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Abstract: Karplus relationships for all 26 NMR spin-spin coupling constants (SSCCs)

J of the pseudorotating tetrahydrofuran (THF) molecule were derived by expanding J as a

function J(q,φ) of the puckering amplitude q and the pseudorotational phase angle φ. For this

purpose, the conformational potential V(q,φ) of THF was determined at the MBPT(2)/cc-

pVTZ and B3LYP/6-31G(d,p) levels of theory. THF is a slightly hindered pseudorotor (MP2

barriers ∆E and ∆H are 0.1 - 0.2 kcal/mol) with a puckering amplitude q = 0.396 Å and

a barrier to inversion ∆H = 4.1 kcal/mol in reasonable agreement with experimental data.

The SSCCs of THF were calculated both at MBPT(2)/cc-pVTZ and B3LYP/6-31G(d,p)

geometries using coupled perturbed density functional theory (CPDFT) with the B3LYP

functional and a (9s,5p,1d/5s,1p)[6s,4p,1d/3s,1p] basis set. All geometrical parameters and

the 26 SSCCs of THF were computed as functions of the phase angle φ and averaged to give

<nJ> values that can be compared with measured data. The following SSCCs were obtained:

<1J(CC)> = 34.2, 34.0; <1J(CO)> = 26.4; <1J(CH)> = 142.6, 130.9; <2J(CXC)> = 0.5,

0.8; <2J(OCC)> = 0.3; <2J(CCH)> = -1.5, -0.7. -2.8; <2J(OCH)> = -8.6; <2J(HCH)>

= -8.7, -12.0; <3J(CXCH)> = 3.0, 4.0, 2.9; <3J(OCCH)> = -1.2; <3J(HCCH, cis)> = 7.3,

8.5; <3J(HCCH, trans)> = 5.3, 5.5; <4J(HCXCH, cis)> = -0.2, -0.2; <4J(HCXCH, trans)>

= -0.5, -0.6 Hz (X = C or O). Magnitude and trends in calculated SSCCs are dominated by

the Fermi contact term although other contributions are not negligible. Those SSCCs that

strongly depend on the pseudorotational mode of THF were identified as suitable descriptors

for the conformation of THF in solution. THF is discussed as a suitable model for ribose.

Keywords: NMR spin-spin coupling constants, Karplus relationship, ring puckering, tetrahy-

drofuran, ribose
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1 Introduction

Indirect nuclear magnetic resonance (NMR) spin-spin coupling constants (SSCCs) nJ(A, B) are

sensitive to the geometrical features of a molecule and, therefore, their magnitude provides a direct

insight into the geometry and electronic structure of a molecule [1-5]. Most celebrated in this

connection is the Karplus relationship, which relates in a simple trigonometric way vicinal SSCCs

of the type 3J(HCCH) to the dihedral angle τ(HCCH) [6-8]. The Karplus relationship (often called

Karplus equation) has been extended beyond the field of proton,proton coupling constants and is

extensively used to determine dihedral angles and by this conformational features of molecules, in

particular biomolecules, from measured SSCCs [9-11].

In previous work, we described a generalization of the Karplus relationship in the case of pseu-

dorotating ring molecules [12]. In the case of a free (or nearly free) pseudorotor, it is difficult

to establish a Karplus relationship because only average SSCCs <J> can be measured, which

do not seem to provide any insight into conformational features of a molecule. In this situation,

however, reliable quantum chemical calculations of individual constants J [13,14] in dependence of

the pseudorotational mode of a ring can be used to compliment the limited information obtained

from NMR experiments to derive a Karplus relationship for the ring molecule [12]. Our investi-

gation of cyclopentane led to a number of interesting conclusions concerning the description of

pseudorotating molecules with the help of SSCCs [12].

1) The establishment of a Karplus relationship using the dihedral angles of the ring is problematic

because often one dihedral angle can be associated with two different SSCCs. However, a useful

extension of the Karplus relationship to pseudorotating rings is achieved by expressing SSCC as

a function of the puckering coordinates of the ring molecule.

2) For cyclopentane, SSCCs were calculated employing both CCSD theory [15-17] and coupled

perturbed DFT (CPDFT) [13] with the B3LYP functional. Both approaches led to reasonable

SSCCs. However, for a given basis set of moderate size CPDFT turned out to be superior in terms

of both cost and accuracy [12].

3) All SSCCs of cyclopentane could be expressed as simple analytical functions of the ring puck-

ering coordinates of a five-membered ring, namely the pseudorotational phase angle φ and the

puckering amplitude q. Average values <J> were calculated by integrating functions J(φ) over

φ. Results were compared with measured <J> values.

4) It was shown that by a combination of measured and calculated <J> values, important con-

formational properties of a ring molecule can be determined.

The work carried out for cyclopentane represents a first step of determining J-hypersurfaces

spanned in terms of the most important conformational coordinates of a ring compound. Once a

J-hypersurface is known, it can be used to investigate the conformational behavior of biochemically
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interesting molecules such as ribose, 2’-deoxyribose, proline, etc.

In this work, we extend the investigation of pseudorotating ring molecules to tetrahydrofuran

(THF). THF is the appropriate test case in connection with an NMR-spectroscopic investigation

of ribose. Hence, we will determine the the pseudorotational potential of THF, then calculate all

NMR SSCCs of THF for selected molecular forms located along its pseudorotational path. These

SSCCs will be the basis to derive Karplus relationships of the form J = J(q,φ), which reflects the

conformational behavior of THF.

Because of its importance as a model for ribofuranose, THF has been extensively investigated

by various experimental techniques ranging from far-infrared spectroscopy [18,19] and microwave

spectroscopy [20,21] to electron diffraction [22], X-ray [23], and neutron diffraction techniques [24].

In addition, there are several quantum chemical investigations [25,26] and molecular mechanics

(MM) studies [27,28], which have focused on the conformational features of THF. However, relative

little is known about the SSCCs of THF either from experiment [29,30] or theory [31-33] so that

the current investigation fills a gap in the description of this important molecule.

2 Computational Methods

In the following, the theory of ring puckering coordinates, the quantum chemical methods used,

and the derivation of the Karplus relationships used in this work are shortly described.

Description of THF in terms of Ring Puckering Coordinates. As shown by Cremer and

Pople (CP) [34], the conformational space of any puckered N-membered ring can be spanned by

N-3 puckering coordinates, which split up in pairs of pseudorotational coordinates q and φ, and

(for even-membered rings) an additional puckering amplitude describing ring inversion. Hence, for

THF (N = 5) there is just one pseudorotational mode defined by the pseudorotational phase angle

φdescribing the mode of ring puckering and the puckering amplitude q describing the degree of ring

puckering [25,34]. An infinite number of ring conformations is located along the pseudorotational

path, of which in the case of THF a subset of 20 forms is easy to recognize because it comprises

the ten envelope (E) forms (φ = (0 + k*360)/10 for k = 0,1,2,...,9 ) and the ten twist (T) forms

(φ = (18 + k*360)/10 for k = 0,1,2,...,9) of a five-membered ring (see Figure 1). Since planar

THF possesses C2v symmetry, the conformational energy surface (CES) must comply with this

symmetry, which means that puckered THF forms with φ = 0 ± ∆ψ and φ = 180 ± ∆ψ are

identical for unsubstituted THF (see Figure 1). There are just three unique E (φ = 0, 36, 72◦),
three unique T forms (φ = 18, 54, 90◦), and the planar form (q = 0, φ not specified), which have

to be considered in an investigation of THF. Of course, this minimum set of conformations can

be augmented, if necessary, by setting the phase angle to other values than those of the T and E

forms.
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Figure 1: Pseudorotation itinerary (φ = 0 → 360◦) of tetrahydrofuran (THF) as indicated by the

10 E and ten T forms at φ = (0 + k*360)/10 and φ = (18 + k*360)/10 (k = 0,1,2,...,9). At the

center (q = 0), the planar ring is located. To distinguish different positions in the ring, symbols

R, S are used for substituents.
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According to the CP theory of ring puckering, the out-of-plane coordinates zj of atom j=1,...,5

of any five-membered ring conformation are given by [34-41]

zj = (
2

5
)1/2q cos[

4π(j − 1)

5
+ φ] for j = 1, · · · , 5 and φ[0; 2π] (1)

where the coordinates zj are normalized according to

5∑

j=1

z2
j = q2 (2)

The full set of 3N-6 independent Cartesian coordinates of any puckered N-membered ring can be

determined once the N-3 puckering coordinates (N = 5: q and φ), N-3 bond angles (N = 5: two

internal ring angles of the five-membered ring), and N (5) bond lengths are specified. First, the

zj coordinates are calculated according to Eq. (1) (or similar formulas for N > 5) [34,35]; then

the N bond lengths and N-3 bond angles are projected onto the mean plane of the ring. Finally,

the projected ring is partitioned into segments, for which the coordinates xj, yj are calculated

according to a procedure described by Cremer [37].

