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Abstract:  This study presents Quantitative Structure Activity Relationships (QSAR) study 

on a pool of 18 bio-active sulfonamide compounds which includes five acetazolamide 

derivatives, eight sulfanilamide derivatives and five clinically used sulfonamides molecules 

as drugs namely acetazolamide, methazolamide, dichlorophenamide, ethoxolamide and 

dorzolamide. For all the compounds, initial geometry optimizations were carried out with a 

molecular mechanics (MM) method using the MM+ force fields. The lowest energy 

conformations of the compounds obtained by the MM method were further optimized by the 

Density Functional Theory (DFT) method by employing Becke’s three-parameter hybrid 

functional (B3LYP) and 6-31G (d) basis set. Molecular descriptors, dipole moment, 

electronegativity, total energy at 0 K, entropy at 298 K, HOMO and LUMO energies 

obtained from DFT calculations provide valuable information and have a significant role in 

the assessment of carbonic anhydrase (CA-II) inhibitory activity of the compounds. By using 

the multiple linear regression technique several QSAR models have been drown up with the 

help these calculated descriptors and carbonic anhydrase (CA-II) inhibitory data of the 

molecules. Among the obtained QSAR models presented in the study, statistically the most 

significant one is a five parameters linear equation with the squared correlation coefficient 
R2 values of ca. 0.94 and the squared cross-validated correlation coefficient R2CV  values of 

ca. 0.85. The results were discussed in the light of the main factors that influence the 

inhibitory activity of the carbonic anhydrase (CA-II) isozyme. 
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1. Introduction 

Acetazolamide, methazolamide, dichlorophenamide, ethoxolamide and dorzolamide, as carbonic 

anhydrase (CA-II) isozyme inhibitors, sulfonamide compounds are clinically used drugs for the 

treatment of glaucoma [1]. CA-II reversibly catalyzes the reaction of H2O and CO2 to form carbonic 
acid and subsequently the bicarbonate ion HCO−

3 . The HCO−
3  ion is responsible for the movement of 

Na+ ion into the eye. Water follows Na+ to form the aqueous humor. CA-II inhibition by an agent such 
as one of the drugs mentioned above decreases the HCO−

3  ion concentration and therefore the flow of 

Na+ and H2O into the posterior chamber, resulting in decreased production of aqueous humor and 

hence a lowering of intraocular pressure (IOP) [2]. Glaucoma, the leading cause of blindness world-

wide , is the general term for a group of ophthalmic disorders characterized by an increase in IOP. This 

gives rise to damage to the optic disc and visual field disturbances of the eye. IOP increases through an 

imbalance between the production and drainage of aqueous humor. Agents such as mentioned above, 

used to treat glaucoma, are designed to decrease IOP [3]. 

All the drugs used for the treatment of glaucoma have some systemic side effects [4]. To reduce side 

effects of the drugs, it is of interest to develop new agents for the topical use of CA-II inhibitors for the 

long-term management of glaucoma. For the researchers, the prospect of overcoming the systemic side 

effects of a drug, achieving an effect at a much lower dose, is very attractive. Modification of the 

structure of a known drug is one way to develop new drugs. For this purpose, members of our group 

have synthesized and reported new five acetazolamide-like and eight sulfanilamide-like derivatives, 

which are the subject of the present study. These new derivatives have been obtained by modification 

of acetazolamide and sulfanilamide using the tail approach [5]. The inhibition constants (KI) of these 

new molecules against the carbonic anhydrase enzyme CA II are shown in Table 1, are much lower 

than their mother molecule acetazolamide and sulfanilamide. Therefore, these derivatives can be the 

subject of further investigation to explore the possibilities of becoming candidate drugs.  

Quantitative structure activity relationships (QSAR) studies are tools of predicting endpoints of 

interest in organic molecules acting as drugs [6]. Many physiological activities of molecules can be 

related to their composition and structures. Molecular descriptors, which are the numerical 

representation of the molecular structures, are used to perform QSAR analysis [7]. In the literature, for 

the calculation of the quantum mechanical molecular descriptors used in QSAR studies, usually semi-

empirical methods such as AM1 and PM3 mainly have been used [8-10]. However, some recent QSAR 

studies [11-13] have shown that choice of the method DFT instead of AM1 [14] or PM3 [15,16] results 

in better to correlation between calculated results and experimental data. Therefore, the DFT method is 

expected to lead to statistically more accurate QSAR model by comparing the semi-empirical methods. 

