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Abstract: The aim of this study was to investigate the charétic polynomials resulting
from the molecular graphs used as molecular descsign the characterization of the
properties of chemical compounds. A formal calcutnsthod is proposed in order to
identify the value of the characteristic polynompdrameters for which the extremum
values of the squared correlation coefficient das&@imed in univariate regression models.
The developed calculation algorithm was appliedatsample of nonane isomers. The
obtained results revealed that the proposed meproduced an accurate and unigque
solution for the best relationship between the attaristic polynomial as molecular
descriptor and the property of interest.
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1. Introduction

Polynomials derived from molecular graphs and masifind applications in chemistry for the
construction of structural descriptors and topatabiindices [1], in QSPR (quantitative structure-
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property relationships) and QSAR (quantitative ctnce-activity relationships) models [2,3]. The
characteristic polynomial of a molecular graph sractural invariant, defined as [4,5]:
ChP(G, X) = det[Xl — A(G)] (1)

where A(G) is the adjacency matrix (A being a squaatrix) of the molecular graph G, and | is the
identity matrix.

Crum-Brown and Fraser published in 1898 the obsenvathat the physiological action of
ammonium salts is a function of their chemical cosipon and structure [6]. Since then, many indices
have been introduced and used in the charactenizafi compounds’ properties such as the Wiener
index [7,8], Hosoya index [9,10], Zagreb index [12], Wiener-Hosoya index [13,14], Randiwex
[15,16], Narumi-Katayama index [17,18], Poglianiéx [19], Schultz index [20], Gutman index [21],
Harary H index [22], Cluj index [23], Balaban indg24], Xu index [25], and others.

Hosoya first reported the use of the absolute wlok the coefficients of the characteristic
polynomial of a non-ciclic chemical compound in 199], known today as the Hosoya index Z. Since
then, the analysis of the correlation between Z ammhy thermodynamic properties has been
thoroughly studied [26-31]. However, a polynomisla more general treatment than an index. The
characteristic polynomial is just one polynomiadcatated on a molecular structure [5]. The advaatag
of polynomials is the reduction of degenerationr Qoal was to create a procedure for creating and
using a polynomial formula to correlate the struetwith a given property through the value of
polynomials at a point. This concept generalizesiedmw the use of polynomials in regression
analysis. Moreover, the desired functionality ofr capplication is to find all singularities of
polynomials derivatives, in order to answer ourgased question: How Good Can the Characteristic
Polynomial Be for Correlations?

Starting with the characteristic polynomials as ecalar descriptors in characterization of
structure-property relationships, the aim of theesech was to develop a formal calculation algorith
able to identify the value of the characteristitypomial parameter for which the extremum values of
squared correlation coefficients are obtained inamate regression models.

2. Statement of the Problem and Mathematical Solutin

Let’s consider a sample of compounds. The molecule will be abbreviatedcagherei is an
integer and takes values frdio n.

The characteristic polynomial can be built and walied based on the compound’s structure by
using the following generic functions (where foe teimplification all polynomials are of the same
degreek):

mol  ChR = aX? + a X! + ayX? + ...+ giX* @)

whereay; are coefficients of the characteristic polynonfal = the constant coefficient arag = the
leading coefficientk = the degree of polynomiallzhP, are the characteristic polynomial functions,
and X is a generic variable.
Each chemical compound from the sampg llas a molecular structur§) and an associated
property of interestY;). These can be written as:
moli Yi S (3)
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We have compounds;] with associated property of intere3f)( and starting from their structure
associated characteristic polynomial$P):
mol; Y; ChR(X) (4)

For characterization of the compounds’ propertye #ibstract function of the characteristic
polynomial is not useful; the value associated \hth characteristic polynomial function is necegsar
mol; Y; ChR(x) (5)

whereChPR(X) is the value of the characteristic polynomial fiimt associated tomolecule.

A problem arises at this point: what is the valiX@X = x) for which the correlation between the
property of interest and the characteristic polyr@bifiunction attain the maximum value?

It is well known that the Pearson product-momentradation coefficient is the most used
correlation coefficient for quantitative variablés.our example this coefficient indicates the rstyth
and direction of the linear relationship betweeopgrty of interest and characteristic polynomial.
Transforming the problem into a formula, the probleecomes:
cov(Y,ChP(X) _ M ((Y =, )(ChP(X)~Herpeo)

OyOchp(x) OvOchp(x) (6)
r(Y,ChP(X)) = max

r(Y,ChP(X)) =

where cov is the covariancegy, achp(x) are the standard deviation of the property agtig) and
characteristic polynomialQhP(X); M is the expected value of the variab¥esind ChP(X) and uy,
Uchpx)are the variables averages.

