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Abstract: Dietary polyphenols represent a wide variety of poonds that occur in fruits,
vegetables, wine, tea, extra virgin olive oil, cblate and other cocoa products. They are
mostly derivatives and/or isomers of flavones, lsaines, flavonols, catechins and
phenolic acids, and possess diverse biologicalgrtigs such as antioxidant, antiapoptosis,
anti-aging, anticarcinogen, anti-inflammation, aattierosclerosis, cardiovascular
protection, improvement of the endothelial functias well as inhibition of angiogenesis
and cell proliferation activity. Most of these hagical actions have been attributed to their
intrinsic reducing capabilities. They may also ofiedirect protection by activating
endogenous defense systems and by modulating areltiginaling processes such as
nuclear factor-kappa B (NkB) activation, activator protein-1(AP-1) DNA bindjn
glutathione biosynthesis, phosphoinositide 3 (Ri8ase/protein kinase B (Akt) pathway,
mitogen-activated protein kinase (MAPK) proteingtfacellular signal-regulated protein
kinase (ERK), c-jun N-terminal kinase (JNK) and R3&ctivation, and the translocation
into the nucleus of nuclear factor erythroid 2 tedafactor 2 (Nrf2). This paper covers the
most recent literature on the subject, and desstite biological mechanisms of action and
protective effects of dietary polyphenols.

Keywords. Polyphenols; antioxidant; anticarcinogen; antiapsist cardiovascular
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1. Introduction

Oxidative stress results in oxidative alteratiobmiogical macromolecules such as lipids, proteins
and nucleic acids. It is considered to play a @lvoble in the pathogenesis of aging and degenerati
diseases [1-3]. In order to cope with an excedseefradicals produced upon oxidative stress, human
bodies have developed sophisticated mechanisnmadotaining redox homeostasis. These protective
mechanisms include scavenging or detoxificationreaictive oxygen species (ROS), blocking ROS
production, sequestration of transition metalswa as enzymatic and nonenzymatic antioxidant
defenses produced in the body, that is, endogef#bts and others supplied with the diet, namely,
exogenous ones. Among them, dietary polyphenolse haseen widely studied for their strong
antioxidant capacities and other properties by Wil functions are regulated [6,7].

Dietary polyphenols represent a group of secondaeyabolites which widely occur in fruits,
vegetables, wine, tea, extra virgin olive oil, cblate and other cocoa products. They are mostly
derivatives, and/or isomers of flavones, isoflawgrtavonols, catechins, and phenolic acids. Dyetar
polyphenols exhibit many biologically significantrictions, such as protection against oxidativessire
and degenerative diseases. Experimental data tedibhat most of these biological actions can be
attributed to their intrinsic antioxidantapabilities. Dietary polyphenols may offer an nedt
protection by activating endogenous defense systerdsby modulating cellular signaling processes
such as NReB activation, AP-1 DNA binding, glutathione bioskesis, PI3-kinase/Akt pathway,
MAPK proteins (ERK, JNK and P38) activation, and thanslocation into the nucleus of Nrf2 [8-10].

2. Classification and occurrence of dietary polyphenols

Dietary polyphenols are the most abundant antiosglan human diets. With over 8,000 structural
variants, they are secondary metabolites of plantk denote many substances with aromatic ring(s)
bearing one or more hydroxyl moieties. They aredsutded into groups (Figure 1) by the number of
phenolic rings and of the structural elements lin&tthese rings [11]: (1) The phenolic acids wiitie
subclasses derived from hydroxybenzoic acids swschadlic acid and from hydroxycinnamic acid,
containing caffeic, ferulic, and coumaric acid; (B¢ large flavonoid subclass, which includes the
flavonols, flavones, isoflavones, flavanones, acyhaidins, and flavanols; (3) the stilbenes; and (4
the lignans and the polymeric lignins.

The main dietary sources of polyphenols include es@mmmon fruits, vegetables and beverages.
Phenolic acids account for about one third of tteltintake and flavonoids account for the remanin
two thirds. The most abundant flavonoids in the dre flavanols (catechins plus proanthocyanidins),
anthocyanins and their oxidation products. The rpailgphenol dietary sources are fruit and beverages
(fruit juice, wine, tea, coffee, chocolate and beard, to a lesser extent vegetables, dry legumds a
cereals. Most of dietary polyphenols and their sesiin our diets were shown in Table 1.

