Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 4, Issue 10 (October 2003), Pages 537-561

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Open AccessArticle Structure of Stacked Dimers of N-Methylated Watson–Crick Adenine–Thymine Base Pairs
Int. J. Mol. Sci. 2003, 4(10), 537-547; doi:10.3390/i4100537
Received: 1 April 2003 / Accepted: 1 September 2003 / Published: 29 September 2003
Cited by 14 | PDF Full-text (266 KB) | HTML Full-text | XML Full-text
Abstract
The structure of two isomeric stacked dimers of Watson-Crick 9-methyladenine-1-methylthymine pairs was fully optimized using an approximate density functional theory (DFT) method augmented with an empirical dispersion interaction. The results of the calculations reveal that head-to-tail (AT-TA) and head-to-head (AT-AT) dimers possess a
[...] Read more.
The structure of two isomeric stacked dimers of Watson-Crick 9-methyladenine-1-methylthymine pairs was fully optimized using an approximate density functional theory (DFT) method augmented with an empirical dispersion interaction. The results of the calculations reveal that head-to-tail (AT-TA) and head-to-head (AT-AT) dimers possess a significantly different geometry. The structure of both complexes is stabilized by vertical CH…O and C-H…N hydrogen bonds with the participation of the hydrogen atoms of the methyl groups. The energy of hydrogen bonding and stacking interactions was additionally calculated using the MP2/6-31G*(0.25) method. Differences in the mutual arrangement of the base pairs in two isomeric dimers lead to significant changes of intra and interstrand stacking interaction energies. Full article
Figures

Figure 1

Open AccessArticle An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin
Int. J. Mol. Sci. 2003, 4(10), 548-561; doi:10.3390/i4100548
Received: 8 April 2003 / Accepted: 2 September 2003 / Published: 30 September 2003
Cited by 20 | PDF Full-text (302 KB) | HTML Full-text | XML Full-text
Abstract
“Maghnite”, a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite” is an efficient catalyst for cationic polymerisation of many heterocyclic and vinylic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structural compositions of both “Maghnite” and “H-Maghnite” have already been determined.
[...] Read more.
“Maghnite”, a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite” is an efficient catalyst for cationic polymerisation of many heterocyclic and vinylic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structural compositions of both “Maghnite” and “H-Maghnite” have already been determined. Epichlorhydrin monomer, which is polymerizable by a cationic process (Odian,G. La Polymerisation: Principes et Applications; Ed.Technica: New York, 1994; pp 222-226), was used to elucidate the polymerization cationic character. The polymerization was performed under optimum conditions at 20°C. Experiments revealed that the polymerisation induced by “H-Maghnite” proceeds in bulk. In bulk polymerization, Epichlorhydrin conversion increases with increasing “H-Maghnite” concentration and temperature. Full article
Figures

Figure 1

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS Edit a special issue Review for IJMS
loading...
Back to Top