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Abstract: The aim of this study was to investigate the characteristic polynomials resulting 

from the molecular graphs used as molecular descriptors in the characterization of the 

properties of chemical compounds. A formal calculus method is proposed in order to 

identify the value of the characteristic polynomial parameters for which the extremum 

values of the squared correlation coefficient are obtained in univariate regression models. 

The developed calculation algorithm was applied to a sample of nonane isomers. The 

obtained results revealed that the proposed method produced an accurate and unique 

solution for the best relationship between the characteristic polynomial as molecular 

descriptor and the property of interest. 
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1. Introduction 

Polynomials derived from molecular graphs and matrixes find applications in chemistry for the 

construction of structural descriptors and topological indices [1], in QSPR (quantitative structure-
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property relationships) and QSAR (quantitative structure-activity relationships) models [2,3]. The 

characteristic polynomial of a molecular graph is a structural invariant, defined as [4,5]: 

ChP(G, X) = det[XI – A(G)] (1)                       

where A(G) is the adjacency matrix (A being a square matrix) of the molecular graph G, and I is the 

identity matrix.  

Crum-Brown and Fraser published in 1898 the observation that the physiological action of  

ammonium salts is a function of their chemical composition and structure [6]. Since then, many indices 

have been introduced and used in the characterization of compounds’ properties such as the Wiener 

index [7,8], Hosoya index [9,10], Zagreb index [11,12], Wiener-Hosoya index [13,14], Randic� index 

[15,16], Narumi-Katayama index [17,18], Pogliani index [19], Schultz index [20], Gutman index [21], 

Harary H index [22], Cluj index [23], Balaban index [24], Xu index [25], and others. 

Hosoya first reported the use of the absolute values of the coefficients of the characteristic 

polynomial of a non-ciclic chemical compound in 1971 [9], known today as the Hosoya index Z. Since 

then, the analysis of the correlation between Z and many thermodynamic properties has been 

thoroughly studied [26-31]. However, a polynomial is a more general treatment than an index. The 

characteristic polynomial is just one polynomial calculated on a molecular structure [5]. The advantage 

of polynomials is the reduction of degeneration. Our goal was to create a procedure for creating and 

using a polynomial formula to correlate the structure with a given property through the value of 

polynomials at a point. This concept generalizes somehow the use of polynomials in regression 

analysis. Moreover, the desired functionality of our application is to find all singularities of 

polynomials derivatives, in order to answer our proposed question: How Good Can the Characteristic 

Polynomial Be for Correlations? 

Starting with the characteristic polynomials as molecular descriptors in characterization of  

structure-property relationships, the aim of the research was to develop a formal calculation algorithm 

able to identify the value of the characteristic polynomial parameter for which the extremum values of 

squared correlation coefficients are obtained in univariate regression models. 

2. Statement of the Problem and Mathematical Solution 

Let’s consider a sample of n compounds. The molecule will be abbreviated as ci where i is an 

integer and takes values from 1 to n.  

The characteristic polynomial can be built and calculated based on the compound’s structure by 

using the following generic functions (where for the simplification all polynomials are of the same 

degree k): 

moli ChPi = a0iX
0 + a1iX

1 + a2iX
2 + …+ akiX

k (2)             

where aki are coefficients of the characteristic polynomial (a0i = the constant coefficient and aki = the 

leading coefficient, k = the degree of polynomial), ChPi are the characteristic polynomial functions, 

and X is a generic variable. 

Each chemical compound from the sample (ci) has a molecular structure (Si) and an associated 

property of interest (Yi). These can be written as: 

moli Yi Si (3)                       
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We have compounds (ci) with associated property of interest (Yi), and starting from their structure 

associated characteristic polynomials (ChPi): 

moli Yi ChPi(X) (4)                       

For characterization of the compounds’ property, the abstract function of the characteristic 

polynomial is not useful; the value associated with the characteristic polynomial function is necessary: 

moli Yi ChPi(x) (5)                       

where ChPi(x) is the value of the characteristic polynomial function associated to i molecule. 

A problem arises at this point: what is the value of X (X = x) for which the correlation between the 

property of interest and the characteristic polynomial function attain the maximum value? 

