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Abstract: Assuming the in vitro conditions for the enzyme-catalyzed reactions, the basic 

Michaelis-Menten description is modified in a logistic (mathematical) manner such that the 

inherent limitations that appear in the previous method are removed. Beside its generality, 

the reliability of the present approach is proved through applications on the competitive 

multi- and bi- substrate enzyme catalyses. 
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1. Introduction 

According to Charles Darwin’s famous paradigm of evolution, the principle of natural selection 

prescribes “the survival of the fittest” [1].  

With the advent of the general theory of models in biology [2], as genomic, proteomic, and 

metabolomic scales are approached, the fitting concept resembles the equation of the net production of 

the species “i” [3]: 

( )iiii aXfX
dt

d
,][][ =  , (1) 
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whose solution, i.e. the time-dependent concentrations [X] i=[X] i(t), depends on the particular 

parameters ai specific for the particular processes considered.  

However, even displaying the temporal character, the master equation (1) differs at the micro-scale 

from the consecrated Hamilton-Jacobi ( dtSSH HH /−∂=
∧

) or Schrödinger ( dtiH HH /ψψ ∂=
∧

h ) ones 

that drive the atomic and molecular quantum evolutions. While the equations of quantum mechanics 

pose the feature of being linear to superposition [4], the function fi in (1) has to be non-linear in 

variable [X] i due to the complexity of the structure of the bio-systems and of the biochemical kinetics.  

Still, a mechanistic study of a biochemical network can be performed by a two-folded analysis.  

First, a “wiring diagram” of intermediates is proposed and then, by considering the individual 

interactions, a certain kinetic model is proposed [3].  

With these principles, the most elementary biochemical model can be understood in the world of the 

almost mystic field of enzymatic reactions – notoriously complex in mechanism and kinetics. It is well 

known that the rate of an enzyme-catalyzed reaction in which a substrate S is converted into product P 

is found to depend on the concentration of enzyme E even though the enzyme undergoes no net change 

[5]. As a mechanism, it is assumed that the substrate enzyme forms an intermediate ES, with the rates 

k1 and k–1, which then irreversibly breaks down into the product and the enzyme [6-9]: 

PEESSE
kk

k
+→↔+

−

21

1
 (2) 

So far, kinetic studies for the reaction in (2) have been conducted in the context (or with the help) of 

the Michaelis-Menten model, due to this model’s flexibility in characterizing complex mechanisms 

derived from this type of reaction. For instance, when an analogue substrate blocks the action of a 

specific enzyme the so-called inhibited reaction takes place, with a major function in chemotherapeutic 

trainings [10, 11]. On the other side, when an enzyme catalyzes the transfer of a specific functional 

group from one substrate to another in a many-substrate environment, the multiple alternative substrate 

type of reactions occur, highlighting the economical industrial synthesis of the enantiomerically pure 

compounds as well as the environmental issues [12]. Therefore, having a complete analytical picture of 

the elementary Michaelis-Menten reaction (2) becomes crucial in treating the more complex enzymic 

reactions derived from it.      

The mechanism (2) is solved when the involved concentrations, i.e. [E](t), [S](t), [ES](t), and [P](t),  

are analytically known from the nonlinear differential equations of type (1) [13, 14]. However, beyond 

approaching the progress curves of species in (2) through graphical methods [15] or by powerful 

computers [16], the analytical solutions have to be shaped in such a manner as to be further compatible 

with the temporal non-linear fitting when assaying experimental data [17-19].  