The above parameters could be writterygs: M(Y), 6,° = M(Y)* — MX(Y), and similarlyuchpx) =
M(ChP(X)) ochexi = M(ChP(X)} —MA(ChP(X)) In these conditions, the formula of the correfati
coefficient is:

M (YChP(X)) - M(Y)M (ChP(X))

JM(Y?) =M AY) \M(ChP(X) ) -M {ChP(X)) ™
r(Y, ChP(X)) = max

r(Y, ChP(X)) =

To solve the problem it is necessary to find equatiof unknown grade iX with real solutions.
The formula:
OrloX = 0 — X1, ...X; (8)

whereor/0X = derivative ofr(Y, ChP(X)) andj is an integer, gives the solutions far ..., X.
Note that it is difficult to work withr from Eq. (7); it is much easier to work with itsusged value
(r?). Using squared correlation coefficien)(instead of correlation coefficient)( Eq. (8) becomes:
or’loX = 2rarloX = 0 @)

So, the roots;, ..., x of or(Y, ChP(X))6X = 0 will be between the roots af2(Y, ChP (X)X = 0.
In any case, not all roots of = 0 (orr = 0) are of interest. Eq. (10) will provide all extremyoints

(Eq. (11)):
o(-)loX =0 (10)

o()(Y,ChP(X))oX|x=x = 0 = X is a extremum point of)( (11)

where dot (-) designs any function (such a&in our case)
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In order to find which among the solutioqgy( ..., Xx}) of Eqg. (11) are global maxima, the values
of all r(Y,ChP(x)) must be computed and from the obtained valuegrtgtest ones must be selected:
X; iIs @ maximum (positive or negative) r(Y,ChP(%)) = max{r(Y,ChP(x))} (12)

Assuming that there is a string of polynomialsifegq. (2)) with equal degrde
P = apX”+ ayX® + gyX? + ..+ agX" (13)

the proposed implementation of the model usesdl@fing elementary mathematical operations:
+ Multiplication:

R =aP, = aagX? + aayX! + oagX® + ...+ aaqu (14)

+ Addition:
R = R+P) = (aytag)X° + (atay) X" + (aitag)X” + ... + (&+ag)X" (15)

+ Average:
R = M(R) = M(a0)X° + M(a)X" + M(a)X* + ... + M(aq)X" (16)

+ Product:
R = RP, = (aniao)X° + (avidajrauao) X" + ... + (&idg)X™ (17)

+ Derivative:

R=PR =aX°+ 2gX" + ... + kagX** (18)

In order to solve Eq (9), a derivative of a fractis@lso necessary:
if R = (R/P)" = 0 then PP-PPj'=0 (19)

The proposed calculus could be done with pen andrpapt is time consuming, especially when
there are many compounds of interest. Thus, a focoraputation method could help to find the exact
and unique solution of the best relationship betwaearacteristic polynomial and property of intéres

3. Calculation Algorithm

=

Parse polynomials formulas for all given molesuChR, 1 <j < n); parse measured data values
for given moleculesyj, 1 <j <n). Comments:
a. The polynomials are stored as sums of monomials;
b. Every monomial is in fact a pair of two valutte power of variableX) and the coefficient;
c. A measured data value is assigned with a patyaahroughj value (wherg is an integer and
takes value fron to n).
2. Search in the polynomial formulas and removeadkatical monomials (as in Table 1). Comments:
a.lIt is safe to remove the repeated monomialsh(facexample the Xor - 8X’, see Table 1).
The calculations made by using Eqg. (7) revealedttiewalues of correlation coefficients are
not affected;
b.It is better to remove the identical monomialsorder to reduce the calculation complexity,
magnitude of numbers, and errors propagation.
Compute the polynomial of squared correlatiorffocient formula as pair of two polynomials:
numerator and denominator. Comment: The followiragedures has been used:
a. Compute the mean and dispersiolY ¢dis numbersmY = M(Y) andd2Y = M(Y)-M(Y);
b.Compute the average polynomial (as polynomMJhP(X) = M(ChP(X))

w
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c. Compute the average 6ChP(X)products (as polynomialMYChP(X) = M(YChP(X))

d.Construct square polynomials GhF}Z(X) and average them (as polynomid)ChP2(X) =
M(ChP(X));