It is well known that the Pearson product-moment correlation coefficient is the most used 

correlation coefficient for quantitative variables. In our example this coefficient indicates the strength 

and direction of the linear relationship between property of interest and characteristic polynomial. 

Transforming the problem into a formula, the problem becomes: 

( ) ( ) ( )Y ChP(X)

Y ChP(X) Y ChP(X)

M (Y )(ChP(X)cov Y,ChP(X)
r Y,ChP(X)

− µ − µ
= =

σ σ σ σ
 

r(Y,ChP(X)) = max 

(6)                       

where cov is the covariance; σy, σChP(X) are the standard deviation of the property activity (Y) and 

characteristic polynomial (ChP(X)); M is the expected value of the variables Y and ChP(X); and µY, 

µChP(X) are the variables averages. 

The above parameters could be written as: µY = M(Y), σy
2 = M(Y)2 – M2(Y), and similarly µChP(X) = 

M(ChP(X)), σChP(X)
2 = M(ChP(X))2 –M2(ChP(X)). In these conditions, the formula of the correlation 

coefficient is: 

( ) ( ) ( )
2 2 2 2

M YChP(X) M(Y)M ChP(X)
r Y, ChP(X)

M(Y ) M (Y) M(ChP(X) ) M (ChP(X))

−
=

− −
 

r(Y, ChP(X)) = max 

(7)                       

To solve the problem it is necessary to find equations of unknown grade in X with real solutions. 

The formula: 

∂r/∂X = 0 → x1, …xj (8)                       

where ∂r/∂X = derivative of r(Y, ChP(X)), and j is an integer, gives the solutions for x1, …, xj. 

Note that it is difficult to work with r from Eq. (7); it is much easier to work with its squared value 

(r2). Using squared correlation coefficient (r2) instead of correlation coefficient (r), Eq. (8) becomes: 

∂r2/∂X = 2r∂r/∂X = 0 (9)                       

So, the roots x1, …, xj of ∂r(Y, ChP(X))/∂X = 0 will be between the roots of ∂r2(Y, ChP(X))/∂X = 0. 

In any case, not all roots of r2 = 0 (or r = 0) are of interest. Eq. (10) will provide all extremum points 

(Eq. (11)): 

∂(·)/∂X = 0 (10)                       

∂(·)(Y,ChP(X))/∂X|X=x = 0 ⇔ x is a extremum point of (·) (11)                       

where dot (·) designs any function (such as r, r2 in our case) 
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In order to find which among the solutions ({x1, …, xk}) of Eq. (11) are global maxima, the values 

of all r(Y,ChP(xk)) must be computed and from the obtained values the greatest ones must be selected: 

xj is a maximum (positive or negative) ⇔ r(Y,ChP(xj)) = max{r(Y,ChP(xk))} (12)                       

Assuming that there is a string of polynomials (as in Eq. (2)) with equal degree k: 

Pj = a0jX
0 + a1jX

1 + a2jX
2 + … + akjX

k (13)                       

the proposed implementation of the model uses the following elementary mathematical operations: 

÷ Multiplication: 
R = αPj = αa0jX

0 + αa1jX
1 + αa2jX

2 + …+ αakjX
k (14)                       

÷ Addition: 
R = Pi+Pj = (a0i+a0j)X

0 + (a1i+a1j)X
1 + (a2i+a2j)X

2 + … + (aki+akj)X
k (15)                       

÷ Average: 

R = M(Pi) = M(a0j)X
0 + M(a1j)X

1 + M(a2j)X
2 + … + M(akj)X

k (16)    

÷ Product: 

R = PiPj = (a0ia0j)X
0 + (a0ia1j+a1ia0j)X

1 + … + (akiakj)X
2k (17)                       

÷ Derivative: 

R = Pi' = a1jX
0 + 2a2jX

1 + … + kakjX
k-1 (18)                       

In order to solve Eq (9), a derivative of a fraction is also necessary: 

if R = (Pi/Pj)' = 0 then Pi'Pj-PiPj' = 0 (19)                       

The proposed calculus could be done with pen and paper, but is time consuming, especially when 

there are many compounds of interest. Thus, a formal computation method could help to find the exact 

and unique solution of the best relationship between characteristic polynomial and property of interest. 