The use of the ring puckering coordinates has the advantage [40,41] that the geometry of

puckered forms of THF with a given value of φ (or q and φ) can be optimized even if these forms

do not occupy a stationary point of the CES. This would not be possible when using Cartesian or

internal coordinates [37]. Another advantage results from the fact that any calculated property of

THF (in particular any SSCC) can be expressed as a function of the puckering coordinates.

In Figure 1, the planar form, ten E and ten T forms of THF are shown in the conformational

space spanned by q and φ. Hence, the planar form is located at the center for q = 0 and the

puckered E and T forms along a pseudorotation itinerary (given by a circle). The numbering of

the ring atoms (see Figure 1) defines the conformation at φ = 0◦ and all subsequent conformations.

Often the different E and T forms are identified according to a notation based on suitable reference

planes taken from the E (atoms 2, 3, 4, 5) and the T form (atoms 1, 2, 5) of cyclopentane.

Ring atoms, which lie above the reference plane are written as superscripts and precede the

conformational symbol E or T, while ring atoms , which lie below the reference plane are written

as subscripts and follow the symbol E and T [42]. Since experimentalists often prefer this notation

instead of using puckering coordinates, it is also given in Figure 1. However, in the discussion,

we will exclusively use the pseudorotational angle to identify a given ring form since this notation

can be applied to any ring form in the pseudorotational space.

Quantum Chemical Methods and Basis Sets. Energies, geometries, frequencies, enthalpies,

and density distributions of seven THF forms were calculated by using second-order many-body

perturbation theory [MBPT(2)] with the Møller-Plesset (MP) perturbation operator [43] and
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Dunning’s cc-pVTZ basis set [44]. This level of theory leads to a very accurate description in the

case of cyclopentane as we showed recently [12]. Since the actual target of the current project

is the investigation of larger ring systems such as ribose and 2′-deoxyribose sugars, for which

MBPT(2)/cc-pVTZ calculations become too expensive in view of the large number of conforma-

tions involved, the usefulness of a more economic method was also tested in this work. For this

purpose, a second set of calculations was carried out using density functional theory (DFT) [45,46]

with the hybrid functional B3LYP [47-49] and Pople’s 6-31G(d,p) basis set [50]. For the B3LYP

frequency calculations, an ultrafine pruned (99,590) grid was used.

Geometries were calculated with the help of analytical gradients for ring puckering coordinates

developed by Cremer [37]. These were also used to calculate vibrational frequencies and to deter-

mine zero-point energies (ZPE) and enthalpies H(298) at 298 K. When calculating the vibrational

contributions to enthalpies, large amplitude vibrations corresponding to the ring puckering modes

were treated separately similar to the way internal rotations are treated [51].

The electron density distribution, atomic charges, and the degree of hybridization was investigated

by calculating MP2 response densities [52,53] and applying Weinhold’s natural bond orbital (NBO)

analysis [54-56].

Calculation of the CES of THF. The CES function V(q, φ) of any puckered five-membered

ring can be given as a Fourier expansion in the pseudorotational phase angle φ and a power series

in the puckering amplitude q [25,12]:

V (q, φ) =
∞∑

k=0

{V c
k (q) cos(kφ) + V s

k (q) sin(kφ)} (3)

where Vc
k and Vs

k are expressed as

Vk(q) =
∞∑

l=0

Vkl ql (4)

In view of the C2v-symmetry of planar THF, the CES function V(q, φ) can be simplified and

truncated after the quartic term according to Eq. (5):

V (q, φ) = V00+V02 q2+V04 q4+V22 q2 cos(2φ)+V24 q4 cos(2φ)+V42 q2 cos(4φ)+V44 q4 cos(4φ)

(5)

where the constant V00 is set equal to the energy of the planar ring. Coefficients V02, · · ·, V44

were determined by optimizing the geometry of the six puckered ring forms with φ = 0, 18, 36,

54, 72, and 90◦.
Similarly to V, each property P of THF can be expressed as a function of the puckering coordi-

nates. Global properties P of the molecule lead to functions P(φ), which always comply with the

molecular symmetry whereas local properties can lead Fourier expansions in φ of lower symmetry.
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In the latter case, the property in question has to be determined for all 20 THF forms given

in Figure 1 (and others not considered there) to obtain accurate functions P(φ). Nevertheless,

the symmetry of the molecule helps again to reduce the number of necessary calculations. For

example, calculation of the E form at φ = 0 leads to the length of the equatorial bond C2H6, but

provides also the length of this bond at φ = 180 where it occupies an axial position and becomes

identical to the length of the axial bond C2H7 at φ = 0. Use of Figure 1 helps to identify these

relationships.

Calculation of the SSCCs of THF. SSCCs were determined by coupled perturbed density

functional theory (CPDFT) as recently described and implemented by Cremer and co-workers

[13]. In this approach, Fermi contact (FC), paramagnetic spin-orbital (PSO), diamagnetic spin-

orbit (DSO), and spin-dipole (SP) contribution to the total SSCC are consistently determined at

the CPDFT level of theory (see also Ref. 57). Previous investigations showed that reliable SSCC

values are obtained with the B3LYP functional [12,13,57] and TZ+P or QZ+P basis sets [58]. In

this work, a (9s,5p,1d/5s,1p)[6s,4p,1d/3s,1p] basis set was employed (basis II of ref 58).

Using CPDFT/B3LYP all SSCCs of the type J(13C,13C), J(17O,13C) J(13C,1H), J(17O,1H) and

J(1H,1H) were calculated. In the following, we will simplify the notation of SSCCs by using

symbols such as 3J(HCCH, cis) where C and H denote 13C and 1H, the major coupling path H-C-

C-H of the 3-bond SSCC is given, and cis identifies the positions of the H atoms on the same side

of the ring.

SSCCs were calculate for both MBPT(2) and B3LYP geometries. However, because the current

work will provide reference data for a B3LYP investigation of ribofuranose, for which MBPT(2)/cc-

pVTZ geometry optimizations become too expensive, we will exclusively discuss the SSCCs cal-

culated for the B3LYP/6-31G(d,p) geometries of THF.

For the analysis of the FC term, the s-density at the nucleus K was calculated according to

%s(K) =< φl|δ(rK)|φl > (6)

where δ(rK) is the Dirac delta function and φl is the localized bond orbital. The product

%s(K, L) = %s(K)%s(L) was related to the magnitude of the FC term.

Calculation of the Karplus Relationships J(q, φ) or J(φ). The SSCC nJ was expanded as a

function of the puckering coordinates q and φ according to Eq. (7).

nJ(q, φ) = A0(q) +
∞∑

k=1

Bk(q) cos(kφ) + Ck(q) sin(kφ) (7)

where the term A0(q) converges to the SSCC of the planar ring for q → 0. A0, Bk and Ck can be

expanded as power series in the puckering amplitude q.

A0(q) =
∞∑

l=0

A0lq
l (8a)
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Bk(q) =
∞∑

l=1

Bklq
l (8b)

Ck(q) =
∞∑

l=1

Cklq
l (8c)

Note that for Bk and Ck the constant terms with l = 0 vanish because

lim
q→0

Bk(q) = 0 and lim
q→0

Ck(q) = 0.