2.1 Phenolic acids

A major class within the phenolic compounds is Hyelroxycinnamic acids, which are widely
distributed in plant kingdom. The major hydroxyanmc acid is caffeic acid, which occurs in foods
mainly as an ester with quinic acid called chlorageacid (5-caffeoylquinic acid). Chlorogenic acid
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and caffeic acid are antioxidanis vitro and they might inhibit the formation of mutagerind
carcinogenid\-nitroso compounds for the inhibitory effect on N@itrosation reactioim vitro.

Figure 1. Classification of dietary polyphenols.
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2.2 Flavonoids

Flavonoids are the most abundant polyphenols inadmumiiets, and are mainly divided into:
(a) anthocyanins, glycosylated derivative of anylaoadin, present in colorful flowers and fruits;
(b) anthoxanthins, a group of colorless compoundthér divided in several categories, including
flavones, flavans, flavonols, flavanols, isoflaveneand their glycosides. Flavonols are mainly
represented by myricetin, fisetin, quercetin aneinkpferol.

2.3 Silbenes

Stibenes are structurally characterized by theemes of a 1,2-diphenylethylene nucleus with
hydroxyls substitued on the aromatic rings, andtexi the form of monomers or oligomers. The best
known compound is trans-resveratrol, possessingyaltoxystilbene skelelton.
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2.4 Tannins

Tannins are a group of water-soluble polyphenolangamolecular weights from 500 to 3,000
which are subdivided into condensed and hydroles#dhnins, and commonly found complexed with
alkaloids, polysaccharides and proteins, partitutiie latter. On the basis of structural charastes
there are two groups, gallotannins and ellagitaoirhydrolysable tannins.

2.5 Diferuloylmethanes

Diferuloylmethanes are a small group of phenotimpounds with two aromatic rings substitued
with hydroxyls, and linked by aliphatic chain cantag carbonyl groups. There are also some other
polyphenols such as hydroxytyrosol, a simple podyyt presenting in olive fruits and olive oil [13]1

Table 1. Classification and sources of dietary polyphenols

Class and subclass Dietary polyphenal Foods or beverages Ref

Flavonoids

Anthocyanidins Cyanidin 3-galactoside Fruits: blackberries,black currant,blueberries, blackpgra 6
Cyanidin 3-glucoside elderberries,strawberries, cherries, plums, cragbpomegranate | 14
Cyanidin 3-arabinoside | juice, raspberry 15
Cyanidin 3-xyloside Others: red wine 16
Malvidin
Delphinidin
Pelargonidin

Anthoxanthins

Flavonols Myricetin Vegetables: capers, celery, chives, onions, red onions, deakes,| 7
Fisetin fennel, hot peppers,cherry tomatoes, spinach, spegtto leaves| 17
Quercetin lettuce, celery, broccoli, Hartwort leaves, kale 14
Kaempferol Cereal: buckwheat, beans(green/yellow)
Isorhamnetin Fruits: apples, apricots, grapes, plums, bilberries, Khlarries,

blueberries, cranberries, olive elderberries, cusiecherries, black
currant juice, apple juice, ginkgo biloba

Spices and herbs: dill weed

Others. red wine, tea (green, black), tea (black beveragecoa

powder, turnip (green), endive, leek

Flavanones Naringenin Citrus fruits and juices: lemon, lemon juice, lime juice, orange18
Eriodictyol orange juice, grapefruit, tangerine juice 19
Hesperetin Spices and herbs: peppermint 20
Flavones Apigenin Fruits: celery, olives 14
Luteolin Vegetables: hot peppers, celery hearts, fresh parsley 21

