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Abstract: The high interest in the prediction of the intestinal absorption for New Chemical 
Entities (NCEs) is generated by the increasing rate in the synthesis of compounds by 
combinatorial chemistry and the extensive cost of the traditional evaluation methods. 
Quantitative Structure–Permeability Relationships (QSPerR) of the intestinal permeability 
across the Caco-2 cells monolayer (PCaco-2) could be obtained by the application of new 
molecular descriptors. In this sense, quadratic indices of the “molecular pseudograph’s atom 
adjacency matrix” and multiple linear regression analysis were used to obtain good 
quantitative models to determine the PCaco-2. QSPerR models found are significant from a 
statistical point of view. The total and local quadratic indices were calculated with the 
TOMO-COMD software. A leave-one-out cross-validation procedure (internal validation) 
and the evaluation of external test set of 20 drugs (external validation) revealed that 
regression models had a good predictive power. A comparison with results derived from 
other theoretical studies shown a quite satisfactory behavior of the present method. The 
descriptors included in the prediction models permitted the interpretation in structural terms 
of the permeability process, evidencing the main role of H-bonding and size properties. The 
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models found were used in virtual screening of drug intestinal permeability and a 
relationship between PCaco-2 calculated and percentage of human intestinal absorption for the 
72 compounds was established. These results suggest that the proposed method is able to 
predict PCaco-2, being a good tool for screening of PCaco-2 for large sets of NCEs synthesized 
via combinatorial chemistry approach.  

Keywords: Drug Absorption; Caco-2 cell, TOMO-COMD Software, Quadratic Indices, 
QSPerR. 

 

Introduction 

The oral administration is one of the most important routes due to its convenience, low cost and 
high patient compliance rates. The prediction of human oral drug absorption for new drug candidates is 
of considerable utility in the early stage of drug discovery process [1, 2]. As a rapid way to predict the 
human intestinal absorption during the high throughput screening (HTS) [3], many in vitro cell culture 
models, has been investigated as potential tool for drug absorption and metabolism studies [4-5]. The 
most widely used in vitro model is a Caco-2 cell line. The permeability coefficient across Caco-2 cell 
monolayer (Pcaco-2) has been used to estimate oral absorption of New Chemical Entities (NCEs) [6-9]. 
Artursson and Karlsson have obtained a good correlation between human oral drug absorption and 
permeability coefficient, determined through the Caco-2 cell monolayer, which suggest that the human 
absorption can be predicted by this in vitro model [7]. However, inter-laboratory differences of Caco-2 
cell permeability have been demonstrated by several researchers [10, 11].  

The wide use of Caco-2 cell screening for oral absorption is based on the biological membrane 
properties expressed by these cells, such as: the brush borders at their apical surface and the expression 
of carrier-mediated transport systems and typical small intestinal enzymes [5-7, 12]. These properties 
permit the use of this cell culture for understanding the mechanism of cellular permeability and 
identify which of the drug’s properties are responsible for cellular permeation. Nevertheless, this cell 
line presents several disadvantages including: a) the permeability of compounds that are transported 
via carrier-mediated absorption is lower than obtained in the human small intestine. Besides, the 
hydrophilic compounds with paracellular transport have a poor permeability [10], b) Globet, endocrine 
and M cells are not expressed in this cell lines, c) the cancer origin of this cell line produce and 
overexpression of P-glycoprotein with the consequently lower permeabilities in the absorptive 
direction [13], d) the lack of standardization in cell culture and experimental procedures and e) the 
long culture periods (21-24 day culture times), being the last one the major practical shortcoming of 
this approximation, with consequently extensive cost.    

Several molecular interactions have been proposed to explain the oral absorption for a great 
diversity of substrates. The lipophilicity, among these interactions, is considered as the most 
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significant driving forces for permeability through Caco-2 monolayer cell cultures [6, 8, 14, 15] 
besides the role of hydrogen bonding capacity or the molecule net charge [2, 4, 8, 14]. Waterbeemd et 
al. have proposed a function, where these interactions are considered [14]:  

 
               Permeability= f (lipophilicity, molecular size, H-bonding capacity, charge)                   (1) 
 

where, for each property there are limited ranges as have been established in the Rule- of- 5 [1], but 
none of them are independent [16]. 

At present, is known that theoretical approach appears to be a good alternative for “in silico” 
prediction of human absorption for NCEs obtained by combinatorial chemistry methodologies [17-25]. 
The significant failure rate of drug candidates, in late stage of drug development, suggest the use of 
good predictive tools able to eliminate inappropriate compounds before substantial time and money are 
invested in testing [26].  

Several methods have been developed in order to explain the drug-membrane interactions and 
among them appear computational chemistry and QSAR/QSPR techniques such as: linear regression, 
[10, 14, 15, 27, 28] partial least square, [14] artificial neural networks [27] and no linear relationship 
[6, 8, 14]. In some of these papers traditional QSPR analysis were applied to derive quantitative 
relationships between the PCaco-2 and molecular structures. Some kinds of molecular descriptors have 
been introduced, including size and hydrogen-bonding descriptors [14], polar surface area (PSA) [10, 
29, 30], Molsurf-derived descriptors [31], MO-calculation [27] and membrane-interaction analysis 
[28]. These QSPR models have predicted the Caco-2 cell permeability with a reasonable accuracy, 
although the number of compounds used in the data sets is limited.  

Recently, several molecular descriptors based on the two–dimensional topological structure of 
molecules have been defined and tested in QSAR models [32-46]. In this sense, two of the present 
authors have developed a novel method called TOMO-COMD (acronym of TOpological MOlecular 
COMputer Design) [47]. It calculates several families of topologic molecular descriptors. One of these 
families has been defined as quadratic indices in analogy to the quadratic mathematical forms. Several 
works have been conducted with the use of these topological indices and they will be published 
elsewhere.  

The purpose of this study was to develop a quantitative model that permits the prediction of Caco-2 
cell permeability from the molecular structure using a combinatorial approach of quadratic indices and 
multiple linear regression method; in a second place, to compare the results obtained with other 
methodologies in order to assess it. Furtherly, to evaluate the relationships between the structures, 
expressed by the quadratic indices and the permeability coefficients of the data set split in anionic, 
neutral and cationic compounds. In addition, to corroborate the predictive power of the models found, 
using an external prediction set of 20 drugs and by a cross-validation procedure (leave-one-out) of the 
original data set. Finally, a virtual screening of drug intestinal permeability was carried out.  
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Materials and Methods 

Mathematical Definition of the Calculated Molecular Descriptors 
Molecular vector space  
Each element of the periodic table has inherent atomic properties, such as electronegativity, density, 

atomic radii and so on. Each one of these properties numerically characterizes each kind of atom 
taking values in the real set (ℜ ). For example, the Mulliken electronegativity (XA) [48] of the atom A 

take the values XH = 2.2 for Hydrogen, XC = 2.63 for Carbon, XN = 2.33 for Nitrogen, XO = 3.17 for 
Oxygen, XCl = 3.0 for Chlorine and so on.  