For pseudorotating ring molecules, only average SSCCs can be measured. For the purpose of

calculating average SSCCs, one has to determine both the CES function V and the SSCCs as a

function of puckering coordinates q and φ. Averaging of the SSCC can be simplified by considering

just the dependence of nJ on the pseudorotational phase angle φ:

nJ(φ) = A0 +
c∑

i=1

Bicos(iφ) +
s∑

j=1

Cjsin(jφ)) (9)

where c and s are truncation limits, which can differ. Then, the average SSCC <nJ> is given by

<n J >=
∫ 2π

0
%(φ) nJ(φ) dφ (10)

The conformational probability distribution %(φ) is given as a Boltzmann distribution:

%(φ) =
e−[V (φ)−V (0)]/RT

∫ 2π
0 e−[V (φ)−V (0)]/RT dφ

(11)

The potential V is determined according to Eq. (5) and used to calculate average SSCCs according

to Eq.s (10) and (11).

For the quantum chemical calculations, the program systems COLOGNE2002 [59] and Gaussian98

[60] were used.

3 The Flexible Pseudorotor THF

Calculated energies and puckering coordinates obtained in this work are summarized in Table 1.

A three-dimensional perspective drawing of the calculated CES V(q, φ) is given in Figure 2. The

geometries of the planar form, the E form with φ = 0◦, and the T form φ = 90◦ are shown in

Figure 3.

The gross features of the CES of THF resemble those of the CES of cyclopentane (see Figure 2).

Incorporation of a hetero atom into the ring makes THF a slightly hindered pseudorotor (energy

barrier 0.14 kcal/mol, Table 1). Both MBPT(2) and B3LYP predict a twofold pseudorotational
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Figure 2: Perspective drawing of the three-dimensional conformational energy surface V(q,φ) of

THF. The planar form with q = 0 is located at the maximum. The direction of radial coordinate

q and the angular coordinate φ is indicated.
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Figure 3: B3LYP/6-31G(d,p) geometries and MBPT(2)/cc-pVTZ geometries (in parentheses) of

planar and two puckered (φ = 0 and 90◦) THF forms.
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potential that locates the T forms with C2-symmetry (φ = 90◦, 270◦) at the the global minima of

the CES. The E forms at φ = 0◦ and 180◦ represent first order saddle points of the pseudorotational

mode while the planar form occupies a local maximum at the center of the q,φ-coordinate system

(Figure 2). This is consistent with all previous ab initio and MM calculations [25-28] and with

Table 1. Calculated puckering coordinates, energies, and enthalpies of THF. a

Method/basis φ Symbol Sym q ∆E b ∆H(298) b

B3LYP/6-31G(d,p)

Planar C2v 0.000 3.36 2.94

0 1E Cs 0.372 0.14 0.25

18 1T2 C1 0.371 0.13 0.23

36 E2 C1 0.371 0.12 0.19

54 3T2 C1 0.371 0.08 0.12

72 3E C1 0.370 0.03 0.03

90 3T4 C2 0.371 0.00 0.00

MBPT(2)/cc-pVTZ

Planar C2v 0.000 4.46 4.15

0 1E Cs 0.396 0.14 0.22

18 1T2 C1 0.398 0.11 0.21

36 E2 C1 0.398 0.11 0.20

54 3T2 C1 0.394 0.10 0.17

72 3E C1 0.395 0.04 0.07

90 3T4 C2 0.396 0.00 0.00

exp 0.38 c -3.49(-3.86) d

a) Puckering amplitudes q in Å, absolute energies (enthalpies) in hartree, and relative energies

(enthalpies) in kcal/mol. For the definition of THF forms, see Figure 1. - b) Energies of the planar

form are -232.454942 hartree at B3LYP, -231.972593 at MBPT(2). The corresponding enthalpies

are -232.333748 and -231.850089 hartree, respectively. - c) Ref. 22. d) Ref.s 19,20.

most, but not all experimental studies. An electron diffraction study of Bartell and co-workers

[22] also predicts the C2-symmetrical T forms to represent the equilibrium conformation of THF.
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Results based on far-infrared spectroscopy [18,19] are in linewith this. However, microwave studies

by Engerholm and co-workers [20] carried out in the late 60ies and recently repeated and extended

by Meyer and co-workers [21] suggest a fourfold pseudorotational potential (V4l coefficients dom-

inate the CES function (5) rather than the V2l coefficients) with equivalent minima at φ = 0 ±
52.5◦ and 180 ± 52.5◦, which are close to the T forms at φ = 54, 126, 234, and 306◦.

A careful analysis of calculated energies and geometries (see below) provides now clue for a

fourfold pseudorotational potential. In particular, the analysis of the electronic effects determin-

ing the stability of the various THF forms along the pseudorotation path clearly suggests the T

forms at φ = 90 and 270◦ to be more stable than any other T form. The argument given by Meyer

and co-workers [21] that ab initio theory is not sufficiently accurate to provide a reliable descrip-

tion of the pseudorotational potential of THF has to be rejected on the following grounds. The

quantum chemical description of conformational processes does not require high-level correlation

corrected ab initio methods because the bonding pattern of the molecule (and by this also the

pair correlation effects) remains largely unchanged during internal rotation, pseudorotation, etc.

Although MBPT(2) covers just pair correlation effects [43], it is known to provide an accurate

account of energies and geometries along the pseudorotational path of a free (or slightly hindered)

pseudorotor if carried out with a cc-pVTZ basis set [12,35]. The consistency of the MBPT(2)

description along the pseudorotation itinerary excludes the existence of C1-symmetrical minima

as suggested by the microwave results.

It is noteworthy in this connection that both the spectroscopic [18-21] and the electron diffrac-

tion study [22] had to fit experimental parameters such as diffraction intensities, frequency split-

tings (due to tunneling) or rotational constants to a constrained model of THF based on assumed

geometrical parameters and simplifications of its conformational flexibility. A more direct way of

determining the equilibrium conformation of THF was provided by X-ray diffraction experiments

at 103 K of Luger and Buschmann [23] and the high resolution neutron powder diffraction ex-

periments at 5 K of David and Ibberson [24]. Both investigations identify the T forms at φ =

90◦ and 270◦ as the equilibrium forms of THF in line with the twofold pseudorotational potential

calculated in this work.

The enthalpy barriers ∆H along the pseudorotational path obtained from MBPT(2) and B3LYP

calculations are 0.22 and 0.25 kcal/mol (Table 1), respectively, corresponding to 77 and 87 cm−1,

which are in good agreement with experimental estimates from a far-infrared measurement (< 0.5

kcal/mol) [18], and from microwave experiments (0.21 kcal/mol or 73 cm−1 [20]; 0.13 kcal/mol

or 45 cm−1 [21]). The barrier to planarity, ∆E(inv) (∆H(inv)), is calculated to be 3.36 (2.94)

kcal/mol at B3LYP and 4.46 (4.15) kcal/mol at MBPT(2) (see Table 1). Both ∆H(inv) values

compare well with experimental estimates of 3.49 kcal/mol (microwave spectroscopy [20]) and 3.86

kcal/mol (far-infrared experiment [19]). B3LYP seems to slightly underestimate, MBPT(2) to



Int. J. Mol. Sci. 2003, 4 170
T
a
b
le

2
.

F
ou

ri
er

ex
p
a
n
si

on
s

fo
r

ge
om

et
ri

ca
l
p
ar

am
et

er
s

of
T

H
F
.a

P
ar

a
m

et
er

D
efi

n
it

io
n

A
B

1
B

2
B

3
B

4
B

5
C

1
C

2
C

3
S
T

D
co

s
φ

co
s

2
φ

co
s

3
φ

co
s

4
φ

co
s

5
φ

si
n

φ
si

n
2φ

si
n

3φ

R
(C

H
)

C
2H

6
1.