Spices and herbs: oregano, rosemary, dry parsley, thyme 22
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Table 1. Cont.
Flavanols (+)-Catechin Fruits: apples, apricots, grapes, peaches, nectarinass,pkims, 23
(Flavan-3-ols) (-)-Epicatechin raisins, raspberries, cherries, blackberries, [dtréds, cranberries | 24
(-)-Epicatechin 3-gallate | Others: red wine, tea (green, black), chocolate (darkkynivhite
Morin wine, cocoa
(-)-Epigallocatechin
(-)-Epigallocatechin-3-
gallate
(+)-Gallocatechin
Procyanidins
Prodelphinidins
Isoflavones Genistein Fruits: grape seed/skin 25
(Flavans) Daidzein Others: soybean, soy nuts, soy flour/bread, tofu, misg,milk, tofu
Equol yogurt, soy cheese/sauce/hot dog
Flavonoid glycoside Rutin Fruits: lemon, orange, orange juice, grapefruit, tangejirce 26
Hesperidin
Naringin
Phenolic acids 27
Hydroxycinnamic acids | Caffeic acid Fruits: bluberry, cranberry, pear, cherry(sweet), applange,
Chlorogenic acid grapefruit, cherry juice,apple juice, lemon, peach,
Ferulic acid Vegetables: potato, lettuce, spinach
Neochlorogenic acid Others: coffee beans, tea, coffee, cider
P-coumaric acid
Sinapic acid
Catftaric acids
Hydroxybenzoic acids Ellagic acid Fruits: strawberry, raspberry 28
Gallic acid grape juice( black/green), longan seed, pomegrgniate 29
Corilagin
Trihydroxy-stilbenes Resveratrol Fruits: grapes, peanuts, 30
Trans-resveratrol Others: red wine 31
Tannins Catechin polymers Fruits. grape (dark/light) seed/skin, apple juice, strawber| 14
Epicatechin polymers longan, raspberries, pomegranate, walnuts, museadjrape,| 29
Ellagitannins muscadine grape, peach, blackberry (juices/jartie§gl olive, plum,| 32
Proanthocyanidins Vegetables: chick pea, black-eyed peas, lentils,
Casuarictin Cereal: haricot bean,
Sanguin H6 Others: red wine, white wine, cocoa, chocolate, oak-agedwine,
Tannic acids tea, cider, tea, coffee, immature fruits
Diferuloylmethane Curcumin herbal remedy, dietanigespurmeric 33
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3. Bioactivities of dietary polyphenols

Oxidative stress is considered to play a pivotd ria the pathogenesis of aging and several
degenerative diseases, such as atherosclerosigvascular disease, type |l diabetes and caneg}. [1
In order to cope with an excess of free radicalsdpced upon oxidative stress, humans have
developed endogenous and exogenous mechanismsddan tor maintain redox homeostasis. Among
these, dietary polyphenols have been largely stiuftie their strong antioxidant capacities and other
properties by which cell activities are regulatEay(res 2 and 3).

3.1 Antioxidant and free radical scavenging properties

In order to combat and neutralize the deleteridiesces of ROS, various antioxidant strategies
have evolved either by increasing the endogenotiexatant enzyme defenses or by enhancing the
non-enzymatic defenses through dietary or pharrgeml means (Table 2). Dietary polyphenols have
been reported to possess potent antioxidant acbhyiendogenous and exogenous mechanisms.

Figure 2. Bioactivities of dietary polyphenols.
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Dihydrocaffeic acid was able to scavenge free msdi¢superoxide anion, hydroxyl and peroxyl
radicals) in human EA.hy926 endothelial cells [4BJurcumin and quercetin increased several
antioxidant enzyme activities such as glutathioeeopidase (GPx), superoxide dismutase (SOD),
catalase (CAT) or glutathione reductase (@Ryivo andin vitro [8,9,44], and activated endogenous
defense systems vitro [40,45]. Hydroxytyrosol could increase CAT and S@@ivities in rats fed a
cholesterol-rich diet [35].
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The transcription factor Nrf2 regulates the basal mducible expression of numerous detoxifying
and antioxidant genes. The Nrf2—Kelch-like ECH-agsied protein 1 (Keapl)-ARE system is now
recognized as one of the major cellular defencehar@sms against oxidative and xenobiotic stresses
[46]. (-)-Epigallochatechin gallate (EGCG) angt¢pichatechin gallate (ECG) induced ARE-mediated
gene expression through the activation of MAPK @rat (ERK, JNK and p38) in HepG2-ARE-C8
cell [10]. Tanigaweet al. reported that quercetin-induced ARE activity inesd upregulation of Nrf2
through the regulation of both transcription andtpanscription sites and repression of Keapl by
affecting the posttranscription site in HepG2 c@8]. Curcumin could increase the expression of
glutathione S-transferase P1 (GSTP1) by activingcARd Nrf2 in HepG2 cells [40].