e. Make the product dIChP (as polynomial)M2ChP(X) = MChP(XMChP(X)

f. Change the sign dfl2ChP(as polynomial)M2ChP(X) = (-1)M?ChP(X)

g.Add M2ChP tdMIChP2(as polynomial)MChP2(X) = MChB(X) + M*ChP(X)

h.Multiply the obtainedVIChP2 by d2Y MChP2(X) = (d2Y’MChF*(X) // Comment: now the
MChP2(X)polynomial contains the denominatorréf

i. Multiply MChP with (-mY) MChP(X) = (-mYMChP(X)

j- Add the obtainedMChP(X)polynomial to thelY ChP(X)polynomial:MY ChP(X) = MYChP(X)
+ MChP(X)// Comment: now th1Y ChP(X)contains the numerator of r;

k.Square the obtainddY ChP(X)polynomial:MYChP(X) = MYChP(XMYChP(X)// Comment:
now theMY ChP(X)polynomial contains the numeratorréf

|. Return the pair of polynomial8AY ChP(X),MChP2(X)

4. Calculate derivative of the numeratordfas polynomial)numerator1(X) =onumerator(X)dX;

5. Calculate derivative of the denominator of (as polynomial): denominatorl(X) =
odenominator(XyX;

6. Calculate the product betweeameratorl(X)anddenominator(X)as polynomial)product1(X) =
numeratorl(X)xenominator(X)

7. Calculate the product betweeamerator(X)anddenominatorl(X)as polynomial)product2(X) =
numerator(X)denominatorl1(X)

8. Change the sign of tipeoduct2(X) product2(X) = (-1)product2(X)

9. Add the product2(X) to the productl(X) and store the result in the€2_1 numeratar
r2_1 numerator(X) = product1(X) + product2(X)

10. Factorize2_1 numerator(X)f it is possible (usually is easy to factorizethwiX if this factor is
contain in it, so will factorize on X); let° be the factor; delete the factor; thus thel numerator
becamer2_1 _numerator(X) = r2_1_numerator(X¥X

11. Find roots okquation r2_1 numerator(X) = @nd return them as pairg,§) 1 <i < mwhere in
factr2_1 numerator( = ¢. Comments:

a. The procedure of finding roots is an approxinwate for at least two reasons. First, g)
operator is used, so the coefficients cannot kegers. Second, even if ti&) operator (sum
operator) is used instead of thN¥-) operator in order to obtain integer coefficiebe degree
of the obtained polynomial is too great to applynsononnumeric methods here (for our
example the degree of the obtained polynomial eguatas 12);

b.The returning of the is used in order to know how close the exact gmius to the result;

c. The procedure of finding roots is a recursive and it also calculates and uses all superior
derivatives of the polynomial in order to find edlal roots of the equation.

12. Use the set of roofxi}1 < i < m and pairs of polynomialsngmerator(X),denominator(X)}o
calculate the value of in the following points{x}1 <i<m— {r’()}1<i<m

13. Display the result$x,s;, (%)} 1<i<m



Int. J. Mol. Sci.2007, 8 340

The above-presented algorithm has been implemersiad ®HP language (Hypertext Preprocessor).
In order to illustrate its effectiveness, the peogrwas run for a sample of nonane isomers, theyHenr
law constant (solubility) being the property ofardst.

4. Henry’s Law Constant of Nonane Isomers: Computabnal Results and Discussion

Nonane isomers are acyclic saturated hydrocarbmictstes with the general chemical formula
CoHo. There are thirty-five compounds in this class: dtmgloctane (9, 3-ethyl-2,3-dimethylpentane
(c2), 3,3-diethylpentane § 2,2,3,3-tetramethyl-pentane;),c2,3,3,4-tetramethylpentanes)cnonane
(ce), 2,3,3-trimethylhexane £ 3,3,4-trimethylhexane {5 3-ethyl-3-methylhexane dx 2,2,3,4-tetra-
methylpentane (g), 3,4-dimethylheptane {9, 2,3,4-trimethylhexane {g, 3-ethyl-4-methylhexane
(c13), 3-ethyl-2,2-dimethylpentane i, 3-ethyl-2,4-dimethylpentane i}, 2,3-dimethylheptane {g),
3,3-dimethylheptane (g, 4,4-dimethylheptane {g), 3-ethylheptane (g), 4-ethyl-heptane {g), 2,2,3-
trimethylhexane (g), 2,2,5-trimethylhexane 48, 2,4,4-trimethylhexane £¢, 3-ethyl-2-methylhexane
(c2q), 2,2,4,4-tetramethylpentane,d; 3-methyloctane ¢g), 2,5-dimethylheptane £§), 3,5-dimethyl-
heptane (&), 2,3,5-trimethylhexane £§), 2-methyloctane ¢g), 2,2-dimethylheptane {9, 2,4-
dimethylheptane ¢g), 2,6-dimethylheptane {¢), 2,2,4-trimethyl-hexane {g, and 4-ethyl-2-methyl-
hexane (g), respectively. The Henry's law constant (solupibf a gas in water) of alkanes expressed
as trace gases of potential importance in envirowaheehemistry was the property of interest. The
measured values were taken from a previously regadsearch [32k(, Table 1) and were given as
M/atm unit measurements (M/atm = [rmlﬂm3aa]/atm).