09
8
2

-0
.0

05
1

-0
.0

02
2

0
.0

0
06

0
.0

00
0 3

R
(C

H
)

C
3H

8
1.

09
4
1

-0
.0

00
6

0.
0
01

0
0
.0

00
0 2

R
(C

C
)

C
3
C

4
1.

54
3
6

0.
00

90
0.

00
13

0.
0
00

1
R

(C
C

)
C

2
C

3
1.

53
9
9

0.
00

54
-0

.0
01

1
0
.0

1
07

0.
0
00

2
R

(O
C

)
O

1C
2

1
.4

27
5

-0
.0

04
4

-0
.0

04
1

0.
0
00

2
α
(O

C
H

)
O

1
C

2
H

6
1
09

.1
5

-1
.6

84
6

-0
.0

36
9

0.
49

60
-0

.0
32

2
6

-0
.2

5
48

0
.3

0
83

0
.0

65
7

0.
02

α
(O

C
C

)
O

1C
2C

3
1
05

.9
8

-0
.0

01
9

-0
.3

70
3

-0
.0

01
9

0.
08

91
-0

.0
01

9
1
.2

9
68

0.
05

α
(C

O
C

)
C

2
O

1C
5

1
07

.8
3

-2
.2

60
7

-0
.0

89
4

0.
01

α
(C

C
C

)
C

2C
3
C

4
10

2
.4

7
0.

88
49

-0
.0

30
6

-0
.8

38
3

0.
09

α
(C

C
H

)
C

2
C

3H
8

11
1
.4

7
-0

.5
72

4
-0

.1
82

7
0.

07
04

-0
.0

24
5

-0
.0

05
6

-1
.5

75
2

0
.0

0
60

-0
.3

95
7

0.
03

α
(C

C
H

)
C

3
C

2H
6

11
2
.2

1
1
.8

33
1

0.
11

65
-0

.0
72

4
-0

.0
49

9
-0

.0
13

2
0.

8
23

5
0
.2

5
27

-0
.2

52
5

0.
02

α
(C

C
H

)
C

3
C

4
H

1
0

11
1
.7

9
-0

.6
00

0
-0

.1
19

2
-0

.4
02

3
0.

04
71

1.
6
04

2
-0

.1
72

0
-0

.0
67

7
0.

01
α
(H

C
H

)
H

6C
2H

7
10

8
.0

9
0.

20
28

0.
00

81
0
.1

8
18

0.
01

α
(H

C
H

)
H

8C
3H

9
10

7
.8

1
-0

.2
26

5
-0

.0
07

4
0
.4

0
99

0.
03

τ
(O

C
C

H
)

O
1C

2C
3H

8
-1

1
9.

74
24

.6
32

3
-0

.2
65

6
0.

43
31

-0
.0

15
2

0.
00

66
33

.4
4

0
.2

5
89

0
.1

66
0

0.
05

τ
(C

C
C

H
)

C
2
C

3C
4H

10
-1

19
.5

2
0.

95
30

-0
.2

25
3

0.
14

33
0.

02
53

0.
00

8
0

-3
8.

9
57

4
-0

.3
83

7
-0

.3
75

5
0.

04
τ
(C

O
C

H
)

C
2O

1
C

5H
1
2

12
1
.0

4
41

.4
55

8
-0

.0
95

1
0.

09
74

-0
.0

04
9

-0
.0

22
5

-1
2.

9
94

4
0
.2

8
54

0
.1

81
0

0.
03

τ
(C

C
C

H
)

C
4C

3C
2
H

6
1
1
9.

04
2
2
.6

25
5

-0
.2

12
1

0.
52

66
0.

03
34

-0
.0

35
30

.9
57

2
-0

.2
99

3
-0

.0
41

3
0.

05
τ
(H

C
C

H
)

H
6
C

2
C

3H
8

-0
.7

00
8

23
.5

88
3

-0
.4

79
8

0.
99

96
0.

01
58

-0
.0

30
0

3
3.

57
67

-0
.0

40
0

0
.0

83
4

0.
07

τ
(H

C
C

H
)

H
8C

3C
4
H

1
0

4
1.

56
28

-0
.7

67
7

-0
.8

24
9

0.
05

τ
(H

C
C

H
)

H
6
C

2
C

3H
9

-1
21

.2
1

23
.5

89
5

0.
05

43
1.

00
08

0.
04

89
-0

.0
29

0
33

.5
76

5
-0

.5
58

5
0
.0

83
7

0.
05

τ
(H

C
C

H
)

H
8C

3C
4
H

1
1

12
0
.9

6
-0

.4
51

2
0.

05
02

4
1.

56
32

0
.8

25
0

0.
02

τ
(C

C
C

C
)

C
2
C

3C
4C

5
-3

6
.3

52
0
.0

74
2

0.
04

a)
T

h
e

F
ou

ri
er

ex
p
an

si
on

gi
v
en

in
E

q
.

(1
2)

w
as

u
se

d
.

C
o
effi

ci
en

ts
B

i
an

d
C

j
as

so
ci

a
te

d
w

it
h

co
s
(i

φ
)

a
n
d

s
in

(j
φ
),

re
sp

ec
ti

v
el

y,
ar

e
li
st

ed
.

T
h
e

n
u
m

b
er

in
g

of
at

om
s

co
rr

es
p
on

d
s

to
th

at
sh

ow
n

in
F
ig

u
re

s
1

an
d

3.



Int. J. Mol. Sci. 2003, 4 171

slightly overestimate the barrier to planarity as was also observed in the case of cyclopentane [12].

All E and T forms are predicted to have the same puckering amplitude q (B3LYP: 0.371 ± 0.001;

MBPT(2), 0.396 ± 0.002 Å; Table 1), which is typical of a free or slightly hindered pseudorotor

[12,25]. Agreement with the puckering amplitude qg = 0.38 ± 0.02 Å obtained in the electron

diffraction experiment [22] is satisfactory considering vibrational effects and the fact that the

latter investigation used a highly constrained geometrical model (e.g., equal CC and CO bond

lengths) of THF. David and Ibberson determined a q value of 0.343 Å for the T forms (φ = 90◦,
270◦) on the basis of the neutron diffraction data [24] while the X-ray diffraction study of Luger

and Buschmann [23] led to a q value of 0.348 Å. Considering again vibrational effects and the

fact that the interactions between THF molecules in the unit cell imply a slight flattening of the

five-membered ring, agreement with theory is reasonable.

Table 3. Average geometrical parameters of THF calculated at B3LYP/6-31G(d,p) and MBPT(2)

/cc-pVTZ. a

Parameter B3LYP MP2 ED c B3LYP MP2 X-ray d ND e

Average value b C2 form φ = 90, 270◦ C2 form C2 form

O1C2 1.428 1.426 1.428 1.432 1.431 1.429 1.438

C2C3 1.540 1.529 1.536 1.534 1.522 1.511 1.516

C3C4 1.543 1.534 1.536 1.536 1.527 1.511 1.524

C2H6 1.098 1.091 1.115 1.095 1.088 1.050 1.094 f

C3H8 1.094 1.088 1.115 1.096 1.090 1.050 1.096 f

α(C2O1C5) 108.0 106.8 110.5 109.9 109.2 108.2 109.9

α(O1C2C3) 106.0 105.8 106.5 106.5 106.2 107.4 106.4

α(C2C3C4) 102.4 102.0 101.8 101.5 101.0 102.0 102.6

q (Å) 0.371 0.396 0.38 0.371 0.396 0.348 0.343

a) See Eq. (10) for the calculation of average values. - b) Averaged over the pseudorotational

mode. - c) Electron diffraction data, taken from Ref. 22. - d) X-ray diffraction data at -170◦C,

taken from Ref. 23. - e) Neutron diffraction data at 5K, taken from Ref. 24. - f) Bond length for

C-D. average geometrical parameters

Previous computational investigations of THF were carried out with MM methods (∆E = 1.4

kcal/mol, q = 0.370 - 0.399 Å) [27,28], at the Hartree-Fock level of theory (∆E(inv) = 2.30 -
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3.41 kcal/mol; q = 0.314 - 0.370 Å) [25,26], or at the MBPT(2) level of theory (∆E(inv) = 4.77

kcal/mol; q = 0.395 - 0.398 Å) [26]. Calculated pseudorotational barriers ranged from 0.39 to 0.65

kcal/mol [25,26]. None of these investigations provided an accurate account of the CES of THF

because either force fields of moderate accuracy, uncorrelated wave functions, too small basis sets,

just constrained geometry optimizations, or ∆E rather than ∆H (neglect of vibrational effects)

were used because of computational limitations.