Figure 3. Mechanisms of the biological effects of dietaojyphenols.
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Table 2. Antioxidant and free radical scavenging propertiegdietary polyphenols.

Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref
Epigallocatechin, Inhibiting lipoxygenase and cyclooxygenase In hmroalon mucosa and coloninvitro | 34
EGCG, ECG tumor tissues

EGCG Inducing ARE-mediated gene expression throudgh HepG2-ARE-C8 cell Invitro | 10

ECG the activation of MAPK proteins (ERK, JNK and
p38)

Hydroxytyrosol Increasing CAT and SOD activities rats fed a cholesterol-rich diet | Invivo 35
Inhibiting the activities of 12-lipoxygenase and (5  rat platelets and rgtinvitro | 36
lipoxygenase polymorphonuclear leukocytes
Reducing leukotriene B4 production (PMNL)
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Catechin Increasing CAT, glutathione S-transferase (G$T) cardiac H9C2 cells Invitro | 37
Proanthocyanidin B4| and SOD activities
Elevating cellular GSH content
Curcumin Inhibiting CYP1A2, CYP3A4, CYP2B6, CYP2DB,The plasmids with  human Invitro 38
and CYP2C9 cytochrome P450 NADPH
reductase
Inhibiting mitochondrial proton FOF1-ATPase/AT|PRat brain FOF1-ATPase Invitro | 39
synthase
Increasing the expression of GSTP1 by activing HepG2 cells Invivo 40
ARE and Nrf2
Increasing CAT, SOD activity and heat shdckn rat model Invivo 8
proteins 70 expression
Decreasing the activity of INOS
Decreasing malondialdehyde (MDA), NO(2)(-) |+
NO(3)(-) and myeloperoxidase (MPO) level and
serum transaminase concentration
Kaempferol-3-O- Inhibiting human recombinant synovialln mice In vivo 41
galactoside phospholipase A2 (PLA2)
EGCG, Quercetin, Inhibiting mitochondrial proton FOF1-ATPase/AT|PRat brain FOF1-ATPase Invitro 39
Kaempferol synthase
Morin, Apigenin,
Daidzein, ECG
Ellagic acid Gallic Inhibiting tyrosinase, xanthine oxidase, and hﬁ] substrate of L-tyrosine Invitro | 29
acid Corilagin formation of superoxide radical
Dihydrocaffeic acid Enhancing eNOS activity andtpio expression In human EA.hy926 endotheliallnvitro | 42
Scavenging intracellular ROS cells
Caffeic acid Inhibiting  peroxynitrite-mediated oxidation  ¢fln dopamine Invitro | 43
(+)-catechin dopamine
Preventing lactate dehydrogenase (LDH ) leakage In mouse liver Invivo 9
Quercetin Increasing SOD, CAT, GSH, GPx, and GR activity
Decreasing MDA and lipoperoxidation In HepG2 cells Invitro | 44
Increasing Cu/Zn SOD and GPx mRNA
Increasing the expression and activity |dihn the MCF-7 human breastinvitro | 45
NADPH:quinone oxidoreductase-1( NQO1) carcinoma cellse
Enhancingy-glutamylcysteine synthetade-GCS) In HepG2 cells Invitro | 47
Enhancing the ARE binding activity and Nrf2- In HepG2 cells Invitro | 48

mediated transcription activity
Upregulating and stabilizing Nrf2

Reducing the level of Keapl protein
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Table 2. Cont.

Resveratrol Inhibiting O-acetyltransferase and stdftsferase In male Wistar rats treated withln vivo 49
activities potassium bromate

Preventing the oxidative DNA damage

Inhibiting the production of kD, and MPO activity | In mouse skin Exvivo | 50
Increasing GSH levels and SOD activities

Decreasing the levels of MPO and oxidized GR

Reducing PhIP-DNA-adduct formation by @d4n primary cultures of human Invitro | 51

acetyltransferase and sulfotransferase catalysis | mammary epithelial cells

Inhibiting the expression and activity of CYPIn microsomes and intact HepG2nyvitro | 52