3. Calculation Algorithm  

1. Parse polynomials formulas for all given molecules (ChPj, 1 ≤ j ≤ n); parse measured data values 

for given molecules (Yj, 1 ≤ j ≤ n). Comments: 

a.  The polynomials are stored as sums of monomials; 

b.  Every monomial is in fact a pair of two values: the power of variable (X) and the coefficient; 

c.  A measured data value is assigned with a polynomial through j value (where j is an integer and 

takes value from 1 to n). 

2. Search in the polynomial formulas and remove the identical monomials (as in Table 1). Comments: 

a. It is safe to remove the repeated monomials (such for example the X9 or - 8·X7, see Table 1). 

The calculations made by using Eq. (7) revealed that the values of correlation coefficients are 

not affected; 

b. It is better to remove the identical monomials in order to reduce the calculation complexity, 

magnitude of numbers, and errors propagation. 

3. Compute the polynomial of squared correlation coefficient formula as pair of two polynomials: 

numerator and denominator. Comment: The following procedures has been used: 

a. Compute the mean and dispersion of Y (as numbers): mY = M(Y); and d2Y = M(Y2)-M2(Y); 

b. Compute the average polynomial (as polynomial): MChP(X) = M(ChP(X)); 
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c. Compute the average of YChP(X) products (as polynomial): MYChP(X) = M(YChP(X)); 

d. Construct square polynomials of ChPj
2(X) and average them (as polynomial): MChP2(X) = 

M(ChP2(X)); 

e. Make the product of MChP (as polynomial): M2ChP(X) = MChP(X)·MChP(X); 

f. Change the sign of M2ChP (as polynomial): M2ChP(X) = (-1)·M2ChP(X); 

g. Add M2ChP to MChP2 (as polynomial): MChP2(X) = MChP2(X) + M2ChP(X); 

h. Multiply the obtained MChP2 by d2Y: MChP2(X) = (d2Y)·MChP2(X) // Comment: now the 

MChP2(X) polynomial contains the denominator of r2; 

i. Multiply MChP with (-mY): MChP(X) = (-mY)·MChP(X); 

j. Add the obtained MChP(X) polynomial to the MYChP(X) polynomial: MYChP(X) = MYChP(X) 

+ MChP(X) // Comment: now the MYChP(X) contains the numerator of r; 

k. Square the obtained MYChP(X) polynomial: MYChP(X) = MYChP(X)·MYChP(X) // Comment: 

now the MYChP(X) polynomial contains the numerator of r2; 

l. Return the pair of polynomials (MYChP(X),MChP2(X)). 

4. Calculate derivative of the numerator of r2 (as polynomial): numerator1(X) = ∂numerator(X)/∂X; 

5. Calculate derivative of the denominator of r2 (as polynomial): denominator1(X) = 

∂denominator(X)/∂X; 

6. Calculate the product between numerator1(X) and denominator(X) (as polynomial): product1(X) = 

numerator1(X)·denominator(X); 

7. Calculate the product between numerator(X) and denominator1(X) (as polynomial): product2(X) = 

numerator(X)·denominator1(X); 

8. Change the sign of the product2(X): product2(X) = (-1)·product2(X); 

9. Add the product2(X) to the product1(X) and store the result in the r2_1_numerator: 

r2_1_numerator(X) = product1(X) + product2(X); 

10. Factorize r2_1_numerator(X) if it is possible (usually is easy to factorize with X if this factor is 

contain in it, so will factorize on X); let Xp be the factor; delete the factor; thus the r2_1_numerator 

became: r2_1_numerator(X) = r2_1_numerator(X)/Xp; 

11. Find roots of equation r2_1_numerator(X) = 0 and return them as pairs (xi,εi) 1 ≤ i ≤ m where in 

fact r2_1_numerator(xi) = εi. Comments: 

a. The procedure of finding roots is an approximate one for at least two reasons. First, the M(·) 

operator is used, so the coefficients cannot be integers. Second, even if the S(·) operator (sum 

operator) is used instead of the M(·) operator in order to obtain integer coefficients, the degree 

of the obtained polynomial is too great to apply some nonnumeric methods here (for our 

example the degree of the obtained polynomial equation was 12); 

b. The returning of the εi is used in order to know how close the exact solution is to the result; 

c. The procedure of finding roots is a recursive one and it also calculates and uses all superior 

derivatives of the polynomial in order to find all real roots of the equation. 