Each geometrical parameter P of THF was expanded in this work using the general Eq. (12):

P (φ) = A0 +
c∑

i=1

BP
i cos(iφ) +

s∑

j=1

CP
j sin(jφ)) (12)

In Table 2, the Fourier expansion coefficients BP
i and CP

j of the internal coordinates of THF

are listed. In view of the low energy barriers to pseudorotation, the constant term AP
0 of the

Fourier expansion is close to the average value < P > obtained when using Eq. (12) in connection

with (10) and considering the correct Boltzmann statistics (11) for the pseudorotational itinerary

(compare with Table 3).

In Table 3, calculated average values < P > of the the most important geometrical parameters

of THF are compared with available experimental values. Comparison of these data reveals that

both MBPT(2) and B3LYP provide a reasonable account of the geometry of THF.

For the purpose of rationalizing the relative stability of the various THF forms along the

pseudorotation itinerary, we next consider changes in the internal coordinates caused by a variation

of φ. In Figure 4, P(φ) is given for some of the internal coordinates of THF (see also Table 2).

The known rotational barriers of ethane (2.9 kcal/mol) [61,62] and methanol (1.1 kcal/mol)

[63,64] suggest that bond eclipsing in the H2C3C4H2 unit for φ = 0◦ and 180◦ causes a desta-

bilization of the two E forms accompanied by a lengthening of the C3C4 bond to 1.554 Å (see,

Figure 4a). For the two T forms at φ = 90◦ and 270◦ bond staggering in the H2C3C4H2 unit

is maximized (see Figure 4c) thus yielding a shorter C3C4 bond (1.536 Å) and larger stability

of THF. For the H2C2C3H2 (H2C4C5H2) unit bond staggering is maximized for φ = 54◦ and

234◦ (φ = 128◦ and 306◦) (compare with bond length C2C3 in Figure 4a). Any model of THF,

which exaggerates this effect by using a too large barrier to rotation in methanol, gets the four

C1-symmetrical T forms too stable (see above).

In addition to bond eclipsing/bond staggering effects, there are also anomeric interactions

[12,65] involving an O electron lone pair and bonds C2H6 and C2C3. In the case of bond C2C3,

they enhance changes in its length to ∆ = 0.024 Å (variation from 1.530 Å at φ = 54 to 1.554 Å at

φ = 144◦, see, Figure 4a) while for bond C2H6 ∆ is about 0.01 Å. At φ = 198 (18)◦, bond C2H6

(C2H7) is perfectly positioned to support a delocalization of one of the lone pair electrons at O

into its σ?(CH) orbital. This leads to a weakening of the CH bond but a strengthening of the CO
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Figure 4: Dependence of the internal coordinates of THF on the pseudorotational phase an-

gle φ. (a) Bond lengths R(O1C2), R(C2C3), R(C3C4), R(C2H6) and R(C3H8). (b) Bond an-

gles α(O1C2C3), α(C2C3C4), α(C2O1C5) and α(O1C2H6). (c) Dihedral angles τ(C2C3C4C5),

τ(H8C3C4H10) and τ(H6C2C3H8). (d) Dihedral angles τ(O1C2C3H8), τ(C2O1C5H12),

τ(C2C3C4H10), τ(C4C3C2H6), τ(H6C2C3H9), and τ(H8C3C4H11). For the numbering of atoms,

see Figures 1 and 3. The Fourier expansion coefficients are given for each parameter in Table 2

calculated at B3LYP/6-31G(d,p).
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Figure 5: Dependence of the s-densities %s(K,L) = %s(K)%s(L) of CH bonds on the pseudoro-

tational phase angle. The hybridization of the C2H6 bond orbital as calculated with the NBO

approach is also given. B3LYP/6-31G(d,p) calculations.

bond (see Figure 4a). The anomeric effect implies that the p-character of the CH bond orbital

increases. Hybride orbital calculations for THF employing the NBO analysis [54-56] confirm this,

although effects are small: For C2H6, hybridization changes from sp2.82 (φ = 18◦) to sp2.96 (φ =

198◦)(see Figure 5), which corresponds to a slight decrease in the s-character of the CH hybrid

orbital from 26.2% to 25.2%. These changes are interesting in view of the changes calculated for

the SSCCs 1J(CH) (see next section).

The C2O1C5 bond angle changes by 4.5 ◦ from 105.5◦ to 110.0◦ where the smallest angle is

found for the E forms at φ = 0◦ and 180◦ and the largest angle for the T forms at φ = 90◦ and

270◦ (see Figure 4b). This also supports the stability of the latter conformations.
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4 Analysis of NMR Spin-Spin Coupling Constants

There are 26 different NMR SSCCs for THF: two nJ(17O-13C), two nJ(17O-1H), four nJ(13C-13C),

eight nJ(13C-1H), and ten nJ(1H-1H) SSCCs. Because of the small natural abundance of 17O and its

large quadrupole moment, 17O SSCCs are difficult to measure and only a relatively small number

of reliable SSCCs involving 17O is available [66]. Nevertheless, it is still interesting to investigate

the conformational dependence of SSCCs involving 17O and test their use as descriptors of the

electronic structure of THF. In this work, we provide the full set of all 26 SSCCs of THF.

For cyclopentane [12], we showed that 3J(HCCH) expressed as a function of the associated

dihedral angle τ(HCCH) can only be described by two rather than one Karplus relationship

because one τ(HCCH) value can lead to two significantly different 3J(HCCH,cis) values. For

THF, even six Karplus relationships are needed to represent all 3J(HCCH,cis) values for fragments

H6C2C3H8 and H8C3C4H10 as a function of the associated dihedral angle τ(HCCH) in an accurate

way. These problems vanish when SSCCs J are expressed as functions of the ring puckering

coordinates according to Eq.s (7) or (9).

In Table 4, the Fourier expansion coefficients of Eq. (9) are given for all 26 SSCCs of THF. The

calculated average SSCCs <nJ> based on B3LYP and MBPT(2) geometries are listed in Table 5

and compared with measured J values and the corresponding SSCCs of cyclopentane [12]. Karplus

relationships (9) are shown for selected SSCCs in Figure 6.

In the following, we will discuss the SSCCs of THF (Tables 4 and 5) separately where the emphasis

will be on those SSCCs that can be used for the determination of the conformation of THF and its

derivatives. The SSCCs of THF are dominated by the FC contribution whereas the PSO, DSO,

and SD contributions make small but significant contributions (≤ 3 Hz, e.g. for the one-bond

SSCCs). Hence, the calculation of these terms is absolutely necessary to obtain reliable J values,

however the dependence of J on the puckering coordinates can be rationalized by concentrating

on the FC term only.

One-Bond Coupling Constant 1J(OC). This SSCC is dominated by the FC term, which

changes significantly with φ. However, the changes in PSO+DSO+SD are opposite to that of the

FC contribution so that the total SSCC changes by only 0.4 Hz from 26.1 (φ = 18, 198◦) to 26.6

Hz (φ = 126, 306◦). Hence, the total SSCC is of little use for the conformational analysis.