Let be a molecular vector whose elements are the atomic properties of the atoms in the molecule, 
for instance XA. Thus, a molecule having 2, 3, 4,…, n atoms can be “represented” by means of vectors, 
with 2, 3, 4,...., n components, belonging to the spaces ℜ 2, ℜ 3, ℜ 4,..., ℜ n, respectively. Where n is 

the dimension of these real subsets (ℜ n).  

This approach allows us to express compounds such as: benzene, cyclohexane, hexane and all the 
constitutional and geometric isomers of hexane through a general kind of vector X= (XC, XC, XC, XC, 
XC, XC). On the other hand, n-propanol, iso-propanol, propanal, and acetone may be represented by 
(XC, XC, XC, XO) or any permutation of the components of this vector. All these vectors belong to the 
products spaceℜ 6 and ℜ 4, respectively. It must be noted that the order of the vector components is 

meaningless here. This fact, not common in classical vector spaces, will be explained elsewhere. 
Besides, in this example were not considered the hydrogen atoms. 

 By taking into consideration all the universe of organic molecules, a molecular vector space (E) 
could be defined:  

E= ℜ ⊕ ℜ 2⊕ ℜ 3⊕ ...⊕ ℜ n=⊕
=

n

i 1
ℜ i                                                    (2) 

where, i=1, 2, 3,…n; ℜ k∩ ℜ l = {0}: k ≠ l and the dimension of E is the sum of the dimensions of 

each one of the ℜ i spaces. Therefore, this dimension is n(n+1)/2.  

This space includes all the possible molecules having n atoms as vectors of the ℜ n spaces. The 

present mathematical formalism makes possible to represent any drug or organic molecule into a 
vector space and then, to use the well-known applications of this algebraic construction to codify 
molecular structure in a timely but mathematically rigorous way. 

 
Total quadratic indices; [qk(x)] 
If a molecule is consists of n atoms (vector of ℜ n ) then the k-th quadratic indices qk(x) are defined 

like q application (q: ℜ n→ ℜ ) where X can be expressed by a linear combination with a base 

belonging to the vector sub-space ℜ n (X=x1a1+...+xnan, where (ai)1≤i≤n is a base of ℜ n). Taking into 

consideration the conditions mentioned above q is a quadratic form if Eq. 3 is considered. 
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where, aij = aji and n is the number of atoms of the molecule. The coefficients kaij are the elements aij of 

the k-th power of the matrix M of the molecular pseudograph (G). Then, M (G) = M = [aij], where n is 

the number of vertices and the elements aij are defined as follows:  

                                                 aij  = Pij if i≠j y ∃ ek ∈ E / ek ∼ vi,vj                                                                              (4) 

                                                      = Lii if i = j 
                                                      = 0 otherwise 

where, Pij is the number of edges that comply with ek ∼ vi,vj  among the vertices vi  y  vj. Lii  is the 

number of loops in vi.   
The elements aij (if aij= Pij) of this matrix represents the bonds between an atom “i” and other “j.” 

The matrix Mk provides the number of paths of length k that links the vertices vi and vj. For this reason 
each edge represents 2 electrons of the covalent bond between 2 atoms vi and vj, and it is appreciated in 
the M (k=1) matrix input that vij and vji is equal to 1. In this way, the benzene molecules can be 
represented for two different multigraphs, where each multigraph is related with one of the Kekulé 
structures. Taken into consideration that mentioned above, it is necessary the use of a pseudograph to 
avoid this situation in compounds with more than one canonical structure. It happened for substituted 

aromatic compounds such as pirydine, naphthalene, quinoline, etc., where the electrons of   PI(π)-

orbitals are represented as loops of all ring atoms. Aromatic rings with only one canonical structure, 
such as furan, thiophene, pyrrol etc. are represented like a multigraph. This explanation is represented, 
in an easy way, in Scheme 1 and in Table 1. As can be observed, for benzene molecule the total 
quadratic indices (without considering hydrogen atoms) calculated using the multigraph matrices 
(connectivity matrices) had the same values. However, single molecules like acetylsalicylic acid show 
differences in the total and local (heteroatoms and H-bonding heteroatoms) quadratic indices obtained 
from each multigraph (MKA and MKB). The representation numbers, like a multigraph, are higher 
when the number of rings with more than one canonical structure is increased. 

 

 
Scheme 1. Graphical representation of benzene and acetylsalicylic acid using “multigraph (MA and 
MB) and pseudograph (P)”. 
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Table 1. Total [q0(x)] and Local [Eq0(x) and Hq0(x)] Quadratic Indices Calculated for Multigraphs 
(MA, MB) and Pseudographs (P). 

Benzene 
 q0(x) q1(x) q2(x) q3(x) q4(x) q5(x) q6(x) q7(x) 

P 41.5014 124.5042 373.5126 1120.5378 3361.6134 10084.8402 30254.5206 90763.5618 
MA 41.5014 124.5042 373.5126 1120.5378 3361.6134 10084.8402 30254.5206 90763.5618 
MB 41.5014 124.5042 373.5126 1120.5378 3361.6134 10084.8402 30254.5206 90763.5618 

Acetylsalicylic acid 
Total 

 q0(x) q1(x) q2(x) q3(x) q4(x) q5(x) q6(x) q7(x) 
P 102.4477 268.8912 873.5982 2566.8034 8381.4114 25593.6122 83330.7872 260026.931 
MA 102.4477 268.8912 873.5982 2549.8376 8284.7898 25063.374 81351.7828 250745.988 
MB 102.4477 268.8912 873.5982 2566.5118 8389.425 25513.2092 83389.772 258104.308 

Local 

 Eq0(x) Eq1(x) Eq2(x) Eq3(x) Eq4(x) Eq5(x) Eq6(x) Eq7(x) 
P 40.1956 58.3597 265.963 510.2749 2171.4817 4947.1654 19328.9482 49869.8377 
MA 40.1956 58.3597 265.963 500.226 2133.2198 4618.7534 18773.2472 44486.7656 
MB 40.1956 58.3597 265.963 508.5631 2201.8503 4802.1696 19870.6695 47162.9747 

