDt-based MMCC(2,3) and CISDtq-based MMCC(2,4) codes was

tested in various ways. The most essential series of tests were the MMCC(2,4) calculations for

a few four-electron systems, using the full CI wave functions |Ψ〉 in Eq. (22) [we used the LiH

molecule and the H4 clusters described by small basis sets, for which the full CI calculations could

easily be performed]. It should be noted that the CISDtq wave function used in the MMCC(2,4)

calculations becomes exact for a four electron system if all MOs are active. In this case, the

MMCC(2,4) theory should give us full CI results and our test calculations for the LiH and H4

systems confirmed this.

3 Numerical Examples

In order to illustrate the performance of the CI-corrected MMCC approaches described in Sec. 2

in studies of bond breaking, we applied the MMCC(2,3) and MMCC(2,4) methods to potential

energy curves of HF and H2O. As in our original studies of the renormalized and completely

renormalized CCSD(T) and CCSD(TQ) methods [16] (see, also, Ref. 7), we used a double zeta

(DZ) basis set [82], for which the exact, full CI energies [14, 83, 84] and many other useful results,

including the full CCSDT and CCSDTQ energies [14, 85, 86] and their standard and renormalized

CCSD(T) and CCSD(TQ) analogs [16], are available. In all calculations reported in this work,

the ground-state RHF determinant was used as a reference.

In our discussion, we compare the MMCC(2,3) and MMCC(2,4) results with the exact, full CI

results and a variety of CC results. We also compare the MMCC(2,3) and MMCC(2,4) results

with the results of the CISDt and CISDtq calculations, which provide wave functions |Ψ〉 for

computing corrections δ(2, 3) and δ(2, 4). The purpose of the latter comparison is to demonstrate

how much the results improve when the relatively poor (at best, qualitative) CISDt and CISDtq

wave functions are inserted into the MMCC(2,3) and MMCC(2,4) energy expressions.

3.1 The HF Molecule

The results of our CI-based MMCC calculations for the potential energy curve of HF are shown

in Table 1. In this case, there is a 1.634 millihartree difference between the CCSD and full CI
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energies at the equilibrium geometry, R = Re (R is the H–F internuclear separation), which

increases to 12.291 millihartree at R = 5Re (for all practical purposes, R = 5Re can be regarded

as a dissociation limit). The large differences between the CCSD and full CI energies at larger

values of R are primarily caused by the absence of the connected T3 clusters in the CCSD wave

function. Indeed, the full CCSDT method, which includes these clusters, reduces large errors

in the CCSD results, relative to full CI, to as little as 0.173 millihartree at R = Re and 0.431

millihartree at R = 5Re.

The perturbative CCSD(T) and CCSD(TQf) approaches completely fail at large internuclear

separations R. Indeed, the small, 0.325 and 0.218 millihartree, errors in the CCSD(T) and

CCSD(TQf) results at R = Re increase (in absolute value) to 24.480 and 18.351 millihartree,

respectively, at R = 3Re, and 53.183 and 35.078 millihartree, respectively, at R = 5Re. As shown

in Refs. 7, 16–18, 22, the CCSD(T) potential energy curve lies significantly below the full CI

curve at larger internuclear separations and is characterized by an unphysical hump in the region

of intermediate R values. A similar hump is present on the CCSD(TQf) curve (cf., e.g., Ref. 21).

The completely renormalized CCSD(T) and CCSD(TQ) approaches of Refs. 7, 16–18 (cf., also,

Refs. 19–22), designated as the CR-CCSD(T) and CR-CCSD(TQ) methods, considerably improve

the results, eliminating, in particular, the unphysical humps on the CCSD(T) and CCSD(TQf)

potential energy curves. The CR-CCSD(T) and CR-CCSD(TQ) methods reduce the 53.183 and

35.078 millihartree errors in the CCSD(T) and CCSD(TQf) results at R = 5Re to 1.650 and 0.454

millihartree, respectively [16] (see Table 1). The errors in the CR-CCSD(T) energies, relative

to full CI, do not exceed 2 millihartree over the entire range of R values. The errors in the CR-

CCSD(TQ) results are even smaller (they do not exceed 0.5 millihartree; cf. Table 1). This clearly

demonstrates that the MMCC theory, on which the CR-CCSD(T) and CR-CCSD(TQ) approaches

are based, represents a powerful new formalism, which is capable of removing the pervasive failing

of the standard CCSD(T) and CCSD(TQf) approximations at larger internuclear separations.