One-Bond Coupling Constants 1J(CC). The position of the electronegative O atom has little

effect on 1J(CC) constants. The calculated SSCC value is 34.0 Hz for <1J(C2C3)> and 34.2 Hz for

<1J(C3C4)>, respectively, which are comparable to the measured values for propane (34.6) [30],

cyclohexane(32.7) [30] and the calculated value of <1J(CC)> for cyclopentane (34.0 Hz [12]). The

variation of 1J(C3C4) (∆ = 3.7 Hz) is much larger than the changes in 1J(C2C3) (∆ = 1.1 Hz),
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which is opposite to the changes in the corresponding bond lengths (see discussion in previous

section). The changes in the one-bond SSCCs can however be directly explained considering

the products %s(C,C) of the densities at the nuclei (see Eq. 6). This will be large if exchange

repulsion (bond eclipsing) increases. A large density at the site of the nuclei guarantees a stronger

transmission of spin polarization from one nucleus to the other.

Table 4. Fourier expansion coefficients for the SSCCs of THF. a

Parameter Definition A0 B1 B2 B3 B4 B5 C1 C2 C3 STD
cos φ cos 2φ cos 3φ cos 4φ cos 5φ sin φ sin 2φ sin 3φ

1J(CH) C2H6 142.57 3.03 -0.38 -0.06 0.04 0.03 1.91 0.77 0.03 0.04
1J(CH) C3H8 130.89 1.01 0.26 -0.05 0.02 -2.09 -0.01 0.07 0.04
1J(CC) C3C4 34.35 1.83 0.02
1J(CC) C2C3 34.06 0.43 -0.01 0.28 0.02
1J(OC) O1C2 26.41 -0.16 -0.01 0.19 0.04
2J(CC) C2O1C5 0.87 0.52 0.07 0.004
2J(CC) C2C3C4 0.41 -0.83 0.03 0.50 0.04
2J(OC) O1C2C3 0.22 -0.69 0.05 0.14 0.02
2J(OH) O1C2H6 -8.62 -4.96 0.54 0.43 -0.02 -0.02 -1.74 -0.01 0.31 0.02
2J(CH) C2C3H8 -1.52 -1.44 -0.22 -0.21 -0.02 -3.00 -0.10 -0.10 0.007
2J(CH) C3C2H6 -0.64 -0.64 0.49 0.20 -0.04 0.11 0.23 0.04 0.03
2J(CH) C3C4H10 -2.76 -0.60 -0.06 0.02 0.01 0.39 -0.31 0.16 0.01
2J(HH) H6C2H7 -8.78 -0.45 0.03 -0.07 0.05
2J(HH) H8C3H9 -12.03 -0.03 -0.02 0.26 0.05
3J(OH) O1C2C3H8 -1.20 0.95 0.25 0.06 0.07 0.02 1.80 -0.55 0.25 0.04
3J(CH) C2C3C4H10 2.92 -0.31 -1.15 -0.20 -0.08 -0.03 3.85 -0.17 0.39 0.05
3J(CH) C2O1C5H12 4.12 5.54 1.26 -0.33 0.02 -2.12 -1.14 0.52 0.07
3J(CH) C4C3C2H6 2.95 2.34 0.30 0.06 0.03 0.01 2.10 1.88 -0.38 0.02
3J(HH) H6C2C3H8 7.37 0.42 0.54 0.16 -0.12 1.50 -2.09 0.08 0.03
3J(HH) H8C3C4H10 8.65 0.75 2.41 0.18 0.11 0.01
3J(HH) H6C2C3H9 5.34 -3.44 -0.10 -0.77 0.09 -4.93 0.20 0.23 0.06
3J(HH) H8C3C4H11 5.44 -0.93 -0.14 6.58 0.77 0.02
4J(HH) H6C2O1C5H12 -0.20 -0.26 0.33 0.27 -0.05 -0.03 0.005
4J(HH) H6C2C3C4H10 -0.17 0.21 -0.12 -0.10 -0.01 -0.01 0.13 0.30 0.02 0.003
4J(HH) H6C2O1C5H13 -0.58 -0.41 0.14 -0.34 0.12 0.01
4J(HH) H6C2C3C4H11 -0.61 -0.11 -0.02 0.01 -0.01 0.01 0.03 0.03 -0.03 0.04

a) The Fourier expansion given in Eq. (9) was used. Coefficients Bi and Cj associated with cos (iφ) and sin (jφ),

respectively, are listed. Constant A0 corresponds to the average parameter <nJ> in the case of free pseudorotation.

All SSCCs nJ in Hz. For the numbering of atoms, see Figures 1 and 2.
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Table 5. Comparison of calculated and measured <nJ> values of THF. a

SSCC <nJ> <nJ>

MP2 B3LYP exp. cyclopentane d

1J(C2H6) 141.47 142.60 144.6 b 127.61
1J(C3H8) 130.13 130.88 132.2 b 127.61
1J(C3C4) 34.27 34.23 34.05
1J(C2C3) 34.01 34.04 34.05
1J(O1C2) 25.51 26.42

2J(C2O1C5) 0.93 0.84 2.33
2J(C2C3C4) 0.29 0.47 2.33
2J(O1C2C3) 0.09 0.27
2J(O1C2H6) -8.39 -8.65
2J(C2C3H8) -1.63 -1.50 -2.58
2J(C3C2H6) -0.73 -0.67 -2.58

2J(C3C4H10) -2.83 -2.76 -2.58
2J(H6C2H7) -8.55 -8.75 -12.41
2J(H8C3H9) -11.63 -12.03 -12.41

3J(O1C2C3H8) -1.33 -1.21
3J(C2C3C4H10) 3.13 2.99 3.92
3J(C2O1C5H12) 4.17 4.04 3.92
3J(C4C3C2H6) 3.20 2.93 3.92

3J(H6C2C3H8,cis) 7.19 7.33 7.94 c 7.69
3J(H8C3C4H10,cis) 8.24 8.51 8.65 c 7.69

3J(H6C2C3H9,trans) 5.29 5.35 6.14 c 5.61
3J(H8C3C4H11,trans) 5.47 5.50 6.25 c 5.61
4J(H6C2O1C5H12,cis) -0.16 -0.23 0.10
4J(H6C2C3C4H10,cis) -0.12 -0.16 0.10

4J(H6C2O1C5H13,trans) -0.59 -0.55 -0.57
4J(H6C2C3C4H11,trans) -0.59 -0.61 -0.57

a) All SSCCs <nJ> in Hz. b) Taken from ref. 30. c) Taken from ref. 29. d) Taken from Ref. 12.

In this respect, exchange repulsion effects increase both the FC term of the SSCCs and the bond

length, i.e. the latter do not directly influence the one-bond SSCC.
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One-Bond Coupling Constants 1J(CH). In contrast to 1J(CC), 1J(CH) exhibits a strong

dependence on the position of the O atom. The average SSCC values are 142.6 Hz for 1J(C2H6)

and 130.9 Hz for 1J(C3H8), respectively, which are in reasonable agreement with measured values

of 144.6 for 1J(C2H6) and 132.2 for 1J(C3H8) (see Table 5 and Figure 6a). The difference of 12

Hz between <1J(C2H6)> and <1J(C3H8)> is a result of the inductive effect of the O atom [30].

Analysis of the s-density reveals that at C2 (bond C2H6: ' 0.096 electron) it is significantly larger

than the s-density at C3 (bond C3H8: ' 0.070 electron; see Figure 5). 1J(C2H6) changes by 7.3 Hz

from 145.4 (φ = 36◦) to 138.1 Hz (φ = 216◦). This decrease is caused by a change in the position

of bond C2H6 relative to the mean plane of the ring. Calculating the ring substituent orientations

according to Cremer [36] reveals that C2H6 is in the equatorial position for φ = 36 ± 18◦ and

in the axial position for φ = 216 ± 72◦. In the latter situation, the Perlin effect (the magnetic

analogue of the anomeric effect) [5,67] decreases 1J(C2H6) and enlarges the difference 1J(CHeq)

- 1J(CHax). The Perlin effect is well-known for the 1J(CH) constants of heterocyclohexanes [68]

and, obviously, plays also a role in five-membered rings with hetero atoms.

