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Abstract: Assuming then vitro conditions for the enzyme-catalyzed reactions, liasic
Michaelis-Menten description is modified in a ldgigmathematical) manner such that the
inherent limitations that appear in the previoushod are removed. Beside its generality,
the reliability of the present approach is provatbtigh applications on the competitive
multi- and bi- substrate enzyme catalyses.
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1. Introduction

According to Charles Darwin’s famous paradigm oblation, the principle of natural selection
prescribes “the survival of the fittest” [1].

With the advent of the general theory of modelsbinlogy [2], as genomic, proteomic, and
metabolomic scales are approached, the fitting eonesembles the equation of the net production of
the speciesi” [3]:

d _
a[x]i = fi ([X]i’ai) , Q)
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whose solution, i.e. the time-dependent conceotrati[X];=[X]i(t), depends on the particular
parametersy; specific for the particular processes considered.
However, even displaying the temporal character,niaster equation (1) differs at the micro-scale

g g
from the consecrated Hamilton-Jacobl §, =—-0S,, /dt) or Schrodinger id ¢, =ihoy,, /dt) ones

that drive the atomic and molecular quantum evohgi While the equations of quantum mechanics
pose the feature of being linear to superpositip the functionf; in (1) has to be non-linear in
variable X]; due to the complexity of the structure of the gygtems and of the biochemical kinetics.

Still, a mechanistic study of a biochemical netwodn be performed by a two-folded analysis.
First, a “wiring diagram” of intermediates is prggal and then, by considering the individual
interactions, a certain kinetic model is propossid [

With these principles, the most elementary biocleahmodel can be understood in the world of the
almost mystic field of enzymatic reactions — natasly complex in mechanism and kinetics. It is well
known that the rate of an enzyme-catalyzed readtiavhich a substrat8is converted into produ@
is found to depend on the concentration of enziregen though the enzyme undergoes no net change
[5]. As a mechanism, it is assumed that the suleselazyme forms an intermedi&& with the rates
ki andk_;, which then irreversibly breaks down into the pradand the enzyme [6-9]:

kg ko
E+S.~ ES-E+P 2)
-1

So far, kinetic studies for the reaction in (2) édeen conducted in the context (or with the help)
the Michaelis-Menten model, due to this model'xifddity in characterizing complex mechanisms
derived from this type of reaction. For instancdiew an analogue substrate blocks the action of a
specific enzyme the so-called inhibited reactidesaplace, with a major function in chemotherapeuti
trainings [10, 11]. On the other side, when an ereatalyzes the transfer of a specific functional
group from one substrate to another in a many-gatleseénvironment, the multiple alternative substrat
type of reactions occur, highlighting the econorhindustrial synthesis of the enantiomerically pure
compounds as well as the environmental issues TI&refore, having a complete analytical picture of
the elementary Michaelis-Menten reaction (2) becowgrecial in treating the more complex enzymic
reactions derived from it.

The mechanism (2) is solved when the involved cotragons, i.e. E](t), [§(t), [E](t), and P](1),
are analytically known from the nonlinear differi@ahtequations of type (1) [13, 14]. However, beyond
approaching the progress curves of species inhi@ugh graphical methods [15] or by powerful
computers [16], the analytical solutions have tsha&ped in such a manner as to be further comeatibl
with the temporal non-linear fitting when assayaxgperimental data [17-19].

The present work proposes the way in which thechidsthaelis-Menten kinetics is modified under
logistic form when in vitro conditions are assumed, when the reaction parameters (temperature,
solvent, pH, etc.) are held constant, as it caanofie assumed in the laboratory [18]. The proposed
logistic ansatz is then applied to real enzymidesys governed by competitive alternative substrates
[12], with a particular emphasis on inhibitive hibstrate enzyme-catalyzed reactions [11]. This way,
follows that the present approach is a two-fold eme both through its logistic (mathematical)
analysis and due to its applications to real system
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2. Method

When the law of mass action is considered for gation (2), the time evolution scheme can be
draw as the system of the coupled nonlinear difgmeequations [20]:

%[S] = —k,[E][S] + k4[ES] (3a)
%[E] = —k,[E][S] + (k_, +k, YES] (3b)
SES = KIENS] - (k. + N ES (30)

G iP1=K,[ES 3d
91py=k, (3d)

with initial conditions([S],[E],[ES],[P]) = [S,].[E,], 0,0) at the time=0.