The present work proposes the way in which the basic Michaelis-Menten kinetics is modified under 

logistic form when in vitro conditions are assumed, i.e. when the reaction parameters (temperature, 

solvent, pH, etc.) are held constant, as it can often be assumed in the laboratory [18]. The proposed 

logistic ansatz is then applied to real enzymic systems governed by competitive alternative substrates 

[12], with a particular emphasis on inhibitive bi-substrate enzyme-catalyzed reactions [11]. This way, it 

follows that the present approach is a two-fold one viz. both through its logistic (mathematical) 

analysis and due to its applications to real systems.  
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2. Method 

When the law of mass action is considered for the reaction (2), the time evolution scheme can be 

draw as the system of the coupled nonlinear differential equations [20]: 

][]][[][ 11 ESkSEkS
dt

d
−+−=

 
(3a) 

( ) ][]][[][ 211 ESkkSEkE
dt

d ++−= −
 

(3b) 

( ) ][]][[][ 211 ESkkSEkES
dt

d +−= −
 

(3c) 

][][ 2 ESkP
dt

d =
 

(3d) 

with initial conditions ( ) ( )0,0],[],[][],[],[],[ 00 ESPESES =  at the time t=0. 

The set of equations (3) can be simplified in three steps.  

First, it can be seen that when the equations (3b) and (3c) are added, the conservation law for 

enzyme is obtained:  

][)]([)]([ 0EtEStE =+  (4a) 

while the combination of equations (3a), (3c) and (3d) leads to the conservation law for the substrate: 

][)]([)]([)]([ 0StPtEStS =++  (4b) 

With the help of identities (4), the system of differential equations (3) takes the reduced form: 

( ) ][][][][][ 101 ESkESESkS
dt

d
−+−−=

 
(5a) 

( ) ( ) ][][][][][ 2101 ESkkESESkES
dt

d +−−= −
 

(5b) 

in terms of  substrate and substrate enzyme concentrations only, [S] and [ES], respectively.   

Then, employing the in vitro conditions, the enzyme can always be saturated with the substrate, so 

that the quasi-steady-state (or equilibrium) approximation (QSSA) may apply to the intermediate 

formed complex in (2). It implies imposing on (5b) the mathematical constrain [14, 21, 22]: 

0][ ≅ES
dt

d

 
(6) 

yielding with its equivalent form: 

MKS

SE
ES

+
=

][

]][[
][ 0

  
(7) 

where the reaction parameter 

, 

, 
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1

21

k

kk
KM

+
= −

 
(8) 

is known as the Michaelis-Menten constant [9]. 

Now, plugging relation (7) into the equation (5a), we get the decoupled differential equation for the 

substrate consumption rate: 

MKS

SV
S

dt

d

+
−=

][

][
][ max

 
(9) 

where  

][ 02max EkV =  (10) 

has been set as the maximum velocity of reaction. 

At this point, the system (3) achieves its minimum dimension consisting in one equation for the 

substrate concentration. However, by combining the equations (3d) and (7), the velocity of the product 

formation also comes out,  

MKS

SV
P

dt

d
v

+
==

][

][
][ max

 
(11) 

as the famous Michaelis-Menten equation [8, 9].  

However, equation (11) reveals the first shortcoming of the Michaelis-Menten kinetic: when used 

without explicit temporal dependency of concentrations, it accounts only for the velocity of the initial 

instants of the reaction. In other words, the information outside the first moments of the progress curve 

[S](t) is virtually lost or neglected as long as its analytical form is not known for any moments of time 

[23, 24].  

Therefore, the necessity of a fully temporal analysis for the enzymatic processes stands as a natural 

imperative when further fitting with experiment is envisaged.  

The temporal problem is to formulate a viable analytical solution [S](t) for the differential equation 

(9). Once that has been done, the progress curves of the rest of species in (2) can be accordingly 

formulated employing the conservation laws (4) together with the relation (7) for the substrate enzyme 

complex.  

However, it is worth noting that, for the expression (7), a more general temporal formulation can be 

cast as [25]: 

( )[ ]{ } ∞<≤+−−
+

= tKStk
KS

SE
tES M

M

0,][exp1
][

]][[
)]([ 01

0

   
(12) 

becoming identically zero at initial time, t→0, and recovering the former expression (7) in the long 

range regime, t→∞, respectively.  