Aim of the present study is to build QSAR models using multiple regression method, to explore the 

correlations between the experimental the inhibition constants (KI) and calculated molecular 

descriptors of 18 aromatic and heterocyclic sulfonamide compounds.  
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2. Theory and Computational details  

For all the molecules, 3-D modeling and calculations were performed using the Gaussian 03 

quantum chemistry package [17]. For saving computational time, initial geometry optimizations were 

carried out with a molecular mechanics (MM) method using the MM+ force fields. The lowest energy 

confirmations of the molecules obtained by the MM method were further optimized by the DFT [18] 

method by employing Becke’s three-parameter hybrid functional (B3LYP) [19] and the 6-31G (d) basis 

set; their fundamental vibrations were also calculated using the same level of the theory to check if 

there were true minima. Program CODESSA (Comprehensive Descriptors for Structural and Statistical 

Analysis), Version 2.7.2 [20], was used to extract the calculated molecular descriptors from Gaussian 

03 output files. This code uses diverse statistical structure property activity correlation techniques for 

the analysis of experimental data in combination with calculated molecular descriptors. The heuristic 

method, implemented in CODESSA PRO was employed for selecting the ‘best’ regression model. 

In recent years, increased use has been made of the DFT method for predicting molecular properties 

of relatively large molecules. DFT enables to calculate molecular properties such as optimized 

geometry and energy, with the accuracy as good as electron-correlated ab initio methods such as MP2, 

but requires much less computational time [21]. For an accurate calculation of molecular properties, 

choice of the basis set and method are important task, and vary for the type of molecules of interest.  

Molecular descriptors, calculated using quantum mechanical methods have been used in many 

QSAR studies [6,7]. They enable determination of molecular quantities characterizing reactivity, shape 

and binding properties of molecules. The values of molecular descriptors, derived from our 

calculations for the 18 sulfonamide compounds and their experimental inhibition constant (KI) are 

presented in Table 2. Two of these descriptors, related to the thermo chemistry of the molecules 

obtained from frequency calculation at the optimized geometry, are the total energy at 0 K (in a.u.) and 

entropy at 298 K (in cal/mol K). Energies (in eV) of the HOMO (highest occupied molecular orbital) 

and LUMO (lowest unoccupied molecular orbital) are popular quantum mechanical descriptors which 

play a major role in governing many chemical reactions and determining electronic band gaps in solids 

[22-24]. The energy of the HOMO is directly related to the ionization potential and characterizes the 

susceptibility of a molecule. According to Koopmans theorem, the ionization potentialHOMO (eV) is 
defined as HOMOHOMO EI −= . The same idea applies for the electron affinity calculation . The energy of 

the LUMO is directly related to the electron affinity and characterizes the susceptibility of the molecule 

towards attack by nucleophiles [25]. The electron affinity LUMO (eV) is obtained through Koopmans 
theorem as LUMOLUMO EA = . The polarity of a molecule is well known to be important for various 

physicochemical properties. The dipole moment is the most obvious and most widely-used quantity to 

describe the polarity of a molecule [26]. The remaining descriptor presented in Table 2, namely 

electronegativity, is derived from the DFT framework [27]. The electronegativity is defined as the 

negative of the partial derivative of energy E of an atomic or molecular system with respect to the 
number of electrons N with a constant external potential ( )rV [28].  

( ) ( )rVNE ∂∂−=−= /χµ       (1) 
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By combining Eq. (1) with the earlier work of Iczkowski and Margrave [29], assuming a quadratic 

relationship between E and N and in a finite difference approximation, Eq. (1) can be rewritten as 

( )
2

AI +
=−= µχ          (2) 

or  

 2
LUMOHOMO

Koopmans

EE +=χ
       (3) 

3. Results and discussion 

 The list of the chemical name and value of the inhibition constants in decadic logarithm of KI 

(in nM) of 18 sulfonamide compounds taken from the literature [5] are given in Table 1. Structural 

details of the compounds used in this study are presented in Figure 1. Molecular descriptors, dipole 

moment, electronegativity, total energy at 0 K, entropy at 298 K, HOMO and LUMO energies obtained 

from DFT calculations are presented in Table 2. These descriptors used in order to select the dominant 

parameters affecting the inhibitory activity of the compounds.  

Table 1. The list of chemical name of the compounds studied and their observed LogKI values. 

 Number Chemical name LogKI 

(nM) 