Geminal Coupling Constants 2J(OCC) and 2J(CCC). The three 2J(X,C) constants possess

positive average values: 0.3 Hz for <2J(O1C2C3)>, 0.5 Hz for <2J(C2C3C4)>, and 0.8 Hz for

<2J(C2O1C5)>. For the purpose of explaining the φ-dependence of these SSCCs, one has to

consider that there are two coupling paths as reflected by notations such as 2+3J(XCC,XCCC)

with X = C or O. The two-bond contribution of 2J(CXC) and 2J(XCC) are almost constants

during pseudorotation. Hence, the total coupling constants depend on the changes in the three-

bond contributions, which in turn correlate with the dihedral angle of the corresponding fragments

XCCC and CXCC in the sense that a larger deviation of the dihedral angle from 0◦ leads to a

smaller value of the coupling constant (see Figure 7).

Geminal Coupling Constants 2J(OCH) and 2J(CCH). The calculated value of the SSCC

<2J(C3C4H10)> is -2.8 Hz and agrees well with <2J(CCH)> for cyclpopentane (-2.6 Hz, Table

1). The inductive effect of an O atom leads to a positive contribution of 1 - 2 Hz depending on

the position of O and the relative orientation of CO and CH bond [30]. This is also reflected

by <2J(C3C2H6)> = -0.7 Hz and <2J(C2C32H8)> = -1.5 Hz. Of the four 2J(XCH) SSCCs,
2J(C2C3H8) and 2J(O1C2H6) are most sensitive to the pseudorotational phase angle φ (see Figure

6b). 2J(C2C3H8) changes by 6.3 Hz from -4.6 (φ = 36◦, 54◦) to 1.7 Hz (φ = 252◦) where its value

depends on the relative orientation of the CO bond as reflected by τ(O1C2C3H8) (the larger

τ , the more positive 2J(C2C3H8); see Figures 4d and 6b). Similar effects have been reported

[5,67] and frequently utilized to study the conformation of important biological compounds [68].
2J(O1C2H6) changes by 10 Hz from -13.4 Hz (φ = 54◦) to -3.4 Hz (φ = 198◦). The s-character of

the hybrid orbital of bond C2H6 influences 2J(O1C2H6), 1J(C2H6), and 2J(H6C2H7). An increase

in the s-character of spx(C2H6) leads to a more negative 2J(O1C2H6) SSCC (see Figures 5 and
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Figure 6: Calculated SSCCs nJ as a function of the pseudorotational phase angle φ. (a) One-bond

SSCCs 1J(C2H6), 1J(C3C4) and 1J(C3H8). (b) 2J(O1C2H6), 2J(C2C3H8) and 3J(O1C2C3H8).

(c) Vicinal SSCCs 13C-1H SSCCs 3J(C2O1C5H12), 3J(C2C3C4H10) and 3J(C4C3C2H6). (d)

Vicinal SSCCs 1H-1H SSCCs 3J(H6C2C3H8,cis), 3J(H6C2C3H9,trans), 3J(H8C3C4H10,cis), and
3J(H8C3C4H11,trans). For the numbering of atoms, see Figures 1 and 3. The coefficients of the

Fourier expansions nJ(φ) are listed in Table 4. All calculations at B3LYP/6-31G(d,p) geometries.
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6b). If 17O SSCCs could be measured, 2J(O1C2H6) would be an useful conformational probe.

Geminal Coupling Constants 2J(HCH). The dependence of 2J(HCH) on the hybridisation

degree of the C atom and the impact of an electronegative atom are well known [1,4,5,30]. The

calculated values of <2J(H6C2H7)> (-8.7 Hz, Table 5) and <2J(H8C2H9)> (-12.0 Hz) reflect

these trends. <2J(H8C2H9)> agrees well with the calculated <2J(HCH)> value for cyclopentane

(-12.4 Hz, Table 5).

Vicinal Coupling Constants 3J(OCCH), 3J(CCCH). All 3J(XCCH) couplings depend strong-

ly on the pseudorotational phase angle φ (see Figure 6c). The values of <3J(C, H)>, are all positive

(3J(C4C3C2H6): 2.9; 3J(C2C3C4H10): 3.0; 3J(C2O1C5H12): 4.0 Hz, Table 5) and comparable to

the corresponding cyclopentane value of 3.9 Hz (Table 5). The O atom as an external substituent

of the CCH unit decreases the SSCC, however O in the ether position increases the SSCC [30].

The value of <3J(OCCH)> is -1.2 Hz whereas 3J(OCCH) varies by 4.3 Hz from -3.9 (φ = 234◦)
to 0.4 Hz (φ = 36◦) and thus reflects the corresponding changes in τ(O1C2C3H8) (Figure 4d).

Variations in the vicinal SSCCs by 7.5 Hz (3J(C2C3C4H10)), 11.5 Hz (3J(C2O1C5H12)), and 7.6

Hz (3J(C4C3C2H6), Figure 6c) can be explained by considering both the s-character of CH (or

CC) bonds and the dihedral angle τ(CCCH) (see also Ref. 12).

Vicinal Coupling Constants 3J(HCCH). The SSCC 3J(H8C3C4H10,cis) possesses a similar

dependence on φ than the corresponding SSCC in cyclopentane [12], adopting large values for

τ(H8C3C4H10) = 0◦ (12.1 and 10.2 Hz at φ = 0◦ and 180◦; Figure 6d) and smaller values for

τ(H8C3C4H10) = 40.7◦ (6.4 Hz for φ =90◦ and 270◦). The difference ∆ = 1.86 Hz between the

endo-3J(H8C3C4H10,cis) (φ = 180◦) and the exo-3J(H8C3C4H10,cis) value (φ = 0◦) is another

example for the Barfield transmission effect [70,71], which has been studied by various authors

and which has been explained in different ways [69-71]. Noteworthy in this connection is that

differences in SSCC due to the Barfield transmission effect are automatically covered when the

SSCCs are expanded as functions of the puckering coordinates (see Figure 6d).

An accurate description of the variation in 3J(H8C3C4H10,cis) during pseudorotation requires

cos3φ and cos4φ terms (standard deviation 0.01 Hz; see Table 4). The average value of SSCC
3J(H8C3C4H10,cis) is calculated to be 8.51 Hz, which is in good agreement with the measured

value of 8.65 Hz [29]. For cyclopentane the corresponding SSCC is 0.8 Hz larger (see Table 5).

The Karplus relationship 3J(H6C2C3H8,cis) = 3J(φ) is shifted by 216◦ relative to that for
3J(H8C3C4H10,cis) (see Figure 6d). It has a similar, however somewhat asymetrical shape (caused

by a similar asymmetry in τ(H6C2C3C8)) where J varies by 6.4 Hz from 4 Hz (φ = 234◦) to 10.4

Hz (φ = 126◦). Again, the electronegative O atom leads to a lower <3J(H6C2C3H8, cis)> value

(7.33 Hz, Table 5), which is in reasonable agreement with the experimental value of 7.94 Hz [29].

The Barfield transmission effect is now smaller as reflected by an exo-endo difference of 1.33 Hz

(endo, φ = 324◦, 8.99 Hz; exo, φ = 144◦, 10.32 Hz).
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As in the case of cyclopentane, the dependence of 3J(HCCH,trans) on pseudorotation is con-

siderably different from that observed for 3J(HCCH,cis) (Figure 6d). Utilizing the φ-dependence of
3J(H8C3C4H11), the conformational space can be partitioned into several regions: 3J(H8C3C4H11)

adopts values ≥ 10 Hz for 36◦ ≤ φ ≤ 144◦; it becomes ≤ 2 Hz for 198◦ ≤ φ ≤ 342◦, and takes

intermediate values in the remaining regions. The Karplus relationships for 3J(HCCH,trans) are

given in Table 4. The values of <3J(HCCH, trans)> are 5.50 for 3J(H8C3C4H11) and 5.35 Hz

for 3J(H6C2C3H9), which are 0.7 - 0.8 Hz smaller than the measured values of 6.25 and 6.14 Hz

[29], respectively. We note that as in the case of cyclopentane the average cis-SSCCs are better

described than the average trans-SSCCs. Since the latter are largely insensitive to ring puckering,

this deviation is due to shortcomings of the method (lack of higher order correlation effects). We

note in this connection that <3J(HCCH, trans)> is also calculated somewhat too small for alkanes

and alkenes irrespective of the basis set.