Going to analytically solve equation (9) it is firstly rearranged as  

dtVSd
S

KM
max][1

][
−=







 + ,   (13) 

and then integrated to give [26]: 

, 

, 
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]ln[][]ln[][ 0max0 SKtVSSKS MM +−=+ . (14) 

Unfortunately, the equation (14) shows another limitation of the Michaelis-Menten enzymic 

description. Having a transcendental form, equation (14) does not allow for explicitly writing the 

dependency [S](t). In these conditions, many biochemists prefer to rearrange equation (14) under a sort 

of double plot equation [27-29], for instance: 










−
+=

− )]([

][
ln

)]([][

11

)]([][
0

0maxmax0 tS

S

tSSV

K

VtSS

t M  , (15)  

from where an intercept of max/1 V  and a slope of max/VKM  provide the kinetic parameters maxV  and  

MK , respectively. Still, this approach has been criticized [5, 18], and it is worthwhile investigating 

whether the exact solution of (14) can be obtained for fitting a non-linear progress curve. 

In this respect, once the substitution 

( )
MK

S
S

][
][ =ϕ  (16) 

is performed in (14), it leads to the equivalent equation: 

( ) ( ) 







+−=+

MMM K

S

K

tV

K

S
SS

][
ln

][
][ln][ 0max0ϕϕ . (17) 

The closed-form solution of equation (17) was recognized by Schnell and Mendoza through the 

analogy with the famous Lambert type equation [30]: 

xxWxW ln)(ln)( =+ ,   e/1−≥x .  (18) 

By comparing equations (17) and (18), the formal temporal solution for the substrate concentration 

can be achieved as [5, 25]: 














=

−

MK

tVS

M
MW e

K

S
WKtS

max]0[

0 ][
)(][ . (19) 

With the W-Lambert dependence (19) of the kinetic solution of the reaction (2), we arrive at the 

mathematical disadvantages of the traditional Michaelis-Menten analysis. For example, it can return 

multiple values for the same argument or result in an infinitely iterated exponential function [31].    

The fundamental contribution of the present venture regards the discovery of the explicit time-

dependent solution of [S](t) under an elementary form so that it does not depend on other unknown 

function, as is the case of the W-Lambert related solution (19). However, the present attempt comes in 

middle of enmities regarding the admittance or not of the W-Lambert function as an elementary one, 

there being no analytical replacement available so far [31]. Aiming to find a suitable substitute for W-

Lambert solution (19), we found that the suggested associate logistic form [32], 

































−+=
−

MM K

tV

K

S

ML eeKtS

max0

11ln)(][

][

 ,  (20) 
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fulfils the main requirements of an enzymic kinetic through the limits: 





∞→
→

=
t

tS
tS L ,0

0],[
)(][ 0  (21) 

However, attempting for a closer comparison, the W-Lambert and the logistic progress curves of the 

substrate concentration, (19) and (20), are together plotted in Figure 1 under their scaled forms, 
]/[)(][ 0SS W τ  and ]/[)(][ 0SS L τ , against the scaled time [25]  

( ) 



∞→
→

=
+

−=
t

t

t ,1

0,0

eln

1
1τ  (22) 

for a working case in which the parametric values were chosen as  -12
21 s10==− kk , -1-16

1 sM10=k , 

while the initial conditions are set to M10][ 4
0

−=S  and M10][ 6
0

−=E , respectively.  As seen in Figure 

1, the qualitative and quantitative behaviors of the substrate concentration in both W-Lambert and 

logistic cases are striking similar.    

   

 

Figure 1. Time-dependent behavior of the substrate scaled concentration for the paradigmatic enzyme-
substrate reaction (2) when the W-Lambert (dashed line) and logistic (solid line), (19) and (20) versions 

of the Michaelis-Menten kinetics, are employed, respectively, with the parametric values 
 -12

21 s10==− kk , -1-16
1 sM10=k , M10][ 4

0
−=S , and M10][ 6

0
−=E , against the scaled time (22). 

Therefore, this is the opportunity to answer on the issue whether is possible to replace the 

transcendent W-Lambert function with an analytical elementary one in the positive. It assumes the 

general logistic transformation: 
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( ) 














 −+→ −− tfftff eefeefWf 32
1

32
21 11ln  ,  (23) 

while maintaining untouched the specific (kinetic) parameters of a particular reaction, comprised in the 

functions f1, f2, and f3.  