C1 Acetazolamide 1.079 

C2 2-(2-morpholinoethanoylamino)-1,3,4-thiadiazole-5-sulfonamide 0 

C3 2-(2-methylpiperidinoethanoylamino)-1,3,4-thiadiazole-5-sulfonamide 0.579 

C4 2-(2-benzylpiperazinoethanoylamino)-1,3,4-thiadiazole-5-sulfonamide 0.255 

C5 2-(2-methylpiperazinoethanoylamino)-1,3,4-thiadiazole-5-sulfonamide 0.204 

C6 2-(3-methylpiperazinopropionylamino)-1,3,4-thiadiazole-5 sulfonamide 0.278 

C7 4-(3-methylpiperazinopropionylamino)benzene sulfonamide 2.217 

C8 4-(3-benzylpiperazinopropionylamino)benzene sulfonamide 2.369 

C9 4-(3-methylpiperidinopropionylamino)benzene sulfonamide 2.238 

C10 4-(3-benzylpiperidinopropionylamino)benzene sulfonamide 2.411 

C11 4-(2-Morpholinoethanoylamino)benzene sulfonamide 1.939 

C12 4-(4-methylpiperidinobutanoylamino)benzene sulfonamide 2.423 

C13 4-(4-Morpholinobutanoylamino)benzene sulfonamide 2.017 

C14 4-(5-Morpholinopentanoylamino)benzene sulfonamide 1.886 

C15 Methazolamide 1.146 

C16 Dichlorophenamide 0.903 

C17 Ethoxolamide 1.579 

C18 Dorzolamide 0.954 
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The heuristic method, implemented in CODESSA PRO was to built the multiple linear regression 

QSAR models which are given in Table 3. The goodness of fit of the models was tested the squared 

correlation coefficient (R2), the F-test (F) and the standard deviation of the regression (s2). For testing 

the predictive performance of the models, 2
CVR ‘leave one out’ (LOO), the squared cross-validated 

coefficient method was used. LOO approach consists in developing a number of models with one 

sample omitted at the time. After developing each model, the omitted data are predicted and the 

differences between experimental and predicted activity values are calculated. The best models that 

were produced are shown in Table 3. Among the models, the best goodness of fit is the model 3 with 

the R2 =0.943, the F=32.20 and s2=0.067. 
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Figure 1. Structural details of compounds used in present study 
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Interestingly, the model 4 with the best predictive power one (R2CV=0.893) has a relatively lower 

goodness of fit as evident from its R2=0.936 in comparison with the model 3 (R2=0.943). Using the 

model 3, predicted inhibition constants of compounds are presented in Table 2. It should be noted that 

C3 and C17 are outliers in this model.  

Table 2. Calculated descriptors and predicted and experimental inhibitory activity data of compounds 

studied. 

 µ χ Te S εH εL p-LogKI 

(nM) 

e-LogKI 

(nM) 

C1 7.5833 -4.53035 -1396.87 118.94 -7.2557 -1.805 1.012 1.079 

C2 9.274 -4.1552 -1683.34 145.33 -6.6162 -1.6942 0.493 0 

C3 5.8951 -3.9868 -1686.71 152.64 -6.2878 -1.6858 1.428 0.579 

C4 10.2529 -3.85355 -1933.71 175.90 -6.0951 -1.612 0.307 0.255 

C5 10.1516 -3.94525 -1702.74 151.82 -6.2687 -1.6218 0.347 0.204 

C6 11.158 -3.8854 -1742.03 157.09 -6.2848 -1.486 0.141 0.278 

C7 5.0308 -3.3077 -1389.16 162.30 -5.4515 -1.163 2.424 2.217 

C8 5.0246 -3.31233 -1620.13 185.74 -5.4529 -1.1717 2.409 2.369 

C9 5.2198 -3.19450 -1373.13 163.50 -5.2651 -1.1238 2.424 2.238 

C10 5.3093 -3.30498 -1604.09 188.00 -5.4442 -1.1657 2.415 2.411 

C11 7.6717 -3.34104 -1330.46 146.79 -5.7832 -0.8988 1.659 1.939 

C12 6.7593 -3.52812 -1412.41 168.51 -6.1843 -0.8718 2.167 2.423 

C13 5.9426 -4.05371 -1409.03 164.41 -5.6219 -2.4855 2.047 2.017 

C14 6.0641 -4.31208 -1448.31 172.06 -4.4831 -4.1410 1.789 1.886 

C15 7.1901 -4.05562 -1436.15 127.97 -6.4273 -1.6838 1.154 1.146 

C16 0.9875 -4.77509 -2359.12 133.05 -7.5291 -2.0210 0.954 0.903 

C17 8.1089 -3.95738 -1480.26 126.83 -6.2545 -1.6601 0.809 1.579 

C18 6.8271 -4.08378 -1995.23 151.46 -6.4665 -6.4665 0.570 0.954 
µ, dipole moment (debye); χ, electronegativity (eV); Te, total energy at 0 K (a.u.); S, entropy at 298 K (cal/M-K); εH, energy 

of HOMO (eV); εL, energy of LUMO (eV); 

e-LogKI , experimental inhibition constants (nM) taken from the literature [5]; p-LogKI , predicted inhibition constant (nM) 

by model 3. 