In the fist step of the calculation algorithm, th@ynomial formulas for all thirty-five compounds
and associated measured Henry's law constants peesed. After the second step of the computing
algorithm, two identical monomials Pand -8X") were identified and those monomials were removed
from the polynomials (see Table 1, characteristigrpmmials after second step - last column).

The polynomial of the squared correlation coeffitieasulting from the third step of the
calculation algorithm was of the tenth degree:

rA(P(X)) = (X%0.55... - X-0.94... - X%-0.39... + ¥.0.66... + X°0.27...)/

/(X?14.19... - ¥56.43... + ¥-100.25... - 252.97... + ¥°9.93..)) (20)
The derivative of the’> numerator was of the twelfth degree:
r*(P(X)) =0
<=> (21)

(-0.84..)X° + (5.74..)% + (-10.9..)% + (8.47..)%€ + (-1.26.. )@ + (-2.97.. X%+ x*2= 0
Note that just the first significant digits werespliayed in Eqgs. (20) and (21) (the “...” sign was tent
when more digits were available).

The solutions of roots for the squared correlatioafficient obtained by the proposed algorithm
for the sample of nonane isomers are presentedble Pa where the; parameter shows how closely
the obtained value is to the exact solutiéx)x = O . Indeed, the2_1_numerator(} = & was true,
where the2_1 numeratowas from the eleventh step of the proposed algorénd represented a part
of parameter depicted above.
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Table 1.Nonane isomers: Henry’s law constant and charatiepolynomials.

Comp. Abbrev. ky(-10°) [M/atm]  Characteristic polynomial

After second step of
calculation algorithm

C1

C

C3

Cy

Cs

Ce

C7

Cs

Co

Cio
Ci1
Ci2
Ci3
Cia
Cis5
Ci6
Ca7
Cis
Cio
C20
Co1
Co2
Cos
Coa
Cos
Co6
Co7
Cos
Cag
Cso
Ca1
Ca2
Css3
Caa

Css

10
15
15
16
16
17
17
17
17
17
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
20
20
20
20
21
21
21
21
21
21

X% -8X"+20X°%-17X3+ 3X
X-8XT+ 17X%-12X3 + 2X
X°%-8X"+16X°-8X3
X%-8X"+15X°-6X3
X%-8X"+18X°%-16X3+5X
X% -8X"+21X%-20X3+ 5X
X%-8X"+17X®%-10X3
X-8XT+ 17X%- 11X3 + 2X
X%-8X"+18X°%-14X3+ 3X
X%-8X"+16X°-6X3
X%-8X"+19X°%-15X3+ 3X
X%-8X"+18X°%-12X3+ 2X
X%-8X"+19X°%-16X3+ 4X
X%-8X"+17X®%-10X3
X°-8X"+18X°%-12X3