With the logistic ansatz (23), we now have a consistent recipe for temporal modeling of, in 

principle, any scheme of enzymatic reactions in vitro. This algorithm consists of two steps: first, the 

associated kinetics is solved within basic Michaelis-Menten picture until the W-Lambert solution is 

achieved; then, the logistic transformation (23) is performed leading with an elementary analytical 

form that can be further used for theoretical predictions and numerical fitting of the experimental 

assays. However, to emphasize the reliability of the logistic transformation (23) for complex enzymatic 

reactions as well, the case of the enzyme kinetic of the multiple alternative substrates will be presented 

next and then particularized to the fully competitive enzyme catalysis. 

3. Multiple Alternative Enzyme-Substrate Reactions 

After a century of supremacy, the central dogma of biology, i.e. the fact that the genotype can not be 

in any way affected through protein supply and interaction [33, 34], is currently being taken under 

discussion [35]. It started with the landmark contributions of the 1950s and 1960s scientists Koshland, 

Monod, Wyman, and Changeux proposing the “induced fit” model with the help of which they 

rationalized the competing needs of substrate binding affinity. It was concluded that the metabolic 

protein, in general, and enzymatic, in particular, activities can be regulated by small molecules other 

than the substrates, the inhibitors or activators [36, 37].  

As a consequence, the developed theory of allosteric regulation (from Greek: allos, other + stereos, 

space) prescribes that, within a cooperative interaction, the binding of one ligand (substrate) at a 

specific site is influenced by the binding of another ligand (inhibitor) at a different or allosteric site on 

the protein (or enzyme). However, actually, such behaviour is generalized at the level of organismal 

and cellular regulation in which the cell converts the comparison of the proteins with organisms needs 

into metabolic process. It follows that the proteins and gene expression, far from being the endpoint, 

are rather a bridge from where begin the process of editing RNA transcripts, altering and maintaining 

the genome, over and over again by signalling other cells or bio-inspired nano-implants [38]. In this 

process of cell differentiation, proliferation and programming, the receptors (substrates and inhibitors) 

and enzymes perform the task of molecular messengers. Therefore, studying the cooperative effects of 

the inhibitors on the enzymatic reactions, here at the theoretical level, should be most valuable for the 

forefront of biomedical researches.  

Basically, an alternative n-substrate system consists of n-reactions of the Michaelis-Menten type (2),   

niPEESES i

ik

i

ik

ik
i ,1,

2
=+→↔+

−
 (24) 

which, nevertheless, generate a system with 3n+1 differential equations, viewed as the direct expansion 

of the single-substrate one (3), with the initial temporal constraints:  

( ) ( )0,0],[,][][,][],[,][ 000 ESPESES itiii == .  
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The associated conservation laws now look as generalizations of the basic ones given in (4):  

∑
=

−=
n

i
i tESEtE

1
0 )(][][)]([  (25a) 

)(][)(][][)(][ 0 tEStSStP iiii −−= . (25b) 

Following the deduction line of the foreground enzymic kinetic, the specific Michaelis-Menten i-

constants 

i

iii
M k

kk
K 2+

= − , (26a) 

and the maximum velocity for the i-reaction  

][ 02max EkV i
i = ,    (26b) 

are firstly introduced.  

Additionally, a few new notations are considered here [12], namely the first order rate i-constants, 

i
M

i

i
K

Vmax=κ ,    (26c) 

and the reduced i-concentrations, 

i
M

i
i

K

X
X

][
]'[ = ,  (26d) 

in order to shortcut the script of further emerging equations. 

With these amendments, the above temporal equations are accompanied by the actual form of the 

enzyme-substrate i-complex concentration [12]:  




























∑+−−

+
=

=

=
∑

n

j
j

i
Min

j
j

i
i StKk

S

SE
ES

1
0

1

0 ]'[1exp1

]'[1

]'][[
][  

(27) 

from which its simple form (12) can be recovered, since only one substrate reaction is retained from 

the scheme (24).  