The set of equations (3) can be simplified in thetps.
First, it can be seen that when the equations &Bld) (3c) are added, the conservation law for

enzyme is obtained:

[EI(t) +[ES|(t) =[E,] (4a)
while the combination of equations (3a), (3c) aBdi (eads to the conservation law for the substrate
[SI(t) +[ES|(t) +[PI(t) =[S,] (4b)
With the help of identities (4), the system of diffintial equations (3) takes the reduced form:
<181 = -ki[S|[Eo] ~[ES)+ K [ES (5
SHES = KISI(E] - [ES)- (k. +k,JES (5b)

in terms of substrate and substrate enzyme caatiemts only, § and [ES, respectively.

Then, employing the in vitro conditions, the enzycae always be saturated with the substrate, so
that the quasi-steady-statéor equilibrium) approximation (QSSA) may apply to the intermediate
formed complex in (2). It implies imposing on (83bg mathematical constrain [14, 21, 22]:

SHES D0 ©)
yielding with its equivalent form:
_ [EllS]
[ES]—[S]+KM ; (7)

where the reaction parameter
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Km =— (8)

is known as th&lichaelis-Menten constaf®].
Now, plugging relation (7) into the equation (5a® get the decoupled differential equation for the
substrate consumption rate:

drg - VialS
arl > = [S]+K,y 9)
where
Vinax = Kol Eo] (20)

has been set as theaximum velocity of reaction

At this point, the system (3) achieves its minimdimension consisting in one equation for the
substrate concentration. However, by combiningetipgations (3d) and (7), the velocity of the product
formation also comes out,

V:E[P]—VLX[S]

dtt o [S]+K,, (11)

as the famoublichaelis-Menten equatiof8, 9].

However, equation (11) reveals the first shortcapoh the Michaelis-Menten kinetic: when used
without explicit temporal dependency of concentnagi, it accounts only for the velocity of the iaiti
instants of the reaction. In other words, the infation outside the first moments of the progressecu
[S(1) is virtually lost or neglected as long as itslgieal form is not known for any moments of time
[23, 24].

Therefore, the necessity of a fully temporal analysr the enzymatic processes stands as a natural
imperative when further fitting with experimentesvisaged.

The temporal problem is to formulate a viable atedy solution (t) for the differential equation
(9). Once that has been done, the progress cufvdseaest of species in (2) can be accordingly
formulated employing the conservation laws (4) tbgewith the relation (7) for the substrate enzyme
complex.

However, it is worth noting that, for the express(@), a more general temporal formulation can be
cast as [25]:

[Eol[S]

[ES](t)=[S]+KM

{L1-exd-kt(So]+ Ky )} Ost<o (12)

becoming identically zero at initial timé,- 0, and recovering the former expression (7) in |t
range regimet, - o, respectively.
Going to analytically solve equation (9) it is flysrearranged as

Km _
([S] +1jd[S] Vhaxdt (13)

and then integrated to give [26]:
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[S]+ Ky IN[S] =[S] =Vimadt + Ky IN[S]. (24)

Unfortunately, the equation (14) shows another thtion of the Michaelis-Menten enzymic
description. Having a transcendental form, equafib#) does not allow for explicitly writing the
dependencyd|(t). In these conditions, many biochemists prefeetrange equation (14) under a sort
of double plot equation [27-29], for instance:

t 1+KM[ 1 In[SO]j,

(SIS0 Ve Voo \[S1-[SIO  [SI(D) (15)

from where an intercept df'V,,,, and a slope oK,, /V,,., provide the kinetic parameteys,,, and
Ky » respectively. Still, this approach has beenaznéd [5, 18], and it is worthwhile investigating

whether the exact solution of (14) can be obtafoeditting a non-linear progress curve.
In this respect, once the substitution

_ 19

¢([5])—m (16)
is performed in (14), it leads to the equivaleniamn:
[So] _ Vimad [Sol
#(s1)+ng(s]) = f; e +In(f; j (17)

The closed-form solution of equation (17) was rexogd by Schnell and Mendoza through the
analogy with the famous Lambert type equation [30]:

W(X) +InW(x) =Inx, x=-1/e. (18)

By comparing equations (17) and (18), the formaigeral solution for the substrate concentration
can be achieved as [5, 25]:

M

[Sol-Vmaxt
[S]W(t)=KMW{[Ki]e o J (19)

With the W-Lambert dependence (19) of the kinetic solutiorthef reaction (2), we arrive at the
mathematical disadvantages of the traditional MatisaMienten analysis. For example, it can return
multiple values for the same argument or resudtnnnfinitely iterated exponential function [31].