 Hq0(x) Hq1(x) Hq2(x) Hq3(x) Hq4(x) Hq5(x) Hq6(x) Hq7(x) 
P 4.84 6.974 10.626 33.682 67.54 270.578 670.604 2600.972 
MA 4.84 6.974 10.626 33.682 67.54 269.632 647.306 2589.686 
MB 4.84 6.974 10.626 33.682 67.54 271.766 653.092 2639.868 

 
 

On the other hand, we can obtain qk(x) by means of the matrix expression qk(x) =XtMkX (k≥10), 

being X the column vector of the coordinates in the base ai. In this case as we work with the canonical 
base, the coordinates of any vector X, coincide with the components of this vector. For that reason, 
such coordinates can be considered as weights of the vertices of the pseudograph, because the 
components of the vectors are values of some atomic property that characterizes each kind atom. In 
Table 2 the calculation of five quadratic indices for acetylsalicylic acid is exemplified. 

As can be seen in the Eq. 3 the products appear between each other, for even pairs, of the different 
coordinates of X, which gives it a quadratic aspect. As kaij = kaji (the matrix is symmetric) and xixj=xjxi, 
we can rewrite the qk(x) expression in the form:  

 

2

( , )

( ) 2k k
k ii i ij i j

i i j

q x a X a X X= +∑ ∑          (5) 

 

Local approach (local invariant) of the quadratic indices; [qkL(x)]  
In the case of the quadratic indices it is possible to define analogs to the total quadratic indices that 

possess similar properties and which are defined as local quadratic indices of the “molecular 
pseudograph’s atom adjacency matrix”. The definition of this descriptor (invariant theoretical-graph 
for a given fragment Fi within a specific pseudograph G) is the following: 
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Table 2. Definition and calculation of six (k=0-5) total quadratic indices of the “Molecular 
Pseudograph’s Atom Adjacency Matrix of the molecule of Acetylsalicylic Acid. 
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the molecule. So, if we use the canonic bases of R13, the 
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where m is the number of atoms of the fragment of interest and kaijL is the element of the file “i” and 
column “j” of the matrix Mk

L=Mk(G, Fi) [qkL(x) = qk(x, Fi)]. This matrix is extracted from the Mk 
matrix and it contains the information referred to the vertices of the specific fragments (Fi) and also of 
the molecular environment.  

The matrix Mk
L=[kaijL] and the elements kaijL is defined as follows:  

kaijL= kaij if both vi and vj are vertices contained in the specific fragment.                                         (7) 
       =1/2

 kaij if either vi or vj is contained in the specific fragment but not both at the same time 
       =0 otherwise 

being kaij the elements of the k-th power of M. These local analogs can also be expressed in matrix 
form by the expression:  

                                        qkL(x) =Xt Mk
L X: Mk

L:it is extract of the Mk                                                                 (8) 
As can be seen if a molecule is partitioned in Z molecular fragments, the matrix Mk can be 

partitioned in Z local matrices Mk
L, L=1,... Z. The k-th power of matrix M is exactly the sum of the k-

th power of the local Z matrixes:  

                                                                 Mk= k

L

Z

L

M∑
=1

                                                                      (9) 

or in the same way as Mk=[kaij] where:  

                                                                                                   kaij= ijL

Z

L

k a∑
=1

                                                                    (10) 

and the total quadratic indices is the sum in the quadratic indices of the Z fragments:  

                                                               qk(x)= )(
1

xq
Z

L
kL

e∑
=

                                                               (11) 

Any local quadratic index has a particular meaning, especially for the first values of k, where the 
information about the structure of the fragment Fi is contained. High values of k are in relation with the 
environment information of the fragment Fi considered inside the molecular pseudograph (G).  

In any case, whether a complete series of indices is considered, a specific characterization of the 
chemical structure is obtained (whole structure or fragment), which is not repeated in any other 
molecule. The generalization of the matrices and descriptors to “superior analogs” is necessary for the 
evaluation of situations where only one descriptor is unable to bring a good structural characterization 
[49]. These local indices can also be used together with total indices as variables of QSAR and QSPR 
models for properties or activities that depend more on a region or fragment than on the whole 
molecule. 

 
The TOMO-COMD Software 
The calculation of total and local quadratic indices for any organic molecule was implemented in 

the software TOMO-COMD [47]. This software has a graphical interface that becomes it user friendly 
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for medicinal chemists. The main steps to conducted for the application of this method to 
QSAR/QSPR can be briefly resumed as follows: 

1. Draw the molecular pseudographs for each molecule of the data set, using the software drawing 
mode. This procedure is carried out by a selection of the active atom symbol belonging to 
different groups of the periodic table. The multiples edges and loops are edited with a right 
mouse click, 

2. Use appropriated atom weights in order to differentiate the molecular atoms. In this work, we 
used as atomic property the electronegativity of Mulliken [48] for each kind atom, 

3. Compute the total and local quadratic indices of the molecular pseudograph’s atom adjacency 
matrix. They can be carried out in the software calculation mode, which you can select the 
atomic properties and the family descriptor previously to calculate the molecular indices. This 
software generate a table in which the rows correspond to the compounds and columns 
correspond to the total and local quadratic indices or any others family molecular descriptors 
implemented in this program, 

4. Find a QSPR/QSAR equation by using statistical techniques, such as multilinear regression 
analysis (MRA), Neural networks, linear discrimination analysis, and so on. That is to say, we 
can find a quantitative relation between a property P and the quadratic indices having, for 
instance, the following appearance:  
                                   P=a0q0(x)  + a1q1(x) + a2q2(x) +….+ akqk(x) + c                                   (12) 
where P is the measurement of the property, qk(x) [or qkL(x)] is the kth total [or local] quadratic 
indices, an the ak’s are the coefficients obtained by the linear regression analysis. 

5. Test the robustness and predictive power of the QSPR/QSAR equation by using internal and 
external cross-validation techniques, 

6. Develop a structural interpretation of obtained QSAR/QSPR model using quadratic indices as 
molecular descriptors.  

The descriptors found in the whole models obtained were the following: 
(1) qk(x) and qk

H(x) are the k-th total quadratic  indices calculated using the k-th power of the 
matrices [Mk(G)]  of the molecular pseudograph (G) considering and not considering hydrogen atoms, 
respectively.  