Certainly, as before, the kinetics is not solved until temporal analytical solution for the i-substrate 

concentration is derived. To achieve this goal, in this particular case, we first need to solve the 

generalized system of coupled equations for the alternative substrates in reaction (24) [12, 39]: 

∑
=

+

−
−=

n

j
j

ii
i

S

S
S

dt

d

1

]'[1

]'[
]'[

κ
  , 

(28a) 

ij

i

i
jj S

S
SS

δ









=

]'[

]'[
]'[]'[

0
0  , (28b) 
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when the participating substrates are interrelated through the parameter 

j
M

i

i
M

j

i

j
ij

KV

KV

max

max==
κ
κ

δ ,   (28c) 

also referred to as the competition matrix, due to its ability to measure the degree of competition 

among the substrates involved in the reaction with the enzyme.  

As a note, one can easily check that relations (28) become the basic Michaelis-Menten equation (9) 

when dealing with single-substrate reaction. Unfortunately, the general system (28) has no explicit 

solution unless the competition matrix is specified in some particular cases. 
As such, a first case assumes the so-called even competition when 1≅ijδ . In this frame, the system 

(28) can be integrated and the result rearranged so that the proper comparison with the W-Lambert 

equation (18) to be employed. This causes the W-Lambert transcendent solutions for the system (28) to 

take the closed forms [12]:  




























−= ∑∑

∑ ==

=

t
K

V
SSW

S

S
tS
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M

in

j
j

n

j
jn

j
j

iW
i

max

1
0

1
0

1
0

0 ]'[exp]'[

]'[

]'[
)(]'[  , 

(29a) 

as a direct generalization of the mono-substrate Michaelis-Menten temporal solution (19). Finally, the 

logistic transformation (23) can be directly applied on (29a) leading to the elementary analytic 

expressions: 




















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
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
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∑ =
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iL
i

max

1
0

1
0

0 exp1]'[exp1ln

]'[

]'[
)(]'[ . 

(29b) 

Looking at the mathematical form of even competition solutions (29), observing the benchmark 

single-substrate ones, (19) and (20), it appears that at any time the reduced substrate concentrations 

keep the proportion determined from their initial reduced concentrations.  

Consequently, the time evolutions of the set of alternative reactants are very similar to those 

considered in the mono-substrate reaction.  

A more interesting case regards the so-called weak competition when the reactants are not catalyzed 

with the same efficiency from the enzyme. In this situation, the competition matrix (28c) ranges 
as 10 <<< ijδ . However, in this case the first order of the Taylor expansion of (28b) in (28a) can be 

retained and, by repeating the previous integration and rearrangement procedure the W-Lambert closed 

form solution can be cast as [12]: 
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0
0

 , 
(30a) 

which, in turn, allows its transcription under an elementary analytical form through performing the 

logistic transformation (23): 
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. (30b) 

Certainly, similar mathematical analyses and logistic transformations can be considered for various 

types of enzymatic reactions, no matter how complex the biochemical network may be. However, in 

order to prove that the logistic ansatz closely follows the W-Lambert implicit solutions for all species 

when a complex kinetics is under study, the special bi-substrate case of weak competition, i.e. the case 

of competitive inhibition, will be presented in detail next.   

4. Application on Competitive Inhibition 

When an inhibitor acts to reduce the concentration of the available fee enzyme for the substrate 

binding, it is said that competitive inhibition takes place. An eminent example is that of succinate 

dehydrogenase, which is competitively inhibited by malonate to convert succinate to fumarate within 

the citric acid cycle [10, 40].  

With fully competitive interaction, the associate network model is particularized from the scheme 

(24) by retaining two channels of alternative enzyme-substrate reactions only: 

I

kk

k

S

kk

k

PEEII

PEESES

+→↔

+

+→↔+

−

−

43

3

21

1
    (31) 

It is worth noting that the present assumed model for competitive inhibition represents an improved 

version of the commonly accepted one, in which the inhibitor-enzyme complex EI of (31) undergoes 

no further reaction or specific product formation [10].  