The CR-CCSD(T) and CR-CCSD(TQ) approaches use low-order MBPT expressions to define

wave functions |Ψ〉 in the MMCC(2,3) and MMCC(2,4) energy formulas [7, 16–18, 22]. It is in-

teresting to see how the MMCC results change if we replace the low-order MBPT expressions for

|Ψ〉 in the MMCC(2,3) and MMCC(2,4) formulas by the CISDt and CISDtq wave functions.

The CI-based MMCC(2,3) and MMCC(2,4) results shown in Table 1 correspond a choice of

the highest occupied and lowest unoccupied σ orbitals, 3σ and 4σ, respectively, and the valence π

orbitals as active orbitals in the related CISDt and CISDtq calculations. This is a natural choice

of active space for the description of bond breaking in HF, since for larger internuclear separations

R the full CI wave function of HF is dominated by the ground-state RHF configuration,

|Φ〉 = |(1σ)2(2σ)2(1π)2(2π)2(3σ)2| , (28)
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the doubly excited configuration,

|Φ′〉 = |(1σ)2(2σ)2(1π)2(2π)2(4σ)2| , (29)

corresponding to the (3σ)2 → (4σ)2 excitation, and the 3σ → 4σ singly excited configuration. In

principle, we could consider a smaller active space, consisting of only two valence σ orbitals [7],

but we decided to use a somewhat more complete description here, in which all MOs that correlate

with the 1s and 2p shells of the H and F atoms, respectively, are included in active space.

Table 1. A comparison of various CC and CI-based MMCC ground-state energies with the

corresponding full CI and CISDt and CISDtq results obtained for a few internuclear separations

R of the HF molecule with a DZ basis set.a

Method R = Re
b R = 2Re R = 3Re R = 5Re

Full CIc -100.160300 -100.021733 -99.985281 -99.983293

CCSD 1.634 6.047 11.596 12.291

CCSDTc 0.173 0.855 0.957 0.431

CCSD(T)d 0.325 0.038 -24.480 -53.183

CCSD(TQf) 0.218 -0.081 -18.351 -35.078

CR-CCSD(T)d,e 0.500 2.031 2.100 1.650

CR-CCSD(TQ)f 0.053 0.396 0.425 0.454

CISDtg 5.783 16.000 29.238 33.627

CISDtqg 5.466 6.730 7.456 7.468

MMCC(2,3)g 1.195 2.708 3.669 3.255

MMCC(2,4)g 1.207 2.225 3.015 3.066

a The full CI total energies are in hartree. The CC, CI, and MMCC energies are in

millihartree relative to the corresponding full CI energy values.
b The equilibrium H–F bond length, Re, equals 1.7328 a0.
c From Ref. 14.
d From Ref. 16.
e The completely-renormalized CCSD(T) method of Ref. 16.
f The completely-renormalized CCSD(TQ) method of Ref. 16 (also, referred to as the

CR-CCSD(TQ),a approach [17]).
g The active space consisted of the 3σ, 1π, 2π, and 4σ orbitals.
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The above choice of active space guarantees that the description of the potential energy curve

of HF by the CISDt and CISDtq methods is qualitatively correct. However, the CISDt and

CISDtq results (particularly, the former ones) are quantitatively rather poor. This remark applies

to all internuclear separations. Indeed, at the equilibrium geometry, both methods give the > 5

millihartree errors relative to full CI and the situation only worsens as we approach the dissociation

region. For example, the 5.783 millihartree error in the CISDt result at R = Re increases to 33.627

millihartree at R = 5Re. In the case of the CISDtq method, the error increase is less dramatic,

but the 7.468 millihartree error in the CISDtq result at R = 5Re is still relatively large.

In spite of the relatively poor performance of the CISDt and CISDtq methods and in spite of

the large errors in the CCSD results at larger R values, the CISDt-based MMCC(2,3) results and

their CISDtq-based MMCC(2,4) analogs are very good. The errors in the MMCC(2,3) results vary

between 1.195 millihartree at R = Re and 3.669 millihartree at R = 3Re. Although these results

are somewhat worse than the results of the CR-CCSD(T) calculations, they are much better than

the results of the CISDt and CCSD calculations, which are used to construct corrections δ(2, 3).