The fundamental contribution of the present ventegards the discovery of the explicit time-
dependent solution off(t) under an elementary form so that it does not neép other unknown
function, as is the case of thiéLambert related solution (19). However, the présgtempt comes in
middle of enmities regarding the admittance or ofothe W-Lambert function as an elementary one,
there being no analytical replacement availabléas$31]. Aiming to find a suitable substitute far
Lambert solution (19), we found that the suggesassbciate logistic form [32],

[So] _Vimaxt

Km

[S], (t) =K, In|1+| e"™ -1]e , (20)
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fulfils the main requirements of an enzymic kingticough the limits:

[S]t -0

[S]L(t)={o .

(21)
However, attempting for a closer comparison,Wikambert and the logistic progress curves of the

substrate concentration, (19) and (20), are togephaited in Figure 1 under their scaled forms,
[Slw (1) I[S,] and[S], (7) /[S, ] against the scaled time [25]

Ot -0
_— #{
1t - o

CInft+e) (22)

for a working case in which the parametric valuesenchosen ak_, =k, =10°s™, k; =10°M s,
while the initial conditions are set {§,] =10™M and[E,] =10°M, respectively. As seen in Figure

1, the qualitative and quantitative behaviors & gubstrate concentration in bdttiLambert and
logistic cases are striking similar.

0.& i
. [S1z(zVISpl
é 0.6 _ .
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L]
T 0.4 -
I
5}
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Figure 1. Time-dependent behavior of the substrate scaledettration for the paradigmatic enzyme-
substrate reaction (2) when AeLambert (dashed line) and logistic (solid line)9) and (20) versions
of the Michaelis-Menten kinetics, are employedpessively, with the parametric values

k, =k, =10%s™, k, =10°M's*, [S,]=10"*M, and[E,] =10°M, against the scaled time (22).

Therefore, this is the opportunity to answer on tbgue whether is possible to replace the
transcendenW-Lambert function with an analytical elementary anethe positive. It assumes the
general logistic transformation:
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flw(fzefze‘ff*t) -~ 1 In[1+(ef2 —1Je_f3tJ : (23)

while maintaining untouched the specific (kineperameters of a particular reaction, comprisedhén t
functionsfy, f,, andfs.

With the logistic ansatz (23), we now have a cdasisrecipe for temporal modeling of, in
principle, any scheme of enzymatic reactions inoviThis algorithm consists of two steps: firste th
associated kinetics is solved within basic Micla®lienten picture until th&/-Lambert solution is
achieved; then, the logistic transformation (23)peformed leading with an elementary analytical
form that can be further used for theoretical p#oins and numerical fitting of the experimental
assays. However, to emphasize the reliability efltiyistic transformation (23) for complex enzyroati
reactions as well, the case of the enzyme kindétihemultiple alternative substrates will be preasd
next and then particularized to the fully compeéitenzyme catalysis.

3. Multiple Alter native Enzyme-Substr ate Reactions

After a century of supremacy, the central dogmhiology, i.e. the fact that the genotype can not be
in any way affected through protein supply andraxtgon [33, 34], is currently being taken under
discussion [35]. It started with the landmark ciimttions of the 1950s and 1960s scientists Koshland
Monod, Wyman, and Changeux proposing the “indua€dnfiodel with the help of which they
rationalized the competing needs of substrate bgndiffinity. It was concluded that the metabolic
protein, in general, and enzymatic, in particugativities can be regulated by small molecules rothe
than the substrates, the inhibitors or activatd8és B7].

As a consequence, the developed theory of allostegulation (from Greelallos, other +stereos
space) prescribes that, within a cooperative iotema, the binding of one ligand (substrate) at a
specific site is influenced by the binding of arethgand (inhibitor) at a different or allosteste on
the protein (or enzyme). However, actually, suchaveur is generalized at the level of organismal
and cellular regulation in which the cell convetie comparison of the proteins with organisms needs
into metabolic process. It follows that the proseand gene expression, far from being the endpoint,
are rather a bridge from where begin the processliting RNA transcripts, altering and maintaining
the genome, over and over again by signalling otlells or bio-inspired nano-implants [38]. In this
process of cell differentiation, proliferation aptbgramming, the receptors (substrates and inhg)ito
and enzymes perform the task of molecular messengberefore, studying the cooperative effects of
the inhibitors on the enzymatic reactions, herthattheoretical level, should be most valuabletiier
forefront of biomedical researches.