To set the competitive inhibition’s characteristics, the general alternative substrate kinetic 

parameters (26a) and (26b) now become:   

• the respective Michaelis-Menten constants for the substrate and inhibitor branches of (31):  

1

21

k

kk
K S

M
+

= −  ,                                                                                                                          (32a) 

3

43

k

kk
K I

M

+
= −  ;  (32b) 

• the respective maximum velocities for the substrate and inhibitor branches of (31):  

][ 02max EkV S =  , (32c) 

][ 04max EkV I = .                                                                                                                            (32d) 

Nevertheless, the kinetic information comprised in the parameters (32) can be combined in a single 

quantity through the competition matrix (28c), which now takes the specialized form  



Int. J. Mol. Sci. 2006, 7 

 

 

479

I
M

S

S
M

I

KV

KV

max

max=δ  .                                                                                                               (33) 

Focusing in what follows on the case of weak competition exclusively, in which the competition 

index fulfills the kinetic condition 1<<δ , the respective reduced initial and instantaneous 

concentrations of the substrate and inhibitor, particularizing the general definition (26d) for the 

reaction channels of (31),    
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provide the keys with which the overall bi-substrate kinetic is solved. 

This way, the W-Lambert time dependent closed solutions for the substrate and inhibition progress 

curves unfold with the respective forms [11]:  
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by specializing the general multi-substrate formulas (30a) and (28b) to the present analysis.     

In order to get the analytical counterparts of (35a) and (35b), actually, two-folded methods can be 

considered. One is to particularize the already obtained generalized logistic form (30b) to the actual bi-

substrate alternative scheme; equally, one can directly apply the logistic transformation (23) to the 

specific W-Lambert solution of the weakly competitive inhibition of the substrate progress curve (35a).  

Using either of these two methodologies, the logistic expression that shapes the decrease (or 

consumption) in substrate concentration in reaction (31) can be obtained with the elementary form: 
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being as well accompanied by the logistic version of the inhibitor progress curve of (35b): 

δ









=

]'[

)(]'[
]'[)(]'[

0
0 S

tS
ItI L

L .   (36b) 

Having formulated the W-Lambert and logistic functions of substrate and inhibitor progress curve 

for the enzymic processes of (31), the complete kinetic picture can be revealed for all the species.  

For instance, the progress curves for the substrate-enzyme and inhibitor-enzyme complexes of (31) 

can be obtained by means of adapting the general formula (27), respectively as [11]: 
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written compactly for both the W-Lambert  and logistic temporal solutions.   

With expressions (37), the conservation laws (25) can be further employed with their actual 

particular progress curves: 

)(][)(][][)(][ ,,0, tEStSStP LWLWLWS −−=  ,                                                                                    (38a) 

)(][)(][][)(][ ,,0, tEItIItP LWLWLWI −−=  ,                                                                                   (38b) 

)(][)(][][)(][ ,,0, tEItESEtE LWLWLW −−=  ,                                                                                   (38c) 

for the product from substrate, product from inhibitor and for the enzyme, respectively.   

 

 
Figure 2. The scaled progress curves (39) of the species concentrations involved in competitive 

reaction (31) for the pilot test with  -12
21 s10==− kk , -1-16

1 sM10=k ,  -1
43 s10==− kk , 

-1-15
3 sM10=k , 

M10][ 4
0

−=S , M10][ 5
0

−=I , and M10][ 6
0

−=E , arranged as follows:  