The fact that we can use an inexpensive CISDt method to construct correction δ(2, 3) and reduce

in this way the 33.627 and 12.291 millihartree errors in the CISDt and CCSD results at R = 5Re

to 3.255 millihartree is very encouraging. We are not gaining a lot in this case by performing

the more expensive MMCC(2,4) calculations (which is a consequence of the fact that the H–F

bond is a single bond), but it is good to see that the MMCC theory behaves in a systematic

manner. The use of the better CISDtq wave function in the MMCC [MMCC(2,4)] calculations

gives a slightly better description of the potential energy curve of HF than that provided by the

CISDt-based MMCC(2,3) approach. The MMCC(2,4) curve is virtually parallel to the exact (full

CI) curve. The small (∼ 1 millihartree) errors in the MMCC(2,4) results in the equilibrium region

slowly (and monotonically) increase with R, reaching a maximum value of ∼ 3 millihartree in the

dissociation region.

The fact that the CI-based MMCC methods and their MBPT-based CR-CCSD(T) and CR-

CCSD(TQ) analogs provide comparable improvements in the CCSD results for the potential en-

ergy curve of HF indicates that the MMCC theory is a robust formalism, in which very good

results can be obtained independent of the quality of the wave function |Ψ〉 used to construct

correction δ(A). As in the case of the CR-CCSD(T) and CR-CCSD(TQ) methods [16], one of the

main reasons of the excellent performance of the CI-based MMCC approaches at large internu-

clear separations, in spite of the relatively poor description of the potential energy curve of HF by

the CISDt and CISDtq methods, is the presence of the 〈Ψ|eT1+T2|Φ〉 denominators in the MMCC

energy expressions. These denominators increase their values from ∼ 1.0 at R = Re to 2.3–2.4 at

R = 5Re, damping the corrections due to triples [in the MMCC(2,3) case] or triples and quadru-

ples [in the MMCC(2,4) case], which are considerably overestimated by the traditional CCSD(T)
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and CCSD(TQf) approaches and would be overestimated by the MMCC(2,3) and MMCC(2,4)

methods if the 〈Ψ|eT1+T2 |Φ〉 denominators were not present in the MMCC expressions.

3.2 The H2O Molecule

The CI-based MMCC(2,3) and MMCC(2,4) results for the water molecule are shown in Table 2.

The simultaneous stretching or breaking of both O–H bonds in water provides us with an example

of a situation, where both the T3 clusters and their T4 counterparts are sizable and difficult to

describe with the approximate CCSDT or CCSDTQ approaches. Indeed, when both O–H bonds

in H2O are simultaneously stretched by 50 % (the R = 1.5Re case; R is the O–H bond length),

the small, −1.356 and −0.419 millihartree, effects due to T3 and T4 at the equilibrium geometry,

R = Re (obtained by forming the CCSDT − CCSD and CCSDTQ − CCSDT energy differences),

increase, in absolute value, to −4.117 and −1.332 millihartree, respectively. For the R = 2Re

case (both O–H bonds stretched by a factor of 2), the T3 and T4 effects are even larger, namely,

−11.544 and 2.319 millihartree, respectively (see Table 2; notice the change of sign of the T4

energy contribution, compared to the R = 1.5Re case).

It is difficult to describe the large T3 and T4 effects with the noniterative SRCC approximations.

Indeed, the quasi-degenerate nature of the ground-state wave function of H2O for larger values of R

leads to a complete failure of the CCSD(T) and CCSD(TQf) methods. At R = 2Re, the unsigned

errors in the CCSD(T) and CCSD(TQf) results, relative to full CI, are 7.699 and 5.914 millihartree,

respectively. Even the full CCSDT approach gives a negative, −2.211 millihartree, error at R =

2Re, which might be an indication of the beginning of the breakdown of the CCSDT approximation

(which lacks important T4 clusters) at larger R distances. The complete incorporation of T4

contributions via the full CCSDTQ approach considerably improves this situation, reducing the

2.211 millihartree error in the CCSDT result at R = 2Re to 0.108 millihartree (see Table 2).