(2) EqkL(x) [or EqkL
H(x)] and H qkk(x) are the k-th local quadratic  indices calculated using a k-th 

power of the local matrices [Mk
L(G, Fi)] of the molecular pseudograph (G) not considering (or 

considering) hydrogen atoms for heteroatoms (S,N,O) and hydrogen bonding heteroatoms (S,N,O), 
respectively. 

 
Caco-2 Cell Permeation Coefficients 
The 17 structurally diverse compounds used in the present study were taken from the literature [14]. 

The experimental values of Log PCaco-2 (AP→BL) are illustrated in Table 3. The data set used for ‘in 
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silico’ permeability studies included compounds with a diverse molecular weight and their net charge 
is variable at pH 7.4 [14]. 

 
Statistical Analysis 
The statistical analyses were carried out with the software STATISTICA [50]. The linear multiple 

regression analysis (LMR) was used to obtain quantitative models between structure and Caco-2 cell 
permeability coefficients. The quality of the models was determined examining the statistics parameter 
of multivariable comparison of the regression and the cross-validation (leave-one-out) procedures. In 
addition, to assess the predictive power of the model an external prediction set of 20 drugs was used 
[8]. 

 

Results and Discussion 

Quantitative Structure Permeability Relationships 
In order to test the applicability of quadratic indices on structure-permeability correlations and with 

the aim of predicting the Caco-2 cell permeability, 17 diverse structurally drugs were selected. Two 

quantitative models were developed. The values of Log PCaco-2 (AP→BL) were described by 

multivariate linear regression analysis using a stepwise procedure. The best models obtained together 
with its statistical parameters are given below: 

 

                Log Pcaco-2 =-4.61426 (± 0.486)-0.00245(± 0.301x10-3)..Hq5L(x) 
                                                                         +0.004175 (± 1.618x10-3).q0

H(x)                             (13) 
          N=17    R=0.93    RCV= 0.86   s=0.43    RMSECV=0.52    F(2,14)= 39.968      p<0.0000 
                   Log Pcaco-2 = -3.16658 (± 0.194)-0.00291(± 0.238x10-4)..Hq5L(x)                                (14) 
          N=16    R=0.96    RCV=0.93    s=0.32    RMSECV=0.35     F(1,14)=149.45      p<0.0000 
 

where, R is the multiple regression coefficient,  RCV is the  regression coefficient for the leave-one-out 
cross-validation procedure, s the standard error of estimated, RMSECV is the root of the mean square 
error of the cross-validation, F is the Fisher ratio at the 95% confidence level and p-value is the 
significance level. This regression models are significant at p-value < 0.001 using the F statistics. The 
p-value is the observed significance probability of obtaining a greater F value by chance alone if a 
model fits no better than the over-all response mean.  

In the Table 3 are depicted the values of experimental and calculated permeability coefficients for 
data set (both models), and in Figure 1 and 2 are illustrated the linear relationships between them. In 

the development of the first quantitative model for description of Log PCaco-2 (AP→BL) (Eq. 13), the 

acetylsalicylic acid was detected as statistical outliers. Outliers detection was carried out using the 
following standard statistical test: residual, standardized residuals, studentized residual and Cooks’ 
distance [51].   Once  rejected the  statistical  outlier,  the Eq. 14  was  obtained  with  better  statistical  
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Table 3. Experimental and calculated values for Caco-2 cell permeability coefficients by equations 13 
and 14. 
Compounds* Obs.a Cal.b Res.c CV-resd Cal.e Res.c CV-resd q0

H(x)f Hq5L(x)g 

Training set 
Alprenolol -4.378 -4.795 0.417 0.458 -4.550 0.172 0.191 235.7602 475.2 
Testosterone -4.286 -3.973 -0.313 -0.384 -3.829 -0.457 -0.574 287.0389 227.458
Metoprolol -4.569 -4.675 0.106 0.116 -4.550 -0.019 -0.021 264.4829 475.2 
Salicylic acid -4.924 -5.598 0.674 1.028 -4.868 -0.056 -0.061 107.605 584.386
Propranol -4.378 -4.905 0.527 0.572 -4.691 0.313 0.343 237.8371 523.732
Corticosterone -4.263 -4.185 -0.078 -0.096 -4.297 0.034 0.039 330.6505 388.212
Warfarin -4.417 -4.437 0.020 0.023 -4.191 -0.226 -0.264 249.0567 351.758
Hydrocortisone -4.668 -4.830 0.162 0.199 -5.112 0.444 0.475 340.6994 668.118
Dexamethasone -4.903 -4.793 -0.110 -0.144 -5.154 0.251 0.268 358.0644 682.638
Acetylsalicilic 
acid* -5.62 -4.688 -0.932 -1.409 - - - 141.1677 270.578
Atenolol -6.7 -6.076 -0.624 -0.693 -6.089 -0.611 -0.678 239.4811 1003.904
Terbutaline -6.42 -6.641 0.221 0.268 -6.535 0.115 0.136 193.9415 1156.98
Mannitol -6.744 -6.693 -0.051 -0.064 -6.476 -0.269 -0.315 169.5548 1136.696
Sulphasalasine -6.886 -6.936 0.050 0.073 -7.262 0.376 0.536 270.0324 1406.702
Practolol -6.046 -6.073 0.027 0.030 -6.086 0.040 0.045 239.4811 1002.892
Olsalazine -6.959 -6.577 -0.382 -0.457 -6.569 -0.390 -0.464 216.3878 1168.772
Felodipine -4.644 -4.929 0.285 0.310 -4.929 0.285 0.307 280.0887 605.462