(a) for the leading and inhibitory substrates concentrations, according to (39a),  
(b) for the substrate-enzyme and inhibitor-enzyme complexes concentrations, according to (39b),  
(c) for the products of  the leading and inhibitory substrates concentrations, according to (39c), 

 and (d) for the enzyme concentration, according to (39d), within the W-Lambert (dashed lines) and 
logistic (solid lines) Michaelis-Menten kinetics against the scaled time (22), respectively. 
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However, in order to underline the equivalence of the W-Lambert and logistic at all levels of an 

enzymic kinetic in vitro, within the present weak competition conditions, Figure 2 shows the scaled 

shapes of the progress curves (35) – (38) of all species of the biochemical network (31): 
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against the scaled time (22) for a pilot computational test in which the parametric values were chosen 

as  -12
21 s10==− kk , -1-16

1 sM10=k ,  -1
43 s10==− kk , -1-15

3 sM10=k , while the initial condition 

have been set to M10][ 4
0

−=S , M10][ 5
0

−=I , and M10][ 6
0

−=E , respectively.     

From the plots in Figure 2, it is clear that for each envisaged species of (31), the W-Lambert and 

logistic progress curves display outstanding similar, or almost coincident, shapes.  

We have thus formulated and illustrated all the analytic steps for achieving the complete temporal 

picture of enzymatic catalyzed reactions in vitro, leading to the framework in which the experimental 

assay can be fitted to obtain the characteristic parameters, the algorithm presented being applicable, in 

principle, at any level of biochemical network complexity [41-44].  

Moreover, the present approach may be found useful in predicting or validating the assumed kinetic 

schemes by employing the logistic progress curves to the non-linear fitting of the experimentally 

recorded data. Such studies are currently in progress and will be reported in subsequent 

communications.     

5. Conclusions 

Enzymes and their activity are known, in various forms, from the ancient history. In short, from a 

description of wine making in the Codex of Hammurabi (Babylon, cca. 2100 B.C.) to the early 

civilizations of India, China, Egypt, Greece, and Rome the use of microorganisms as enzyme supply 

for fermentation was a common practice among antique people. However, early enzymology started 

with the studies of Réaumur (1683-1757) and Spallanzani (1729-1799), who performed the first 

experimental demonstration of enzyme specificity to show that digestion, is a chemical process rather 

than a physical one. Later, thanks to Emil Fischer works, modern enzymology was developed with the 

cornerstone 1890 discovery of the “lock and key” mechanistic model for the stereochemical 

relationship between enzymes and their substrate. Soon after, in 1902, Brown made the insightful 

observation that enzyme-catalysis is not a simple diffusion-limited reaction, but that it is governed by 

the formation of an enzyme-substrate complex. His remark is still most valuable for the present study: 



Int. J. Mol. Sci. 2006, 7 

 

 

482

“ it is quite conceivable…that the time elapsing during molecular union and transformation may be 

sufficiently prolonged to influence the general course of the action” [7]. Following this line, in 1903 

Victor Henry reported the first successful mathematical description of enzyme kinetics, expanded ten 

years later by the Michaelis and Menten, to get the enzyme rate equation based on their yet 

paradigmatic scheme of reaction [8, 9]. Despite many practical applications of the Michaelis-Menten 

mechanism, its complete temporal solution was not achieved until Schnell and Mendoza formulated 

the closed form solution as the transcendent W-Lambert function [25]. The final analytical step in the 

sense of a fully mathematical formulation of the progress curves of a general in vitro enzymic reaction 

was undertaken in this study with the help of elementary logistic transformation (23).      

Due to its analytical logarithmic structure, the actual mathematical analysis may be extended to also 

cover the time derivatives of reactant progress curves making it possible to fit the reaction parameters 

from experimental data assays. Nonetheless, the link with the experiment can also be made by straight 

employment of the present logistic curves to fit with the data series in a single in vitro experiment since 

the enzymatic activity is recorded, thus suggesting another truthful and swift method for estimating the 

enzymic kinetic parameters.  

However, the present logistic method has been tested for its reliable application to real systems. In 

this respect, cooperative substrate-enzyme reactions as well as particular bi-substrate competitive 

inhibition kinetic were illustrated in this work. It follows that the logistic ansatz can be adopted as an 

adequate analytical tool for describing the full temporal course of enzymic reactions at whatever level 

of complexity. Further applications of the present method should be considered in the fields of 

biochemistry, biotechnology, and genomics.   
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