1A1/1A2 cells

Inhibiting mitochondrial proton FOF1-ATPase/AT|PRat brain and liver FOF1-ATPase| Invitro | 39

synthase

Suppressing CYP1A1 and IL{l transcription by Ex vivo | 53

blocking aryl hydrocarbon receptor In vivo
(-)-Epicatechin Inhibiting recombinant human platelet 1R4{n rabbit smooth muscle cellend | Invitro | 54
Procyanidin lipoxygenase and 15-lipoxygenase in J774A.1 cells

EGCG, ECG

3.2. Anti-atherosclerosis and cardioprotection

Studies have shown that some of dietary polypheneterted anti-atherosclerosis and
cardioprotection (Table 3). Oleuropein inhibited tixidation of low density lipoprotein (LDl vitro
[61]. Quercetin decreased lipid peroxidation, uptated the expression of serum high density
lipoprotein (HDL)-associated paraoxonase 1(PONrlYhe HuH7 human hepatoma cell line [66],
inhibited oxidized LDL (oxLDL)-triggered apoptosiand increased intracellular glutathione (GSH)
downregulation in COS-1 cells [68].

Proanthocyanidin  could significantly reduce cardyogyte apoptosis by inhibiting
ischemia/reperfusion-induced activation of JNK-1d artJun in Male Sprague Dawley rats [74].
Furthermore, proanthocyanidin could regulate threlleof CD36 mMRNA and protein in oxLDL treated
peripheral blood mononuclear cells [73]. Resvetasttowed that in vitro it could decrease the
expression of vascular cell adhesion molecule-1AMEL) [64], cyclooxygenase-2 (COX-2) [55], and
matrix metalloproteinase-9 (MMP-9) mRNA [56] thrduguppression of activation of nuclear factor
AP-1 [55]. Hydroxytyrosol could not only lower semutotal cholesterol (TC) and low density
lipoprotein cholesterol (LDL-C), but also slow thgid peroxidation process in rats fed a choledtero
rich diet [35].
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Table 3. Anti-atherosclerosis and cardioprotection of dietawlyphenols.
Dietary Protective effects and mechanisms Conditions Levels Ref
polyphenols
Suppresing the expression and activity of COX-2 In human mammary epithelial Invitro | 55
Suppresing activation of AP-1 cells
Inhibiting the activity and expression MfMP-9 In U937 cells Invitro | 56
Enhancing myocardial angiogenesis by induction BG¥, | In male Sprague Dawley ratg In vivo 57
Resveratrol thioredoxin-1 (Trx-1), and HO-1
Inhibiting the expression and binding activity ofietf on THP-1 monocytes Invitro | 58
monocyte chemotactic protein-1 (MCP-1) recept@C-
chemokine receptor-2 CCR2)
Increasing NO and NOS levels In  cultured rat cardia¢ Invitro | 59
Increasing intracellularcyclc GMP (cGMP) level and fibroblasts
decreasing atrial natriuretic peptide (ANP) and irbra
natriuretic peptide (BNP) levels
(-)-Epicatechin Inhibiting f-OH-cholesterol formation In endothelial cells Invitro | 60
Hydroxytyrosol Preventing platelet aggregation afmbsanoid formation | In platelet rich plasma Invitro | 61
Inhibiting thromboxane B2 production
Inhibit thromboxane B2 production In patients withn vivo 62
uncomplicated type | diabetes
Hydroxytyrosol Inhibiting leukotriene B4 generation In rat peritoneal leukocytes | Invitro | 63
Oleuropein Inhibiting 5-lipoxygenase
Caffeic acid
Oleuropein Reducing monocytoid cell adhesion to stimulateth human umbilical vein Invitro | 64
Hydroxytyrosol endothelium endothelial cells (HUVECS)
Resveratrol Decreasing VCAM-1 mRNA and protein
Oleuropein Decreasing creatine kinase &l release In the isolated rat heart Exvivo | 65
Quercetin Upregulating the expression of serum HDL-associatédthe HUH7 human hepatomalnvitro | 66
PON-1 cell line
Kaempferol Inducing interferon-gamma (IFi-gene expression In peripheral blood Invitro | 67
Apigenin Downregulating IL-4 gene expression mononuclear cells
Increasing the intracellular GSH and activatipgsCS | In COS-1 cells Invitro | 68
heavy subunit (GCS(h)) promoter
EGCG and ECG Inhibiting rat VSMCs adhesion on coltaged laminin In rat VSMCs Invitro | 69
Interference with VSMC's integripl receptor and binding
to extracellular matrix (ECM) proteins
Genistein Decreasing hydroxyproline concentrations In  Long-Evans Tokushima Invivo 70
Suppressing the progression of myocardial fibrosis Otsuka non-diabetic rats
Genistein Incorporating into LDLs, increasing their oxidationin cultured U937 cells Exvivo | 71
Daidzein resistance and antiproliferative efficacy
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Table 3. Cont.
Procyanidins Decreasing leukotriene-prostacycliioia plasma In humans and human aoftim vivo 72
endothelial cells In vitro
Proanthocyanidin| Inhibiting CD36 mRNA expression In peripheral blood Invitro | 73
mononuclear cell
Proanthocyanidin | Reducing cardiomyocyte apoptosis by inhibiting isalae- | In Male Sprague Dawley ratg In vivo 74
reperfusion-induced activation of JNK-1 and c-Jun
Hydroxytyrosol Lowering serum TC and LDL-C In rats fed a cholesterol-rich In vivo 35
Slowing the lipid peroxidation process diet