External test set 
Compounds Obs.h Cal.b Res.c  Cal.e Res.c  q0

H(x)f Hq5L(x)g

Cumarin -4.11 -4.149 0.039  -3.167 -0.943  111.3899 0 
Theophyline -4.35 -5.328 0.978  -4.653 0.303  128.9517 510.576
Epinephrine -6.02 -6.699 0.679  -6.438 0.418  160.7477 1123.914
Guanoxan* -4.71 -6.876 2.166  -6.687 1.977  168.4735 1209.406
Guanabenz* -4.14 -7.011 2.871  -6.675 2.535  133.7708 1205.226
Lidocaine -4.21 -5.081 0.871  -4.832 0.622  224.2233 572.088
Tiacrilast -4.90 -4.482 -0.418  -3.894 -1.006  178.2154 249.766
Imipramine -4.26 -3.535 -0.725  -3.167 -1.093  258.4389 0 
Furosemide -6.09 -8.424 2.334  -8.741 2.651  212.1532 1914.814
Sulpiride -6.16 -7.328 1.168  -7.763 1.603  277.3639 1578.896
Nitrendipine -4.77 -4.850 0.080  -4.873 0.103  287.6154 586.102
Fleroxacin -4.81 -4.055 -0.755  -3.951 -0.859  292.165 269.5 
Diltiazem -4.31 -3.236 -1.074  -3.167 -1.143  330.0333 0 
Verapamil -4.58 -2.853 -1.727  -3.167 -1.413  421.7297 0 
Mibefradil -4.87 -4.150 -0.720  -4.828 -0.042  446.2316 570.702
Bosentan -5.98 -5.270 -0.710  -6.029 0.049  420.3623 983.422
Proscillaridin* -6.20 -4.662 -1.538  -5.634 -0.566  486.3382 847.66 
Ceftriaxone -6.88 -7.368 0.488  -8.030 1.150  321.3851 1670.482
Remikiren -6.13 -6.651 0.521  -8.327 2.197  553.2348 1772.76
Squinavir -6.26 -8.734 2.474  -9.320 3.060  254.6519 2113.892
*Detected outlier. aPermeability (cm/s) througth cultured Caco-2 monolayers; from Ref. [14]. bCalculated with the equation 
13. cResidual, defined as Log PCaco-2.(obsd)- Log PCaco-2 (calc). dResidual of the Cross-Validation. eCalculated with the 
equation 14. fTotal quadratic indice of zero order, calculated considering atom hydrogen in the pseudograph. gLocal 
quadratic indice of five order, calculated considering atom hydrogen in the pseudograph. hPermeability (cm/s) througth 
cultured Caco-2 monolayers; from Ref. [8]. 
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Figure 1. Correlation between experimental and calculated (by Eq. 13) permeability coefficients Log 
PCaco-2 of 17 compounds of the data set. 
 
 
 
 

 
Figure 2. Correlation between experimental and calculated (by Eq. 14) permeability coefficients Log 
PCaco-2 of 16 compounds of the data set. 
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parameters. The outlier in linear model (Eq. 13; acetylsalicylic acid) has been detected as outliers in 
other work. In this sense, Waterbeemd et al. [14] developed relationship between permeability (in 
Caco-2) and several physicochemical properties such as lipophilicity, H-bonding capability, etc. 
Among the compounds used in this study, the acetylsalicylic acid was detected as outlier with diverges 
from the curve obtained for two properties above mentioned. The quadratic indices included in the Eq. 
13 have structural information of molecular features in relationship with lipophilicity and hydrogen-
bonding property. This can be explained the outlier behavior of the acetylsalicylic acid. Besides, 
outlier from linear relationship have been explained in terms of active transport, molecular size, 
diffusion limitation though aqueous stagnant layers at the membrane, or solubility of the drug that 
produced a sigmoid relationship [14].  

The correlation coefficient (R2), for equations 13 and 14 were 0.86 and 0.92 respectively, so these 
models explained the 86% and 92% of the variance for the experimental values of Log Caco-2 
permeability [52, 53]. 

Validation is a crucial aspect of any QSAR/QSPR modeling [54]. One of the most popular 
validation criteria is leave-one-out cross-validated R2 (LOO q2; internal validation). For this reason, in 
order to assess the predictability of the model found, a LOO q2 was carried out. This methodology 
systematically removed one data point at a time from the data set. A QSPerR model was then 
constructed on the basis of this reduced data set and subsequently used to predict the removed data 
point. This procedure was repeated until a complete set of predicted was obtained. Using this 
approach, the model 13 and 14 had a LOO q2 of 0.73 and a 0.88, respectively. These values of q2 
(q2>0.5) can be considered as a proof of the high predictive ability of the models. However, this 
assumption is generally incorrect and can be that exist the lack of the correlation between the high 
LOO q2 and the high predictive ability of QSAR/QSPR models has been established and corroborated 
recently [54]. Thus, the high value of LOO q2 appears to be the necessary but not the sufficient 
condition for the models to have a high predictive power. In this sense, Golbraikh and Tropsha [54] 
emphasize that the predictive ability of a QSAR/QSPR model can only be estimated using an external 
test set (external validation) of compounds that was not used for building the model and formulated a 
set of criteria for evaluation of predictive ability of QSAR/QSPR model. For this reason and as a 
second corroboration of the predictive power of the model, an external prediction set of 20 drugs was 
used. These compounds were also experimentally studied by Camenisch et al. [8]. The Caco-2 
experiment was designed based on the work of Artursson’s group [7], and with the objective of 
combine your data with previously measured compounds in order to obtain a large data set. The 
comparison of permeability in Caco-2 monolayers in these two different laboratories using the same 
experimental conditions, only Mannitol, shown inter-laboratory variations. As in the original paper, the 
compounds used by Waterbeemd et al. were taken from the same literature [7], we has selected the 
Caco-2 cell permeability coefficient data set development by Camenisch et al. [8] as one way to 
validate the predictive power of our models. The permeability coefficients of the drugs included in the 
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external test set were predicted with the same accuracy that compound in the data set, if taken into 
consideration that these compounds were study in a different laboratory. Considering the full set (data 
and test sets) the correlation coefficients were 0.80 (s=0.64) and 0.82 (s=0.56) for Eq. 13 and 14, 
respectively. As can be seen, in both series, the predictability and robustness of the theoretical model 
was demonstrated. From the full data set only 3 compounds were outliers for both equations.  

Waterbeemd et al. obtained, for this data set, a correlation coefficient (R2) of 0.77 (s = 0.52) where 
two components principal, as variables in linear regression models, were used [14]. In this study, a 
principal component analysis, to visualize the relationships between the 26 descriptors, was developed. 
The three principal components used in the regression analysis explained 86.9% of the variance. The 
first component (43.4%) contains information about the H-bonding potential and the second one 
(34.2%) encodes for molecular size. This correlation coincides with the current paradigm of structure-
permeability expressed in Eq. 1. Besides, these authors using a representative set of molecular weight 
and various H-bonding descriptors obtained 12 models applying MLR and one equation using a PLS 
analysis. The QSPR models developed for 17 compounds had a correlation coefficient less than 0.89. 
In our approach, if the statistical parameters are considered, the obtained model appears to be better 
than previously reported [14].  