The performance of the MMCC-based CR-CCSD(T) and CR-CCSD(TQ) methods, which use

the second-order MBPT expressions to represent wave functions |Ψ〉 in the MMCC(2,3) and

MMCC(2,4) energy formulas [7, 16–18, 22], is excellent. The CR-CCSD(T) and CR-CCSD(TQ)

methods reduce the 7.699 and 5.914 millihartree errors in the CCSD(T) and CCSD(TQf) results

at R = 2Re to 1.830 and 1.461 millihartree, respectively. At the same time, the CR-CCSD(T) and

CR-CCSD(TQ) results at R = Re are virtually identical to the very good results obtained with the

standard CCSD(T) and CCSD(TQf) approaches. As pointed out in Ref. 16, the CR-CCSD(TQ)

method provides very good estimates of T4 effects for R ≤ 1.5Re. It is interesting to examine if

the estimates of T4 effects provided by the CISDtq-based MMCC(2,4) approach are as good as

those obtained with the CR-CCSD(TQ) method.

Two different choices of active orbitals for the CISDt-based MMCC(2,3) and CISDtq-based

MMCC(2,4) calculations are investigated in this paper (see Table 2). The natural choice of
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Table 2. A comparison of various CC and CI-based MMCC ground-state energies with the cor-

responding full CI and CISDt and CISDtq results obtained for the equilibrium and two displaced

geometries of the H2O molecule with a DZ basis set.a

Method R = Re
b R = 1.5Re

c R = 2Re
c

Full CI -76.157866b -76.014521c -75.905247c

CCSD 1.790 5.590 9.333

CCSDTd 0.434 1.473 -2.211

CCSDTQe 0.015 0.141 0.108

CCSD(T)f 0.574 1.465 -7.699

CCSD(TQf)
f 0.166 0.094 -5.914

CR-CCSD(T)f,g 0.738 2.534 1.830

CR-CCSD(TQ)f,h 0.195 0.905 1.461

CISDti 7.229 19.205 50.341

CISDtj 6.922 18.884 49.948

CISDtqi 5.844 6.294 8.251

CISDtqj 2.702 2.919 5.638

MMCC(2,3)i 1.137 2.710 1.911

MMCC(2,3)j 0.811 2.407 1.631

MMCC(2,4)i 1.071 1.634 3.127

MMCC(2,4)j 0.501 0.942 2.416

a The full CI total energies are in hartree. The CC, CI, and MMCC energies are in

millihartree relative to the corresponding full CI energy values.
b The equilibrium geometry and full CI result from Ref. 83.
c Geometry and full CI result from Ref. 84.
d From Ref. 85.
e From Ref. 86.
f From Ref. 16.
g The completely-renormalized CCSD(T) method of Ref. 16.
h The completely-renormalized CCSD(TQ) method of Ref. 16 (also, referred to as the

CR-CCSD(TQ),a approach [17]).
i The active space consisted of the 3a1, 1b2, 4a1, and 2b2 orbitals.
j The active space consisted of the 1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals.
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active orbitals, at least from the point of view of the simultaneous breaking of both O–H bonds,

is the choice of the two highest-energy occupied orbitals, 3a1 and 1b2, and the two lowest-energy

unoccupied orbitals, 4a1 and 2b2. As explained in Ref. 57, at larger O–H distances R, such as

R = 2Re, the ground-state wave function of H2O is dominated by the RHF configuration,

|Φ〉 = |(1a1)
2(2a1)

2(1b1)
2(3a1)

2(1b2)
2| , (30)

and singly and doubly excited configurations relative to |Φ〉 involving the 3a1, 1b2, 4a1, and

2b2 orbitals. The somewhat better choice of active orbitals, which guarantees a more uniform

description of the equilibrium and bond breaking regions is provided by the 1b1, 3a1, 1b2, 4a1,

2b1, and 2b2 orbitals [57]. Both choices of active orbitals for the MMCC(2,3) and MMCC(2,4)

calculations and the related CISDt and CISDtq calculations are considered in this work.