Basically, an alternative-substrate system consistsnmefeactions of the Michaelis-Menten type (2),

K k2i —
S"‘EQES—’E‘*R ,1=1n (24)

which, nevertheless, generate a system wittL3lifferential equations, viewed as the directamgion
of the single-substrate one (3), with the initehporal constraints:

([S1;.[E] [ES] [P )iz = ([(So]i[Eo].00).
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The associated conservation laws now look as gkregrans of the basic ones given in (4):

[EN) =[Eo] - S TESL O (253)
i=1
[PIi (t) =[So]; —[S]; (t) -[ES]; (1) . (25b)

Following the deduction line of the foreground emay kinetic, the specific Michaelis-Menten
constants

. k.. +k..
K === (26a)
i
and the maximum velocity for thaeaction
Vinax = Kai [l (26b)

are firstly introduced.
Additionally, a few new notations are considerete&2], namely thérst order rate i-constants

V. i

Ki =KLCX, (26¢)
and thereduced i-concentrations
X
[X']; = Ki' ! (26d)
M

in order to shortcut the script of further emergagations.
With these amendments, the above temporal equati@accompanied by the actual form of the
enzyme-substraiecomplex concentration [12]:

[ES), :—[Eon][s]‘ [1—ex;{— kitK,i\,l(1+ i[SIO]jJJ:I
1+>[S]; = @
=1

from which its simple form (12) can be recoveradcs only one substrate reaction is retained from
the scheme (24).

Certainly, as before, the kinetics is not solvetiluamporal analytical solution for thesubstrate
concentration is derived. To achieve this goalthis particular case, we first need to solve the
generalized system of coupled equations for thegradtive substrates in reaction (24) [12, 39]:

%[S]iz_—_ﬁ[S]i ’
1+>[S], (28a)
=1
%
—_ 1 [S]I
[S],-—[So]j([s.o]ij : (28Db)
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when the participating substrates are interreltdtesmligh the parameter

K V] Kl
-1 — —max_*M_ M

max

also referred to as theompetition matrix due to its ability to measure the degree of cditpe
among the substrates involved in the reaction thighenzyme.

As a note, one can easily check that relations lf28pme the basic Michaelis-Menten equation (9)
when dealing with single-substrate reactibinfortunately, the general system (28) has no expli
solution unless the competition matrix is specifiredome particular cases.

As such, a first case assumes the so-calleth competitionvhend; U 1 In this frame, the system
(28) can be integrated and the result rearrangettatothe proper comparison with théLambert
equation (18) to be employed. This causesteambert transcendent solutions for the system {@8)
take the closed forms [12]:

(s =—LSeli [Z[S‘] exr{Z[S' 1, - tn
Z[S] E Ku

as a direct generalization of the mono-substratehiglis-Menten temporal solution (19). Finally, the
logistic transformation (23) can be directly apglien (29a) leading to the elementary analytic
expressions:

[S]H(t) =—2— [Sol In 1+{exp{i[8‘o]jJ—l}exr{—£ﬁxtj .
Z[Slo 1, =t Kwu (29b)

=1

(29a)

Looking at the mathematical form of even competiteolutions (29), observing the benchmark
single-substrate ones, (19) and (20), it appeasdhany time the reduced substrate concentrations
keep the proportion determined from their initedluced concentrations.

Consequently, the time evolutions of the set oéralitive reactants are very similar to those
considered in the mono-substrate reaction.

A more interesting case regards the so-calledk competitionvhen the reactants are not catalyzed

with the same efficiency from the enzyme. In thigiagion, the competition matrix (28c) ranges
as0 < g; << 1 However, in this case the first order of the Bayxpansion of (28b) in (28a) can be

retained and, by repeating the previous integradiwh rearrangement procedure Yié.ambert closed
form solution can be cast as [12]:

_ . S,] [S,], Vinad
[S]Yv(t)—(hztso]j)w [°. ex 01 - ’ (30a)
j#i

which, in turn, allows its transcription under aernsentary analytical form through performing the
logistic transformation (23):
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[S']iL(t)=(1+Z[S'O]jJIn 1+|ex A -1lexp - Vinaol : (30b)
B 2 [Sol, K‘M(“ ztso]jj

1# i

Certainly, similar mathematical analyses and lagisansformations can be considered for various
types of enzymatic reactions, no matter how comgiexbiochemical network may be. However, in
order to prove that the logistic ansatz closeljofes theW-Lambert implicit solutions for all species
when a complex kinetics is under study, the spdxialibstrate case of weak competition, i.e. tleeca
of competitive inhibition, will be presented in dittnext.