Other researchers have explored QSPerR involving Caco-2 cell permeability. For example, 
correlation coefficients of 0.74 and 0.76 have been obtained, considering quadratic and interactive 
terms [27]. In the previous paper, these authors obtained a regression coefficient of 0.79 using neural 
network. In other published work, Ren and Lien [15] developed a QSAR analysis for a data set of 51 
compounds, where an adequate regression coefficient value, was obtained (0.79). Finally, a recently 
study about prediction of Caco-2 cell permeation coefficients was carried out by Kulkarni et al. [28] 
where 6 predictive models were obtained using Multidimensional Linear Regression (MLR) and the R 
values were between 0.86 and 0.92, but in this case only 74% from the original data set [6] was 
selected. 

In order to understand the individual contribution of several properties and thus their effect on 
permeation, the compounds were considered separately according their net charge. As can be seen in 
equation 1 the charge of molecules has a special effect on the drug permeability, which is in relation 
with the negative charge of the biological membrane [55]. In the obtained models (Eq. 13 and 14) 
although there is not a specific variable for heteroatoms, the charge effect on lipophilicity of the 
compounds is already taken into account by the use of included descriptors (Hq5L(x) and q0

H(x)). 
However, when the whole data set was correlationed with the quadratic indices calculated (Eq0L(x)), 
over heteroatoms (O, N, S), the correlation coefficient was 0.546 (data not shown), which indicate the 
influence of this indices to describe the charge effect over the permeability. 

When 17 compounds were divided into three subsets, namely anionic, neutral and cationic 
compounds, the following equations were obtained: 

                      Log Pcaco-2 (Anionic) =-3.21294 (± 0.722)-0.049911(± 0.013).Eq0L(x)                           (15) 
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                               N=5    R=0.91     F(1, 3)= 14.079    s=0.55           p<0.0000 
                     Log Pcaco-2 (Neutral) =-3.32888 (± 0.289)-0.00773 (± 1.257x10-3).Hq4L(x)                     (16) 
                               N=6    R=0.95     F(1, 4)= 37.784    s=0.32           p<0.0000 
                    Log Pcaco-2 (Cationic) =-2.10671(± 0.199)-0.03143 (± 1.812x10-3).Hq3L(x)                      (17) 
                               N=6    R=0.99     F(1, 4)= 300.81    s=0.14          p<0.0000 
Observed and calculated values of log PCaco-2 as well as the residuals and cross-validation residuals 

for permeability in Caco-2 cell are given in Table 4. In the same Table, are depicted the values of local 
quadratic indices included as variables in the models. 

These models explained more than 82, 90 and 98% (R2=0.824, 0.904 and 0.986) of the variance in 
the experimental values of permeability coefficient for anionic, neutral and cationic compounds, 
respectively.  

 
 

Table 4. Experimental and calculated values for the Log Caco-2 cell permeability coefficients of 
anionic, neutral and cationic compounds by equation 15, 16 and 17 respectively. 

Compounds Obs. Cal. Res. CV-res Eq0L(x) Hq3L(x) Hq4L(x) 
Anionic compounds (-) 

Salicylic acid -4.924 -4.693 -0.231 -0.431 30.1467 64.988 158.466 
Warfarin -4.417 -5.187 0.770 1.064 40.1956 31.306 90.684 
Acetylsalicylic acid -5.62 -5.187 -0.433 -0.599 40.1956 33.682 67.54 
Sulphasalazine -6.886 -7.032 0.146 0.343 77.7682 130.746 332.046 
Olsalazine -6.959 -6.707 -0.252 -0.425 71.1512 129.976 316.932 

Neutral compounds (0) 
Testosterone -4.286 -3.881 -0.405 -0.727 20.0978 30.36 71.434 
Corticosterone -4.263 -4.325 0.062 0.084 40.1956 59.774 128.832 
Hydrocortisone -4.668 -5.030 0.362 0.436 50.2445 91.08 220 
Dexamethasone -4.903 -5.066 0.163 0.197 65.5326 91.08 224.708 
Mannitol -6.7445 -6.466 -0.278 -1.281 60.2934 180.268 405.768 
Felodipine -4.644 -4.739 0.095 0.116 63.6245 50.094 182.424 

      Cationic compounds (+) 
Alprenol -4.378 -4.394 0.016 0.024 25.5267 72.776 190.036 
Metoprol -4.569 -4.394 -0.175 -0.267 35.5756 72.776 190.036 
Propranol -4.378 -4.546 0.168 0.239 25.5267 77.616 200.662 
Atenolol -6.7 -6.601 -0.099 -0.167 41.0045 143 371.624 
Terbutaline -6.42 -6.514 0.094 0.149 35.5756 140.228 381.326 
Practolol -6.046 -6.043 -0.003 -0.004 41.0045 125.246 349.602 
 

 
 
Interpretation of QSPerR Models 
For a better statistical interpretation of the models built, where inter-related indices are considered 

(such as topological indices or topologic and topographic indices based on the same graph-theoretical 
invariant), the inclusion in the model of strongly interrelated variables should be avoided. It is 
necessary to consider the above-mentioned criterion because of the interrelation among different 
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descriptors produce a highly unstable regression coefficients and makes difficult to know the real 
contribution of each variable included in the model [52]. For this reason, an interrelation study 
between the quadratic indices used in the equation 13 was carried out. In the Table 5, the correlation 
matrix for this equation shows that there is not collinearity among these variables. In the same Table 
other useful parameters to detect the existence of multicollinear variables (partial correlation and 
tolerance) are depicted. In this sense, the tolerance represents the unexplained variability for the other 
variables and the partial correlation coefficient explain the correlation between the property and a 
specific variable when the linear effects of other independent variables have been eliminated. From the 
Eq. 14 to 17 the tolerance value is 1 and the partial correlation coincides with the correlation 
coefficient. 