12. Use the set of roots {xi}1 ≤ i ≤ m and pairs of polynomials (numerator(X),denominator(X)) to 

calculate the value of r2 in the following points: {xi}1 ≤ i ≤ m → {r2(xi)}1 ≤ i ≤ m 

13. Display the results: {xi,εi,r
2(xi)}1 ≤ i ≤ m 
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The above-presented algorithm has been implemented using PHP language (Hypertext Preprocessor). 

In order to illustrate its effectiveness, the program was run for a sample of nonane isomers, the Henry’s 

law constant (solubility) being the property of interest. 

4. Henry’s Law Constant of Nonane Isomers: Computational Results and Discussion 

Nonane isomers are acyclic saturated hydrocarbon structures with the general chemical formula 

C9H20. There are thirty-five compounds in this class: 4-methyloctane (c1), 3-ethyl-2,3-dimethylpentane 

(c2), 3,3-diethylpentane (c3), 2,2,3,3-tetramethyl-pentane (c4), 2,3,3,4-tetramethylpentane (c5), nonane 

(c6), 2,3,3-trimethylhexane (c7), 3,3,4-trimethylhexane (c8), 3-ethyl-3-methylhexane (c9), 2,2,3,4-tetra-

methylpentane (c10), 3,4-dimethylheptane (c11), 2,3,4-trimethylhexane (c12), 3-ethyl-4-methylhexane 

(c13), 3-ethyl-2,2-dimethylpentane (c14), 3-ethyl-2,4-dimethylpentane (c15), 2,3-dimethylheptane (c16), 

3,3-dimethylheptane (c17), 4,4-dimethylheptane (c18), 3-ethylheptane (c19), 4-ethyl-heptane (c20), 2,2,3-

trimethylhexane (c21), 2,2,5-trimethylhexane (c22), 2,4,4-trimethylhexane (c23), 3-ethyl-2-methylhexane 

(c24), 2,2,4,4-tetramethylpentane (c25), 3-methyloctane (c26), 2,5-dimethylheptane (c27), 3,5-dimethyl-

heptane (c28), 2,3,5-trimethylhexane (c29), 2-methyloctane (c30), 2,2-dimethylheptane (c31), 2,4-

dimethylheptane (c32), 2,6-dimethylheptane (c33), 2,2,4-trimethyl-hexane (c34), and 4-ethyl-2-methyl-

hexane (c35), respectively. The Henry’s law constant (solubility of a gas in water) of alkanes expressed 

as trace gases of potential importance in environmental chemistry was the property of interest. The 

measured values were taken from a previously reported research [32] (kH, Table 1) and were given as 

M/atm unit measurements (M/atm = [molaq/dm3
aq]/atm). 

In the fist step of the calculation algorithm, the polynomial formulas for all thirty-five compounds 

and associated measured Henry’s law constants were parsed. After the second step of the computing 

algorithm, two identical monomials (X9 and -8·X7) were identified and those monomials were removed 

from the polynomials (see Table 1, characteristic polynomials after second step - last column). 

The polynomial of the squared correlation coefficient resulting from the third step of the 

calculation algorithm was of the tenth degree: 

r2(P(X)) = (X2·0.55… - X4·0.94… - X6·0.39… + X8·0.66… + X10·0.27…)/ 

/(X2·14.19… - X4·56.43… + X6·100.25… - X8·52.97… + X10·9.93…) 
(20) 

The derivative of the r2 numerator was of the twelfth degree: 

r2'(P(X)) = 0 

<=> 

(-0.84…)X0 + (5.74…)X2 + (-10.9…)X4 + (8.47…)X6 + (-1.26…)X8 + (-2.97…)X10 + X12 = 0 

(21) 

Note that just the first significant digits were displayed in Eqs. (20) and (21) (the “…” sign was written 

when more digits were available). 