Long Range Coupling Constants 4J(HCCCH). The four long-range SSCCs (two cis- + two

trans-4J(HCCCH) constants, see Tables 4 and 5) change only slightly (≤ 1.5 Hz) during pseudoro-

tation. Average values are -0.23 Hz for <4J(H6C2O1C5H12)>, -0.16 Hz for <4J(H6C2C3C4H19)>,

-0.55 Hz for 4J(H6C2O1H13), and -0.61 Hz for 4J(H6C2C3C4H11).

5 A General Karplus Relationship for Puckered Rings

In this section, we discuss the more general Karplus relationship J(q,φ) given in Eq. (7), which

leads to a three-dimensional (3D) surface for the SSCC. If function (7) is known, it can be used to

describe the conformation of THF and its derivatives more accurately in terms of the mode and

the degree of ring puckering.

In the case of THF, the puckering amplitude is largely constant along the pseudorotational

path (Table 1) so that one can discuss the dependence of J on q and φ separately. For the

purpose, of evaluating the q-dependence of the SSCCs, we repeated geometry optimizations at

the B3LYP/6-31G(d,p) level of theory for fixed values of q, varying q in the range from 0.33

to 0.41 Å. Subsequent calculation of the SSCCs for the new set of geometries made it possible

to derive the coefficients in Eq.s (8a), (8b), and (8c) truncating the power series in q after the

quadratic term (see below). Insertion into Eq. (7) led to the general Karplus relationship J(q,φ).

As a representative example, we discuss here results for SSCC 3J(H8C3C4H10,cis).

The Fourier expansion coefficients Bk and Ck are listed in Table 6 for each q value chosen. The

calculated 3D-surface of the 3J(H8C3C4H10,cis) SSCC is shown in Figure 8.

As stated in section 2, the Fourier coefficient A0(q) approaches for q → 0 the value of the

SSCC 3J(H8C3C4H10,cis) for the planar form. All other coefficients become zero for q = 0. The

experience obtained in this work suggests that a truncation after the quadratic term is sufficient
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to give a reliable account of the dependence of the power series coefficients A0l, Bkl and Ckl on q.

Figure 8 shows that 3J(H8C3C4H10,cis) decreases rapidly with increasing q where the decrease

for the C2-symmetrical T forms is stronger than for the Cs-symmetrical E forms. It can also be

seen that in the latter case the SSCC is always larger for φ = 0◦ than for φ = 180◦ and that

the difference becomes smaller for q approaching 0 while 3J(H8C3C4H10,cis) converges to 12.48

Hz, the SSCC of the planar form. The value of <3J(H8C3C4H10, cis)> also exhibits a significant

dependence on q, which in turn can be used for the determination of the puckering amplitude q

as discussed in Ref. 12.

Table 6. Fourier expansion coefficients (in Hz) of 3J(H8C3C4H10) for different q values.

q A B1 B2 B3 B4

cos(φ) cos(2φ) cos(3φ) cos(4φ)

0.00 12.48

0.33 9.30 0.78 2.03 0.13 0.07

0.35 8.98 0.77 2.22 0.15 0.09

0.371 a 8.65 0.75 2.41 0.18 0.11

0.39 8.34 0.74 2.60 0.20 0.13

0.41 8.02 0.71 2.77 0.22 0.16

a) Optimized puckering amplitude (see Table 1.)

For the vicinal proton,proton SSCCs of THF, general Karplus relationship J(q,φ) were deter-

mined and used in connection with the corresponding experimental values to determine in a least

square sense that puckering amplitude q of THF that leads to the best agreement between mea-

sured and calculated averaged SSCCs. As shown in Figure 9, a q-value of 0.352 Å was obtained

in this way (predominantly determined by 3J(HCCH,cis), see Figure 9), which is clearly smaller

than the gas phase value of 0.396 Å (Table 1). The difference of 0.044 Å reflects vibrational and

environmental effects on the puckering amplitude q where one has to consider that the vicinal

proton,proton SSCCs of THF were measured in CHCl3 [29]. While the large amplitude vibration

along the pseudorotational path does not change q very much, the second large amplitude vibra-

tion perpendicular to the mean plane of the ring decreases q because of the relatively low barrier

to inversion (4 kcal/mol, Table 1). Molecular interactions in condensed phases seem to flatten the

ring as was also observed in the X-ray [23] and the neutron diffraction study [24] of THF. We note
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a function of q. The minimum determines the best q value. It is compared with the q values from

other sources. In the insert, the dependence of the calculated SSCCs <3J(HCCH)> of THF on

the puckering amplitude q is given. Experimental values (dashed lines) are given for comparison.
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that the q-values obtained in the solid state (0.348 and 0.343 Å; Table 3) are close to the q-value

determined with the help of the vicinal SSCCs. Hence, a realistic puckering amplitude of THF in

solution should be close to 0.35 Å.

6 Conclusions

The following conclusions can be drawn from this work.

1) MBPT(2)/cc-pVTZ provides a reliable description of the conformational behavior of THF.

THF is a slightly hindered pseudorotor with a constant puckering amplitude of 0.396 Å; the global

minima correspond to the C2-symmetrical T forms at φ = 90 and 270◦. The pseudorotational

and inversion barriers ∆H(298) are 0.22 and 4.15 kcal/mol, respectively, which agree well with

the available spectroscopic data.

2) A fourfold pseudorotational potential for THF as suggested by microwave spectroscopic inves-

tigations [20,21] is not confirmed by the quantum chemical calculations. Analysis of the electronic

structure of THF along the pseudorotational path clearly indicates that the T forms at φ = 90

and 270◦ are most stable while the E forms at φ = 0 and 180◦ occupy the first order saddle points

of the CES. We note that the microwave spectroscopic results strongly depend on the constrained

THF model used in the investigation and suggest that these investigations should utilize THF

models based on the accurate geometries provided in this work.

3) B3LYP/6-31G(d,p) calculations are almost as reliable as MBPT(2)/cc-pVTZ results in the

case of THF. This result is in so far important as it provides a basis to investigate pseudorotation

of ribose and other biochemically interesting ring compounds at the DFT level of theory. In

view of the coupling of this mode with the internal rotation of the substituents of ribose such an

investigation would become too expensive at the MBPT(2)/cc-pVTZ level of theory.

4) CPDFT/B3LYP calculations with the [6s,4p,1d/3s,1p] basis set provide SSCCs in good agree-

ment with the available experimental values for THF and the known SSCCs for cyclopentane.

The influence of the O atom on SSCCs involving 13C and 1H is in line with observations made for

acyclic O-containing compounds [30].

5) Karplus relationships nJ(φ) and nJ(q,φ) are established for all 26 SSCCs of THF. Since all

internal coordinates of THF are described in the same way, the analysis of the SSCCs in terms of

geometrical parameters is straightforward. Also, SSCCs <nJ> averaged over the pseudorotational

mode so that they become directly comparable to measured SSCCs, have been calculated. Magni-

tude and sign of the <nJ> values agree well with the corresponding values found for cyclopentane

[12] provided the influence of the O atom is considered.

6) In Figure 6, those SSCCs are identified that strongly vary during pseudorotation. It has been

shown that in particular the vicinal SSCCs, if accurately measured, make it possible to exactly
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determine the conformation of the THF molecule in solution. A puckering amplitude of 0.352 Å

was determined in this way.

Work is in progress to develop a procedure that utilizes the Karplus relationships established

in this work to determine the conformation of substituted THF compounds with the help of

measured SSCCs. This method and the results summarized in this article provide an excellent

platform for analyzing the conformational behavior of biochemically interesting molecules such as

ribose, 2′-deoxyribose, proline, etc.
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