At present, it is known the absorption is influenced by a different kind of interactions. In the 
equation 1 the permeability is represented like function of several interaction properties. However, 
Waterbeemd et al. expressed that charge is included in lipophilicity when distribution coefficient (Log 
D) instead of partition coefficient (Log P) is used; also the molecular size and H-bonding are 
components of lipophilicity. Thus, these authors also wrote this relationship as: [14] 

 

                             Permeability = f (molecular size, H-bonding capacity)                                      (18) 
 

As can be observed in the regression models, the included variables are related with the factors that 
influence on the permeability values and these one with the structural features of molecules. For 
example, in the equations 13, the variables H q5L(x) and q0

H(x) are in relation with the hydrogen atoms 
as donors and with the molecular weight (size of molecules), respectively. Both variables are identified 
with the paradigm of structure-permeability relationship (Eq.1 and 18). Besides, this result coincides 
with the information contained in the two principal components using by Waterbeemd et al.  (Eq.4, 
ref.14). The coefficient of the “protonic” variable in the equation 13 is negative, which is a logical 
result due to when the number of the hydrogen atom bonding to heteroatoms in the molecules is 
increased then the permeability across the biological membrane decrease. This effect is also related 
with the decreasing of molecules lipophilicity and the possibility of ionization and to obtain a charge.  
 
 
Table 5. The squared correlation matrix and several parameters of the quadratic indices used in the 
regression analysis (Eq. 13) for 17 compounds. 
 Tolerance Corr. Partial 

Heq5L(x) 0.981901 -0.90851 
eq0

H(x) 0.981901 0.56783 
 Correlation Matrix 
 Heq5L(x) eq0

H(x) 
Heq5L(x) 1 0.134534 
eq0

H(x) 0.134534 1 
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On the other hand, the q0
H(x), with a positive contribution, is related with the possible effect of this 

variable on lipophilicity of compounds. That is to say, transcellular lipid permeation depends both on 
molecular size via lipophilicity and the diffusion coefficient through the membrane, while paracellular 
pore permeation depends on molecular size via the sieving effect and on diffusion in water. In the 
equation 14, only was included as variable the H-bonding capacity and in this case the model shown a 
better description that obtained in the Eq. 13. This result coincides with described by Waterbeemd et 
al. [16], due to the variable Hq5L(x)  take into consideration not only the hydrogen atoms bond to 
heteroatoms but also the molecular environment, being this variable the better choice to describe the 
physicochemical space defined by the combination of molecular weight and H-bonding capacity.   

The results obtained in the equations 15, 16 and 17 evidenced the role of total H-bonding capacity 
(in Eq. 15 as acceptor and in Eq. 16, 17 as a donor of hydrogen atoms). The negative contribution of 
the included variables may result in less membrane permeability. However, oral absorption will 
nevertheless be limited because of the high H-bonding capacity. 

 
Virtual Screening and relationship of human intestinal absorption and Caco-2 cell permeability 
The virtual screening has emerged as an interesting alternative to the screening of large database in 

order to find a set of potential new drug candidates [56-58]. In the present study we simulated a virtual 
search of PCaco-2 values by using the regression equations (Eq. 13 and 14) obtained. In Table 6, the 
Caco-2 cell permeability data for 72 structurally diverse compounds, obtained from different source (2, 
7, 24-29) and the evaluation results of these compounds, are summarized.  

As can be seen in the Table 6, existing significant variability in PCaco-2 experimental values obtained 
from two or more source. The differences in the permeability coefficients reported from various 
laboratories might be due to variations in cell culture conditions such as passage number, type of 
medium, day in culture, as well as the experimental conditions used for their measurement. Taken into 
consideration the inter-laboratories variability, most of 72 compounds evaluated are predicted 
adequately using the models obtained. It is obvious that from these results the quality of the predictions 
corroborates the predictive power of the models found and justified their use in the prediction of this 
important property. Besides, the ‘in silico’ estimated intestinal permeability could be used as a 
predictor of the true fraction of the drug absorbed (Fa) using the theoretical relationship described by 
Amidon et al. [59]: 

                                                       Fa=(1-e-Apeff x10-6)100[%]                                                           (19) 
In these sense, the literature analysis demonstrates that the range selection for permeability 

coefficient in Caco-2 cells is a bottleneck whether a correlation with the human absorption is searched. 
Several classifications methods have been described in the literature [6, 60-62], where the inter-
laboratory and experimental variability is considered. Nevertheless, if all the approaches reported in 
the literature are analyzed, we can state that a value of permeability coefficient greater than 10x10-6 

cm/s will classify well-absorption compounds (70-100%).    A second group (PCaco-2<10x10-6 cm/s),  
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Table 6. Caco–2 cell permeability coefficients calculated using Eq. 13 or 14; percent absorption in 
human and observed Caco–2 cells permeability coefficients from the different reports. 

Compounds Cal. Obs.c % Absorbed Ref. Hq5L(x) q0
H(x) 

Acebutolol 0.53a 0.51 90 6 1067.836 311.0776 
Acetylsalicylic acid 20.50b 30.67 68 62 270.578 141.1677 
  9.09 100 6   
  2.40 100 7   
Alprenolol 28.19a 40.50 93 7 475.2 235.7602 
  25.30 93 6   
Aminopyrine 163.99b 36.50 100 6 0 198.5353 
Atenolol 0.84b 4.00 50 60 1003.904 239.4811 
  1.16 40-70, 50 63   
  0.53 50 6   
  0.20 50 7   
  0.13 40 64   
Penicilin G  5.40b 1.96 30 62 700.128 254.6519 
Caffeine 98.53b 84.29 100 63 0 145.5486 
  50.50 100 62   
  30.80 100 6   
  21.40 100 60   
Chloramphenicol  2.49a 20.60 90 62 837.386 213.2682 
Cimetidine 0.12b 3.06 62 62 1251.47 184.9905 
  1.37 95 6   
Clonidine 3.13a 30.10 95 62 803.264 140.0988 
  21.80 100 6   
Corticosterone 50.50a 21.20 100 6 388.212 330.6505 
Desipramine 48.65b 24.40 95 6 288.97 241.842 
  21.60 100 62   
Dexamethasone 16.11b 23.40 92 62 682.638 358.0644 
  12.50 100 7   
  12.20 100 6   
Diazepam 172.00b 70.97 100 62 0 203.4971 
  33.40 100 6   
Felodipine 11.77b 22.70 100 7 605.462 280.0887 
Fluconazole 46.07b 29.80 100 62 263.45 221.1982 
Ganciclovir 0.07b 2.67 8 61 1361.932 192.5122 
  0.38 3 6   
Hydrocortisone 14.80b 44.67 95 65 668.118 340.6994 
  35.40 80 61   
  21.50 89 7   
  14.00 89 6   
  12.19 80, 89, 95 63   
Ibuprofen 39.41b 52.50 100 62 250.14 197.1375 
Imipramine 291.70b 14.10 100 62 0 258.4389 
Indomethacin 80.96b 20.40 100 6 235.62 263.4856 
Labetalol 0.08b 9.31 90 6 1494.878 288.5856 
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Table 6. Cont. 
Compounds Cal. Obs.c % Absorbed Ref. Hq5L(x) q0