4. Application on Competitive I nhibition

When an inhibitor acts to reduce the concentratibthe available fee enzyme for the substrate
binding, it is said that competitive inhibition & place. An eminent example is that of succinate
dehydrogenase, which is competitively inhibitedrbglonate to convert succinate to fumarate within
the citric acid cycle [10, 40].

With fully competitive interaction, the associatetwork model is particularized from the scheme
(24) by retaining two channels of alternative engysubstrate reactions only:

kg ko

S + E o ES - E + Py
-1
+ 31
" « (31)
|l « EI - E + B
k-3

It is worth noting that the present assumed moaletdémpetitive inhibition represents an improved
version of the commonly accepted one, in whichittgbitor-enzyme complek¥l of (31) undergoes
no further reaction or specific product formatidQ].

To set the competitive inhibition’s characteristidhe general alternative substrate kinetic
parameters (26a) and (26b) now become:

» the respective Michaelis-Menten constants for thessate and inhibitor branches of (31):

k,+k
Ky :% ) (32a)
1
ks +k
Ky == —"; (32b)
3
» the respective maximum velocities for the substaat inhibitor branches of (31):
Vn?ax = kZ[EO] J (320)
Vinax = K4[Eo] (32d)

Nevertheless, the kinetic information comprisedhi@ parameters (32) can be combined in a single
quantity through the competition matrix (28c), whimow takes the specialized form
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vl KS
alvianal (33)
VmaxKM
Focusing in what follows on the case of weak coitipatexclusively, in which the competition
index fulfills the kinetic conditiond << 1, the respective reduced initial and instantaneous
concentrations of the substrate and inhibitor, ipaldrizing the general definition (26d) for the

reaction channels of (31),

15,1215 1579 = 1SI0.

(34a)
M M

| 1](t
R (34b)
M M
provide the keys with which the overall bi-substrhkinetic is solved.
This way, theW-Lambert time dependent closed solutions for tHesgate and inhibition progress

curves unfold with the respective forms [11]:

1So]  (1S6] (Vi
[Shet)= (““0])’\’{““0] X’{u[l'oljex'{ M(1+[|01)B’ (359
17 ® =[1 1(%} (35b)

by specializing the general multi-substrate formaz0a) and (28b) to the present analysis.

In order to get the analytical counterparts of §3&=ad (35b), actually, two-folded methods can be
considered. One is to particularize the alreadgiobtl generalized logistic form (30b) to the actial
substrate alternative scheme; equally, one carcttirapply the logistic transformation (23) to the
specificW-Lambert solution of the weakly competitive inhibit of the substrate progress curve (35a).

Using either of these two methodologies, the lagisixpression that shapes the decrease (or
consumption) in substrate concentration in reag®dr) can be obtained with the elementary form:

_ . [Sol |_ Vil
[S1.(t) =@+l 0])In[1+{exp{l+[lolo]J 1}exp{ K,a(1+[|'o])ﬂ ' (36a)

being as well accompanied by the logistic versibtine inhibitor progress curve of (35b):

[S], (t)j

(36b)

| =[I
("] () [o]([s]

Having formulated th&\-Lambert and logistic functions of substrate anibitor progress curve
for the enzymic processes of (31), the completetldrpicture can be revealed for all the species.

For instance, the progress curves for the substratgme and inhibitor-enzyme complexes of (31)
can be obtained by means of adapting the generalfa (27), respectively as [11]:
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_ EMShi® g 1 : .
TGS (1+[|]W,L(t)/KAA){1 acilsie kit e
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written compactly for both thé/-Lambert and logistic temporal solutions.
With expressions (37), the conservation laws (2&) te further employed with their actual
particular progress curves:

[Pslw,. ) =[So] = [Slw,. () ~[ES]w,. (V) , (38a)
[P Tw, () =[1o] =[N w,. () ~[Elw,.®) , (38b)
[Elw,. () =[Eo] ~[ESlw, (1) ~[Ellw,. ®) , (38¢)

for the product from substrate, product from intaband for the enzyme, respectively.
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Figure 2. The scaled progress curves (39) of the speciesentmations involved in competitive
reaction (31) for the pilot test witk_, =k, =10°s™, k; =10°M*s?, k, =k, =105,
ks =10°M's™,
[S,]=107*M, [1,] =10"°M, and[E,] =10°M, arranged as follows:

(a) for the leading and inhibitory substrates com@ions, according to (39a),
(b) for the substrate-enzyme and inhibitor-enzymmamlexes concentrations, according to (39b),
(c) for the products of the leading and inhibitenpstrates concentrations, according to (39c),

and (d) for the enzyme concentration, accordin@®al), within thé\-Lambert (dashed lines) and
logistic (solid lines) Michaelis-Menten kineticsaagst the scaled time (22), respectively.
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However, in order to underline the equivalenceh&fW-Lambert and logistic at all levels of an
enzymic kinetic in vitro, within the present weatngpetition conditions, Figure 2 shows the scaled
shapes of the progress curves (35) — (38) of altisg of the biochemical network (31):

Sw. (7) :%, v, (7) :% , (39a)
s, (1) =% el (1) :% , (39)
PSy,. (7) =%, Py, () = W : (39¢)

8w, (7) =% ; (39d)

against the scaled time (22) for a pilot computaldest in which the parametric values were chosen
ask, =k, =10%s™*, k; =10°M*s?, k_; =k, =10s™, k; =10°M's™, while the initial condition
have been set f8,] =10*M, [1,] =10°M, and[E,] =10°M, respectively.

From the plots in Figure 2, it is clear that focleanvisaged species of (31), MelLambert and
logistic progress curves display outstanding simda almost coincident, shapes.

We have thus formulated and illustrated all thelyaitasteps for achieving the complete temporal
picture of enzymatic catalyzed reactions in vitegading to the framework in which the experimental
assay can be fitted to obtain the characteristiarpaters, the algorithm presented being applicable,
principle, at any level of biochemical network cdexity [41-44].

Moreover, the present approach may be found usefuledicting or validating the assumed kinetic
schemes by employing the logistic progress cureethé non-linear fitting of the experimentally
recorded data. Such studies are currently in pssgrand will be reported in subsequent
communications.

5. Conclusions

Enzymes and their activity are known, in variousrfey from the ancient history. In short, from a
description of wine making in the Codex of Hammur@®abylon, cca. 2100 B.C.) to the early
civilizations of India, China, Egypt, Greece, andniothe use of microorganisms as enzyme supply
for fermentation was a common practice among aatigeople. However, early enzymology started
with the studies of Réaumur (1683-1757) and Spadlan (1729-1799), who performed the first
experimental demonstration of enzyme specificitghiow that digestion, is a chemical process rather
than a physical one. Later, thanks to Emil Fischerke&, modern enzymology was developed with the
cornerstone 1890 discovery of the “lock and key”chamnistic model for the stereochemical
relationship between enzymes and their substraien &ifter, in 1902, Brown made the insightful
observation that enzyme-catalysis is not a simpfasion-limited reaction, but that it is governeg
the formation of an enzyme-substrate complex. kBiisark is still most valuable for the present study:
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“it is quite conceivable...that the time elapsing dgrimolecular union and transformation may be
sufficiently prolonged to influence the general rseuof the actioh[7]. Following this line, in 1903
Victor Henry reported the first successful matheoahtdescription of enzyme kinetics, expanded ten
years later by the Michaelis and Menten, to get émeyme rate equation based on their yet
paradigmatic scheme of reaction [8, 9]. Despite ynanactical applications of the Michaelis-Menten
mechanism, its complete temporal solution was w©bteared until Schnell and Mendoza formulated
the closed form solution as the transcend@tambert function [25]. The final analytical stepthre
sense of a fully mathematical formulation of thegress curves of a general in vitro enzymic reactio
was undertaken in this study with the help of eletay logistic transformation (23).

Due to its analytical logarithmic structure, theéuat mathematical analysis may be extended to also
cover the time derivatives of reactant progressesimaking it possible to fit the reaction paramsete
from experimental data assays. Nonetheless, tkenith the experiment can also be made by straight
employment of the present logistic curves to fittvthe data series in a single in vitro experingnte
the enzymatic activity is recorded, thus suggestimgther truthful and swift method for estimatihg t
enzymic kinetic parameters.

However, the present logistic method has beenddsteits reliable application to real systems. In
this respect, cooperative substrate-enzyme reactanwell as particular bi-substrate competitive
inhibition kinetic were illustrated in this workt follows that the logistic ansatz can be adoptedma
adequate analytical tool for describing the futhporal course of enzymic reactions at whateverlleve
of complexity. Further applications of the preseméthod should be considered in the fields of
biochemistry, biotechnology, and genomics.
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