The solutions of roots for the squared correlation coefficient obtained by the proposed algorithm 

for the sample of nonane isomers are presented in Table 2, where the εi parameter shows how closely 

the obtained value is to the exact solution r2(xi)
'
X = 0 . Indeed, the r2_1_numerator(xi) = εi was true, 

where the r2_1_numerator was from the eleventh step of the proposed algorithm and represented a part 

of parameter depicted above. 
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Table 1. Nonane isomers: Henry’s law constant and characteristic polynomials. 

Comp. Abbrev. kH(·10-5) [M/atm]* Characteristic polynomial 
After second step of  

calculation algorithm 

c1 10 X9 - 8·X7 + 20·X5 - 17·X3 + 3·X  20·X5 - 17·X3 + 3·X  

c2 15 X9 - 8·X7 + 17·X5 - 12·X3 + 2·X 17·X5 - 12·X3 + 2·X 

c3 15 X9 - 8·X7 + 16·X5 - 8·X3 16·X5 - 8·X3 

c4 16 X9 - 8·X7 + 15·X5 - 6·X3 15·X5 - 6·X3 

c5 16 X9 - 8·X7 + 18·X5 - 16·X3 + 5·X 18·X5 - 16·X3 + 5·X 

c6 17 X9 - 8·X7 + 21·X5 - 20·X3 + 5·X 21·X5 - 20·X3 + 5·X 

c7 17 X9 - 8·X7 + 17·X5 - 10·X3 17·X5 - 10·X3 

c8 17 X9 - 8·X7 + 17·X5 - 11·X3 + 2·X 17·X5 - 11·X3 + 2·X 

c9 17 X9 - 8·X7 + 18·X5 - 14·X3 + 3·X 18·X5 - 14·X3 + 3·X 

c10 17 X9 - 8·X7 + 16·X5 - 6·X3 16·X5 - 6·X3 

c11 18 X9 - 8·X7 + 19·X5 - 15·X3 + 3·X 19·X5 - 15·X3 + 3·X 

c12 18 X9 - 8·X7 + 18·X5 - 12·X3 + 2·X 18·X5 - 12·X3 + 2·X 

c13 18 X9 - 8·X7 + 19·X5 - 16·X3 + 4·X 19·X5 - 16·X3 + 4·X 

c14 18 X9 - 8·X7 + 17·X5 - 10·X3 17·X5 - 10·X3 

c15 18 X9 - 8·X7 + 18·X5 - 12·X3 18·X5 - 12·X3 

c16 19 X9 - 8·X7 + 19·X5 - 14·X3 + 2·X 19·X5 - 14·X3 + 2·X 

c17 19 X9 - 8·X7 + 18·X5 - 12·X3 + 2·X 18·X5 - 12·X3 + 2·X 

c18 19 X9 - 8·X7 + 18·X5 - 12·X3 18·X5 - 12·X3 

c19 19 X9 - 8·X7 + 20·X5 - 18·X3 + 5·X 20·X5 - 18·X3 + 5·X 

c20 19 X9 - 8·X7 + 20·X5 - 18·X3 + 4·X 20·X5 - 18·X3 + 4·X 

c21 19 X9 - 8·X7 + 17·X5 - 9·X3 17·X5 - 9·X3 

c22 19 X9 - 8·X7 + 17·X5 - 6·X3 17·X5 - 6·X3 

c23 19 X9 - 8·X7 + 17·X5 - 8·X3 17·X5 - 8·X3 

c24 19 X9 - 8·X7 + 19·X5 - 15·X3 + 2·X 19·X5 - 15·X3 + 2·X 

c25 19 X9 - 8·X7 + 15·X5 15·X5 

c26 20 X9 - 8·X7 + 20·X5 - 17·X3 + 4·X 20·X5 - 17·X3 + 4·X 

c27 20 X9 - 8·X7 + 19·X5 - 13·X3 + 2·X 19·X5 - 13·X3 + 2·X 

c28 20 X9 - 8·X7 + 19·X5 - 14·X3 + 3·X 19·X5 - 14·X3 + 3·X 

c29 20 X9 - 8·X7 + 18·X5 - 10·X3 18·X5 - 10·X3 

c30 21 X9 - 8·X7 + 20·X5 - 16·X3 + 2·X 20·X5 - 16·X3 + 2·X 

c31 21 X9 - 8·X7 + 18·X5 - 10·X3 18·X5 - 10·X3 

c32 21 X9 - 8·X7 + 19·X5 - 13·X3 19·X5 - 13·X3 

c33 21 X9 - 8·X7 + 19·X5 - 12·X3 19·X5 - 12·X3 

c34 21 X9 - 8·X7 + 17·X5 - 7·X3 17·X5 - 7·X3 

c35 21 X9 - 8·X7 + 19·X5 - 14·X3 + 2·X  19·X5 - 14·X3 + 2·X  
* M/atm = (molaq/dm3

aq)/atm 
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Table 2. Algorithm of calculation: solutions for nonane isomers. 

Solution xi εi r2(xi) 

1.1 - 1.656… - 5.5…·10-11 0.296… 

2.1 - 0.856… 1.1…·10-13 0 

3.1 - 0.481… 2.7…·10-13 0.055… 

3.2 0.481… 2.7…·10-13 0.055… 

2.2 0.856… 1.1…·10-13 0 

1.2 1.656… - 5.5…·10-11 0.296… 

xi = root; r2(xi) = squared correlation coefficient; εi = numerical error;  

… = for all numbers only first significant digits were presented 

 

As it can be observed from Table 2, the proposed algorithm obtained pairs of roots (as negative and 

positive values: 1.1 - 1.2, 2.1 - 2.2, and 3.1 - 3.2, see the values from the xi column). The values of 

squared correlation coefficients are local extremum values (maximum and/or minimum values): one 