As shown in Table 2, the results of the CISDt-based MMCC(2,3) calculations and the CISDtq-

based MMCC(2,4) calculations, employing the above two active spaces, are excellent. In view

of the small computer effort associated with constructing the MMCC(2,3) correction δ(2, 3), the

CISDt-based MMCC(2,3) results are particularly impressive. As can be seen in Table 2, the

MMCC(2,3) method is capable of reducing the huge, ∼ 50 millihartree, errors in the CISDt

energies and the sizable, 9.333 millihartree, error in the result of the CCSD calculations at R = 2Re

to less than 2 millihartree. Similar error reductions are observed at R = 1.5Re, where the ∼ 19

millihartree errors in the CISDt results are reduced to 2–3 millihartree, when the CISDt wave

function is inserted into the MMCC(2,3) energy expression. The CISDtq-based MMCC(2,4) results

at R = 2Re seem to be slightly worse than the corresponding CISDt-based MMCC(2,3) results,

but the MMCC(2,4) approach offers a more balanced description of the simultaneous breaking of

both O–H bonds in H2O. Indeed, the small, 0.5–1 millihartree, errors in the MMCC(2,4) results

at R = Re slowly and monotonically increase with R, whereas the errors in the MMCC(2,3)

results initially increase, as we go from the R = Re region to R = 1.5Re, and then decrease, as we

approach the R > 1.5Re region, which might be the first sign of the breakdown of the MMCC(2,3)

approximation at very large distances R (notice that a very similar pattern is observed, when we

compare the CR-CCSD(T) and CR-CCSD(TQ) energies; let us recall that the CR-CCSD(T)

method is an example of the MMCC(2,3) approximation and that the CR-CCSD(TQ) approach

is a special case of the MMCC(2,4) approximation [7, 16, 17]). The small, 0.501, 0.942, and

2.416 millihartree, errors in the CISDtq-based MMCC(2,4) results at R = Re, 1.5Re, and 2Re,

respectively, obtained with the active space consisting of only 6 valence orbitals, and the fact that

the MMCC(2,4) and full CI potential energy curves are nearly parallel are the very encouraging

findings from the point of view of future applications of the CI-based MMCC methods to PESs

involving bond breaking. Although it is possible that the CISDt-based MMCC(2,3) approximation

eventually breaks down for R � 2Re, the fact that this simple and inexpensive approach provides

the 1–3 millihartree errors for all R values ranging between Re and 2Re is very encouraging, too.
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The fact that the CISDtq-based MMCC(2,4) approach provides excellent description of the

simultaneous breaking of both O–H bonds in water is, at least to some extent, a consequence of

the relatively good description of this bond breaking by the CISDtq method (see Table 2). The

incorporation of the quadruply excited moments of the CCSD equations in the MMCC(2,4) cal-

culations is responsible for some improvements, too, particularly in the region of the intermediate

R values (the R ≈ 1.5Re region). However, bulk of the improvement in the CCSD results by

the MMCC theory is already achieved at the lowest MMCC(2,3) level, which uses a relatively

poor CISDt wave function to construct the relevant correction δ(2, 3). This is mostly related to

the dominant role of T3 clusters in describing the O–H bond breaking in H2O [these clusters are

already included in approximate manner in the MMCC(2,3) calculations] and, as in the case of

calculations for HF, to the presence of the 〈Ψ|eT1+T2|Φ〉 denominators in the MMCC energy ex-

pressions. These denominators increase their values from ∼ 1.0 at R = Re to 1.5–1.7 at R = 2Re,

damping the large negative corrections due to triples that are grossly overestimated by the tra-

ditional noniterative approaches, such as CCSD(T). Without the presence of the 〈Ψ|eT1+T2|Φ〉
denominator in the formula for correction δ(A), the MMCC(2,3) and MMCC(2,4) results would be

much worse.

We have already mentioned that the CI-based MMCC approaches describe bulk of the T3 effects.

Interestingly enough, the MMCC(2,4) approximation employing the CISDtq wave function |Ψ〉
seems to provide a very reasonable description of the T4 cluster components. The “true” values

of the T4 contributions to the energy, as measured by the differences between the CCSDTQ and

CCSDT energies, are −0.419 millihartree at R = Re, −1.332 millihartree at R = 1.5Re, and 2.319

millihartree at R = 2Re. The corresponding differences between the MMCC(2,4) and MMCC(2,3)

energies for the active space consisting of the 1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals are −0.310,

−1.465, and 0.785 millihartree, respectively, in reasonable agreement with the values obtained

by forming the differences between the CCSDTQ and CCSDT energies. Remarkably enough, the

change of sign of the T4 energy contribution at R = 2Re is correctly reproduced by the MMCC(2,4)

theory. The CISDtq-based MMCC(2,4) approach is better in this regard than the MBPT-based

CR-CCSD(TQ) approximation, which gives the negative value of the T4 effect at R = 2Re, if we

subtract the CR-CCSD(T) energy from the CR-CCSD(TQ) energy (see Table 2). On the other

hand, the CR-CCSD(TQ) results are very good for all values of R (including R = 2Re), so that

one should not view this particular feature of the renormalized CC methods as detrimental to the

high quality of the results that these methods offer. We must not forget that the second-order

MBPT wave functions |Ψ〉, used to construct the noniterative triples and quadruples corrections

in the renormalized CC theories, such as CR-CCSD(TQ), are much worse in the region of larger

R values than the CISDtq wave functions used in the CI-based MMCC(2,4) calculations.