H(x) 

Mannitol 0.33a 3.23 17 61 1136.696 169.5548 
  1.17 5, 16, 17 63   
  0.83 5 65   
  0.65 16 62   
  0.50 16 60   
  0.38 16 6   
  0.18 16 7   
Meloxicam 2.34a 19.50 90 6 846.714 227.8551 
Metoprolol 21.13b 27.00 95 7 475.2 264.4829 
  23.70 95 6   
  18.00 95 63   
Nadolol 2.37b 4.50 35 60 904.75 289.0518 
Noloxone 13.21b 28.20 91 62 582.604 278.6856 
Naproxen 38.51b 74.17 100 61 250.14 194.7433 
Nevirapine 12.27a 30.10 90 6 599.236 203.278 
Nicotine 100.67b 19.40 100 6 0 147.7868 
Phenytoin 0.61a 89.83 100 65 1046.672 192.7891 
  26.70 90 6   
Pindolol 0.46b 16.70 95 6 1085.788 224.5922 
Piroxicam 1.44b 35.60 100 6 890.208 228.9639 
Practolol 0.84b 0.90 100 7 1002.892 239.4811 
Progesterone 481.44b 78.93 100 61 0 310.5527 
Propranolol 20.36a 41.90 90 7 523.732 237.8371 
  34.43 90 63   
  27.50 90 62   
  21.80 90 6   
  14.80 90 60   
Salicylic acid 13.56a 41.90 100 60 584.386 107.605 
  22.00 100 6   
  11.90 100 7   
Sucrose 0.07b 0.71 42 63 1557.072 300.0207 
Sumatriptan 0.24b 3.00 55 62 1225.466 240.6692 
Telmisartan 112.00a 15.10 90 6 269.39 415.2711 
Tenidap 17.85a 51.20 90 62 543.4 196.2092 
Terbutaline 0.29a 1.04 25-80, 73 63 1156.98 193.9415 
  0.47 73 6   
  0.38 73 7   
Testosterone 106.32b 72.27 100 62 227.458 287.0389 
  51.80 100 7   
  44.50 100 63   
  24.90 100 6   
Timolol 14.01b 12.80 72 6 546.766 263.7501 
Valproic acid 25.89b 48.00 100 62 249.194 152.873 
Warfarin 36.58b 38.30 98 7 351.758 249.0567 
  21.10 98 6   
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Table 6. Cont. 
Compounds Cal. Obs.c % Absorbed Ref. Hq5L(x) q0

H(x) 
Ziprasidone 15.53a 12.30 60 62 564.168 293.4675 
Cephalexin 0.23b 2.69 100 63 1261.81 255.2408 
  0.18 95 64   
  0.50 100 60   
L-Phenylalanine 6.23a 29.50 100 65 700.348 141.0188 
  6.91 100 63   
Antipyrine 107.98b 49.01 97 63 0 155.0726 
Guanabenz 0.21a 20.90 79 60 1205.226 133.7708 
Glycine 30.93a 80.00 100 62 461.362 63.5605 
D-Phe-L-Pro 5.62a 44.30 100 62 715.704 224.9611 
Gabapentin 5.17b 4.33 74 65 563.728 170.0588 
  1.50 36 65   
BVaraU 0.43a 4.00 82 60 1099.494 217.7747 
Pravastatin 2.19a 2.30 34 60 856.548 398.831 
Amoxicillin 0.06b 0.80 100 60 1534.962 274.9697 
  0.33 100 63   
SQ-29852 2.84a 0.02 60 60 817.476 374.5622 
Trovafloxacin 5.40b 30.23 88 62 783.772 303.8246 
Scopolamine 94.77b 11.80 100 6 181.786 248.2549 
Ziduvudine 0.00b 6.93 100 6 1937.496 204.2691 
Taurocholic acid 0.43b 4.02 100 63 1499.63 459.8587 
Acyclovir 0.25a 2.00 30 62 1179.332 165.8664 
  0.25 20 6   
Methotrexate 0.00b 1.20 20 62 2153.426 338.4937 
Glutamine 0.19a 0.85 60-90 63 1221.484 123.989 
Enaprilate 9.42a 0.62 10 63 638.748 330.1203 
Hidrochlorothiazide 0.00b 0.51 90 6 2336.84 164.2368 
Ranitidine 2.65b 0.49 50 6 824.978 254.0701 
Sulphasalazine 0.12b 0.30 13 6 1406.702 270.0324 
  0.13 13 7   
Doxorubicin 0.08b 0.16 5 62 1761.694 433.4031 
Olsalazine 0.27b 0.11 2 7 1168.772 216.3878 
Lisinopril 0.14a 0.05 25 60 1271.886 356.9861 
a Pcaco-2 x 10-6 (cm/s) calculated from Eq. 13; b Pcaco-2 x 10-6 (cm/s) calculated from Eq. 14; c Pcaco-2 x 10-6 (cm/s) from several 
references (see Ref. columns). 
 
 
with moderate-poor absorption can be considered, although in this range a high variability is 
appreciated when the human oral absorption is predicted from the PCaco-2 values. From a practical 
perspective the established boundary assure that classified compounds have a good absorption profile. 
However, the general form, when the absorbed dose fraction, from human studies, is compared with 

the predictive P(AP→BL) Caco-2 cell, a good relation between the theoretical and observed values is 

obtained. The following Table 6 demonstrates this relation for the compounds used in the study. 
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Conclusions 

The total and local quadratic indices appear to be a very promising structural invariant. Using these 
molecular indices and multiple regressions, two QSPerR models were obtained for the description and 

determination of AP→BL transportation across monolayer of intestinal epithelial (Caco-2) cell. The 

results derived from the comparison with other theoretical studies shown a quite satisfactory behavior 
of the proposed method. The statistical quality of the models was demonstrated by evaluation of the 
statistical parameter of regression and those obtained by the cross-validation procedure. Besides, a test 
set of 20 drugs also assessed the predictive power of these models. Furthermore, this approximation 
permits us to obtain significant interpretation of the experimental results in terms of the structural 
features of molecules. This molecular descriptor is suitable for screening and a priori determination, 
during the early drug discovery, of cellular permeability coefficient for large sets of new chemical 
entities synthesized via combinatorial chemistry approach.  
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