negative (for pair of roots of ± 0.856…) and two positive (one minimum for the ± 0.481… pair of roots 

and one maximum for the ± 1.656… pair of roots). These are the expected results taking into account 

that the r2_1_numerator(X) is a polynomial pair of X.  

Analyzing the results presented in Table 2 it can be observed that, for the identified roots, the 

numerical errors of the models were in all cases less than 0.0001. These results sustain the power of the 

model to identify the imposed solutions. Looking at the values of the obtained squared correlation 

coefficients it can be observed that the proposed method identified one maximum value (for roots ± 

1.656…) and two minimum values (± 0.856, and ± 0.481) (note that these are local extremum values). 

Regarding the maximum value of the squared correlation coefficient, it can be observed that is 0.296 

and, from the statistical point of view, revealed a week linear relationship between the characteristic 

polynomial and Henry’s law constant for the studied alkanes. It must be noted that the aim of the paper 

was not to obtained a significant correlation coefficient; it was to develop and implement a formal 

algorithm able to identify the characteristic polynomial parameter for which the extremum values (as 

maximum and minimum values) for the correlation coefficient are obtained in univariate regression 

models, this aim being accomplished. 

Regarding the proposed method one question can arise: why use the proposed method when the 

Hosoya Z index [9] can be used in QSPR without using a computer? First, the use of characteristic 

polynomials instead of the Z index reduces the degeneration. Second, the proposed model is able to 

find all singularities of polynomial derivatives. Last in sequence but not least in importance, the 

proposed computer based method is able to work with small as well as with large sample sizes without 

any involvement of human time or abilities, eliminating any human errors. 

It is well known that the squared correlation coefficients increase with the number of variables used 

by a linear regression model [33]. Starting from this hypothesis it will be interesting to analyze the 

applicability of the proposed model to multivariate regression models. The next plan of our research 

refers the implementation of a similar computational algorithm for multivariate models when 

characteristic polynomials are use as molecular descriptors. Another question that needs to be 
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answered refers the usefulness of the method for characterization of relationships between compound’s 

activity and structure, an approach that will be investigated in future research. 

5. Concluding Remarks 

The proposed calculation algorithm is able to obtain unique and reproducible solutions. The 

solutions are unique, meaning that for a sample of compounds with a property of interest the maximum 

value of the squared correlation coefficient between property and characteristic polynomials is always 

given by a single pair of roots. The computation algorithm can be applicable on any class of 

compounds when the characteristic polynomials are used as descriptors in analysis of the relationship 

between compounds’ structure and their properties. 
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