Finally, it is very encouraging to observe the systematic improvements in the MMCC(2,3) and
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MMCC(2,4) results, when the smaller active space consisting of the 3a1, 1b2, 4a1, and 2b2 orbitals

is replaced by the active space consisting of the 1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals. For

each of the three geometries of water considered in this work, the MMCC(2,3) results improve by

∼ 0.3 millihartree. The MMCC(2,4) results improve by 0.6–0.7 millihartree, when the active space

consisting of the 3a1, 1b2, 4a1, and 2b2 orbitals is replaced by the larger active space consisting

of the 1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals. As in the case of the HF molecule, all MMCC

energies are above the corresponding full CI energies. Thus, the MMCC approaches are capable of

eliminating the non-variational behavior of the conventional CCSD(T) and CCSD(TQf) methods

at larger internuclear separations.

4 Summary and Concluding Remarks

We tested the CI-based variants of the MMCC theory, in which “trial” wave functions |Ψ〉 that

enter the MMCC energy expressions are obtained with the relatively simple CISDt and CISDtq

approaches. We demonstrated that the MMCC(2,3) and MMCC(2,4) approximations, in which

very simple noniterative corrections due to triples [the MMCC(2,3) case] or triples and quadruples

[the MMCC(2,4) case] are added to the CCSD energy, provide excellent description of the single

bond breaking in HF and the simultaneous breaking of both O–H bonds in H2O. In both cases,

very good results are obtained at the basic MMCC(2,3) level and additional improvements are

provided by the MMCC(2,4) approximation.

The CI-based MMCC results obtained in this study are comparable to the highly accurate

results for HF and H2O obtained with the MBPT-based MMCC(2,3) and MMCC(2,4) approx-

imations, referred to as the CR-CCSD(T) and CR-CCSD(TQ) approaches [7, 16–18, 22]. This

implies that the MMCC theory is a robust formalism, in which very good results can be obtained

independent of the quality of the wave function |Ψ〉 used to construct the noniterative energy

corrections δ(A). Another advantage of the MMCC methods is the fact that the MMCC results

systematically improve, when we switch from the MMCC(2,3) approach to the MMCC(2,4) ap-

proximation and when we increase active space used in the CISDt and CISDtq calculations. As

in the case of the CR-CCSD(T) and CR-CCSD(TQ) methods, the energies obtained with the

CI-based MMCC(2,3) and MMCC(2,4) approaches are above the corresponding full CI energies.

Thus, the CI-based MMCC(2,3) and MMCC(2,4) methods eliminate the pervasive failing of the

standard CCSD(T) and CCSD(TQf) approximations, which suffer from the highly non-variational

behavior in the region of larger internuclear separations.

Clearly, the preliminary findings reported in this work need to be investigated further by study-

ing other molecular examples and by performing the CI-based MMCC(2,3) and MMCC(2,4) calcu-

lations with larger basis sets. We also plan to incorporate higher–than–quadruply excited moments
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of the CCSD equations, corresponding to the projections of the CCSD equations on pentuply and

hextuply excited configurations [the M5(2)|Φ〉 and M6(2)|Φ〉 quantities in Eq. (15), where mA

is fixed at 2], in our computer codes. The resulting MMCC(2,5) and MMCC(2,6) methods are

expected to improve the very good results reported here even further. More importantly, the

MMCC(2,6) method, in which noniterative corrections due to triples, quadruples, pentuples, and

hextuples will be added to the CCSD energies, should accurately describe the most difficult cases

of bond breaking, including the triple bond breaking in N2 [87].

Another important area that needs to be explored is the extension of the CI-based MMCC

methods to excited electronic states. Our preliminary calculations indicate that the excited-state

analogs of the CI-corrected MMCC approaches discussed in this work provide highly accurate

results for excited-state PESs [22, 71, 72].
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