 

When all the compounds (N=18) have been taken into account, the best model we obtained is model 

1 which is a tetra-parametric regression equation. This model has good statistical characteristics as 

evident from its R2=0.857, F=19.4 and s2=0.137 values. It also has a satisfactory predictive power as 

evident from its R2CV=0.78 value. In the case of N=18, the second best model is model 2 which is a tri-

parametric regression equation. Statistical characteristics of this model are slightly lower in comparison 

with model 1, but it still has good statistical fit and satisfactory predictive power. Only one difference 

between model 1 and 2 is the removal of electronegativity χ. When two compounds (C3 and C17) 
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were treated as outliers the best model obtained is model 3 which is a penta-parametric regression 

equation with very good statistical fit and good predictive power as evident from its R2=0.943, F=33.2, 

s2=0.067 and R2CV=0.855 values. Model 4 and 5 have the same descriptors as model 1 and 2. The 

comparison of model 1 and 4 indicates that there is a tremendous improvement in the quality of 

regression such that R2 value changes from 0.857 to 0.936 and standard deviation of the regression 

from 0.137 to 0.068 when C1 and C17 are outliers. Similar degree of improvement can be seen by 

comparison of model 2 and 5. Model 4 and 5 also have very good predictive power as evident from 

their R2
CV=0.893 and R2CV=0.883 values respectively. Figure 2. shows a plot of experimental LogKI 

versus predicted LogKI using the model 3. 

Table 3. Obtained QSAR models for the molecules studied against CA-II isozyme. 

No Equation Statistical characteristics 

1 LogKI=5.869+0.0017Te-0.225µ+0.0091S+0.403χ N=18, R2=0.857, F=19.4 

 s2=0.137 R2
CV=0.789 

 

2 LogKI=3.965+0.0020Te-0.224µ+0.014S N=18, R2=0.837, F=24.0  

 s2=0.145 R2
CV=0.775 

 

3 LogKI=3.071+0.0020Te-0.244µ+0.0019S+0.253χ-0.202εH N=16, R2=0.943, F=33.2 

 s2=0.067 R2
CV=0.855 

(C3 and C17 outliers) 

 

4 LogKI=4.938+0.0017Te-0.238µ+0.0012S+0.304χ N=16, R2=0.936, F=40.8 

 s2=0.068 R2
CV=0.893 

(C3 and C17 outliers) 

 

5 LogKI=3.446+0.0019Te-0.238µ+0.014S N=16, R2=0.925, F=49.7 

 s2=0.073 R2
CV=0.883 

(C3 and C17 outliers) 

A perusal of Table 3. shows that three factors namely total energy at 0 K, dipole moment and 

entropy at 298 K of the compounds play a major role in the inhibitory activity against CA-II isozyme. 

According to all the models in Table 3., the regression coefficient of total energy Te are positive, 

therefore, LogKI increases with the increasing Te. The regression coefficient of dipole moment µ are 

negative that means LogKI increases with the decreasing µ. Contribution of entropy S to the biological 

activity in the models is the same as total energy, LogKI increases with the increasing S. Remaining 

descriptors involved in models are electronegativity χ and LUMO energy εH represent reactivity of the 

compounds. χ has the positive regression coefficient in model 1, 3 and 4. εH has negative the regression 

coefficient in model 3. It should be noted that by comparison of model 5 and 3 shows that by adding 
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the χ and εH in the regression equation results an improvement in the quality of regression such that R2 

value changes from 0.925 to 0.943.  

 

y = 0,9931x + 0,0143
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Figure 2. Plot of observed LogKI versus calculated LogKI for the 16 compounds using Eq. 3 excluding 

two outliers (C3 and C17). 

Literatures [30, 31 and 33] have shown that sulfonamide compounds bind as anions to the Zn(II) ion 

within the CAII active site. They concluded that inhibition properties of these compounds can be 

accounted by several factors. These include the stability of CAII enzyme-sulfonamides compound 

complex being stabilized by a large favorable enthalpy change associated with the binding of the 

sulfonamide to the CAII. Another factor that influences inhibition properties of the compounds, weak 

coordination bond between the active site Zn (II) ion and sulfonamide nitrogen is enormously 

supplemented by the cooperative interaction of the organic moieties of the inhibitor with the amino 

acid side chains from the active site. The models in Table 3, we produced, accord with these literatures. 

According to our models, inhibition activity of compounds is mainly affected thermo dynamical 

properties such as total energy, entropy and polarity of molecule (dipole moment) and reactivity of 

molecules (electronegativity and LUMO energy).  

4. Conclusions 

The results given above indicate that QSAR of inhibition constant (LogKI) of sulfonamides 

compounds to CA-II isozyme can be modeled with the DFT-based quantum mechanical molecular 

descriptors. The best produced model is a penta-parametric regression equation with very good 

statistical fit and good predictive power as evident from its R2=0.943, F=33.2, s2=0.067 and 

R2
CV=0.855 values. An analysis of descriptors that involved in the models, indicates that inhibition of 

CA-II is influenced by energy, entropy, polarity and reactivity indexes of sulfonamide compounds. 
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