3.3 Neuropr otective effects on anti-aging and neur odegener ative diseases

Recently, there has been considerable interesieiméuroprotective effects of dietary polyphenols
(Table 4), especially in the context of their modésaction as antioxidants [6]. Resveratrol had an
impact on cognitive deficits by activating the pplesrylation of protein kinase C (PKC), secreting

transthyretin to prevent (Aaggregation in cultured rat hippocampal cells [&fid stimulating AMP

kinase activity in Neuro2a cells and primagurons [75]EGCGstimulated the deacetylase activity of
recombinant silent information regulator two orthgll (SIRT1) protein in human HT29 cells [80].
Curcumin could disrupt existing plaques and resthséorted neurites in an Alzheimer mouse model
[84]. They had been considered as therapeutic adgenéaltering brain aging processes, and as pessib
in progressive neurodegeveeradisorders such as Parkinson’'s and

neuroprotective

agents

Alzheimer’s diseases.

Table 4. Neuroprotective effects of dietary polyphenols.

Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref
Hydroxytyrosol Attenuating F& and NO-induced cytotoxicity In murine-dissociated brain Invitro | 12
Increasing cellular ATP cells and mice Ex vivo
Reducing lipid peroxidation
Hyperpolarizing basal mitochondrial membrane pagént]
Stimulating AMP kinase activity In Neuro2a cells danlnvitro | 75
primary neurons
Resveratrol Preventing fibrosis, NkB activation and TGR-| Inrats In vivo 76
increases induced by chronic CCI(4) treatment
Activating the phosphorylation of PKC In cultured rat hippocampal Invitro | 77
Secreting transthyretin to prevenfs Aggregation cells
Protecting dopaminergic neurons In organotypic midbrain Invitro | 78
Activating sirtuin family of NAD-dependent histoneslice culture
deacetylases
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Table 4. Cont.
Inhibiting IL-6, IL-8, VEGF and prostaglandin E2 In human  astrocytoma Invitro | 79
(PGE2) production U373MG cells
Attenuating the expression of COX-2 and activatibn o
NF-«xB
EGCG Inducing the expression of MAPK phosphatase-1
ECG Suppressing the phosphorylation of MAPK (p38 and
Myricetin JNK)
Attenuating disruption of mitochondrial membrane In rat PC12 cells Invitro | 115
potential and release of cytochrome c
Decreasing the activities of caspase-9 and caspase-
increase in the Bax to Bcl-2 ratio
Stimulating the deacetylase activity of recombin@RT1 | In human HT29 cells Invitro | 80
protein
Increasing the activities of PKC and ERK1/2 In human neuroblastoma | Invitro | 81
Decreasing the expression of Bax, Bad, and Mdm2 SH-SY5Y cell
Increasing the expression of Bcl-2, Bcl-w, and Bcl-xL
Catechin Attenuating the apoptotic injury inducédmethyl-4- In mesencephalic dopamineln vivo 82
Quercetin  Genestein| phenyl-1,2,3,6-tetrahydropyridinium hydrochloride neurones
Naringenin (MPP+)
Epicatechin Protecting neurons from oxLDL-induced apoptosis by | In cultured primary neurons Invitro | 83
Kaempferol inhibiting the activation of JNK, c-Jun and caspase
Curcumin Disrupting existing plaques and restorirggodted In an Alzheimer mouse Invivo 84