X% -8X"+19X°%- 14X+ 2X
X%-8X"T+18X°%-12X3+ 2X
X%-8X"+18X°%-12X3

X2 -8X"+20X°-18X3%+5X
X2 -8X"+20X°-18X3 + 4X
X2 -8X T+ 17X%-9X3

X2 -8X "+ 17X%-6X3

X2 -8X "+ 17X%-8X3

X2 -8XT+19X%-15X3 + 2X
X2 -8X"+15X°

X2 -8XT+20X° - 17X3 + 4X
X2 -8XT+19X%-13X3+ 2X
X2 -8XT+19X°%- 14X3 + 3X
X2 -8X"+18X°%-10X3

X2 -8X"+20X%-16X3+ 2X
X2 -8X"+18X°%-10x3

X2 -8X"+19X%-13Xx3

X2 -8X"+19X5%-12X3

X2 -8X T+ 17X%-7X3
X%-8X"+19X°%-14X3+ 2X

20X°-17X3 + 3X
17:X%-12X3 + 2.X
16X° - 8X3
15X°-6X3
18X°%-16X3 + 5X
21:X°- 20X3 + 5X
17-X%-10X3
17:X%- 11:X3 + 2.X
18X°- 14X3 + 3X
16X°-6X3
19X°- 15X3 + 3X
18X°%-12X3+ 2X
19X°- 16X3 + 4X
17-X%-10X3
18X°-12X3
19X°- 14X3 + 2X
18X°%-12X3 + 2X
18X°-12X3
20-X° - 18X3 + 5X
20-X° - 18X3 + 4X
17:X°-9X3
17:X°- 6X3
17:X°- 8X3
19-X° - 15X3 + 2X
15X°
20X° - 17X3 + 4X
19-X° - 13X3 + 2X
19-X° - 14X3 + 3X
18X°- 10X3
20X° - 16X3 + 2X
18X°- 10X3
19X°-13X3
19X°-12X3
17:X°- 7-X3
19X°- 14X3 + 2.X

" M/atm = (mo}/dnr,g)/atm
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Table 2. Algorithm of calculation: solutions for nonane isers.

Solution X & r(x)
1.1 - 1.656... -5.5...10% 0.296...
2.1 - 0.856... 1.1..:10%" 0

3.1 -0.481... 2.7...10%3 0.055...
3.2 0.481... 2.7..:.10%3 0.055...
2.2 0.856... 1.1..:10% 0

1.2 1.656... -5.5...10% 0.296...

x; = root; £(x;) = squared correlation coefficiert;= numerical error;
... = for all numbers only first significant digitsane presented

As it can be observed from Table 2, the proposearigign obtained pairs of roots (as negative and
positive values: 1.1 - 1.2, 2.1 - 2.2, and 3.12, 3ee the values from tlkxecolumn). The values of
squared correlation coefficients are local extremuatlues (maximum and/or minimum values): one
negative (for pair of roots of + 0.856...) and twaspiwe (one minimum for the + 0.481... pair of roots
and one maximum for the = 1.656... pair of roots). Sehare the expected results taking into account
that ther2_1 numerator(X)s a polynomial pair oX.

Analyzing the results presented in Table 2 it carobserved that, for the identified roots, the
numerical errors of the models were in all casgs tean 0.0001. These results sustain the powleof t
model to identify the imposed solutions. Lookingtla¢ values of the obtained squared correlation
coefficients it can be observed that the proposethad identified one maximum value (for roots +
1.656...) and two minimum values (+ 0.856, and = Q)4®ote that these are local extremum values).
Regarding the maximum value of the squared coroelatoefficient, it can be observed that is 0.296
and, from the statistical point of view, revealeweek linear relationship between the characteristi
polynomial and Henry’s law constant for the studaicanes. It must be noted that the aim of the ppape
was not to obtained a significant correlation coedht; it was to develop and implement a formal
algorithm able to identify the characteristic paymal parameter for which the extremum values (as
maximum and minimum values) for the correlationfioent are obtained in univariate regression
models, this aim being accomplished.

Regarding the proposed method one question cae: avtsy use the proposed method when the
Hosoya Z index [9] can be used in QSPR without gigincomputer? First, the use of characteristic
polynomials instead of the Z index reduces the degsion. Second, the proposed model is able to
find all singularities of polynomial derivatives.a&t in sequence but not least in importance, the
proposed computer based method is able to work smitall as well as with large sample sizes without
any involvement of human time or abilities, elinting any human errors.

It is well known that the squared correlation cmééhts increase with the number of variables used
by a linear regression model [33]. Starting frons thypothesis it will be interesting to analyze the
applicability of the proposed model to multivariaggression models. The next plan of our research
refers the implementation of a similar computatioaggorithm for multivariate models when
characteristic polynomials are use as molecularcrgeers. Another question that needs to be
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answered refers the usefulness of the method fmacterization of relationships between compound’s
activity and structure, an approach that will beestigated in future research.

5. Concluding Remarks

The proposed calculation algorithm is able to obtamque and reproducible solutions. The
solutions are unique, meaning that for a sampt®ofpounds with a property of interest the maximum
value of the squared correlation coefficient betwpsoperty and characteristic polynomials is always
given by a single pair of roots. The computationoatgm can be applicable on any class of
compounds when the characteristic polynomials aesl s descriptors in analysis of the relationship
between compounds’ structure and their properties.
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