neurites
Crossing the blood-brain barrier and labels senddques

and cerebrovascular amyloid angiopathy

model

In APPswe/PS1dE9 mice

3.4 Anti-inflammatory properties

Oxidative stress induced inflammation is mediatedhe activation of NF-kB and AP-1. It affects a
wide variety of cellular signaling processes legdin generation of inflammatory mediators and
chromatin remodeling [95,96]. The latter allows kegsion of pro-inflammatory genes such as

interleukin-1beta (IL-B), IL-8, tumor necrotic factor alpha (TNF-a), anddicible nitric oxide

synthase (INOS). The undesired effects of oxidasitress have been found to be controlled by the
antioxidant and/or anti-inflammatory effects oftdiy polyphenols such as curcumin and resveratrol
vivo andin vitro [88-90,95,97] (Table 5). Resveratrol inhibited qamlammatory gene expression via
inhibition of inhibitory kB (IxB), thus inhibiting NFR<B transactivation, as well as restoring

transrepressive pathways through the activatidnistbne deacetylases in RAW 264.7 cells [89].
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Table5. Anti-inflammatory effects of dietary polyphenols.
Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref
Procyanidins Inhibiting transcription and secretidrlL-1 In peripheral blood mononuclearinvitro | 85
cells
EGCG Inducing apoptosis by activating caspases 3, 8,|amd Isolated peripheral blood Invitro | 86
ECG 9 monocytes
Downregulating CD11b expression In peripheral blood CD8+ T cells| Invitro | 87
Attenuating adhesion and migration of periphegral
blood CD8+T cells
Resveratrol Inhibiting stimulation of caspase-3 and cleavage &rf human articular chondrocytes | Invitro | 88
PARP induced by IL-f
Suppressing the expression of INOS mRNA arld RAW 264.7 cells Invitro | 89
protein by inhibiting the activation of NkB
Inhibiting NO generation
Upregulating MAP kinase phosphatase-5 In prostetie Invitro | 90
Apigenin Blocking the expression of intercellular adhesiom human endothelial cells Invitro | 91
molecule-1 (ICAM-1), VCAM-1, and E-selectin
Inhibiting prostaglandin synthesis and IL-6, |8
Luteolin production
Inhibiting the upregulation of THP-1 adhesion anth HUVECs Invitro | 92
VCAM-1 expression
Quercetin Inhibiting the activity of the NkeB
Inhibiting NO production and iINOS proteinin NR8383 macrophages Invitro | 93
expression
Anthocyanins Localizing into endothelial cells In human microvascular Invitro | 94
Hydroxy-cinnamic Reducing the upregulation of IL-8CP-1, and| endothelial cells
acids ICAM-1
Curcumin Decreasing MPO activity and TNé&-on chronic| In rats Invivo 95
colitis
Reducing nitrites levels and the activation of p38
MAPK
Downregulating COX-2 and iINOS expression
Upregulating MAP kinase phosphatase-5 In prostalte ¢ Invitro | 90
Suppressing the induction of COX-2 and INOS | In both rat primary microglia and Invitro | 97

Inhibiting the expression of ICAM-1 and MCP-1
Suppressing the Janus kinase (JAK)-STAT

activation of Src homology 2 domatontaining

murine BV2 microglial cells

via

protein tyrosine phosphatases (SHP-2 )

On the other hand, to counter the effects of owdastress, the cells also concomitantly express
protective antioxidants such as glutamate cystégase (GCL), manganese superoxide dismutase
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(MnSOD), and heme oxygenase-1(HO-1). In additioxpression of these antioxidant genes via
modulation of MAPK-ARE-Nrf2 pathway is upregulatbg EGCG and ECG in HepG2-ARE-CS8 cell
[10]. Apigenin, luteolin and quercetin had also eeported to inhibit inflammatory responses by
downregulating the expression of INOS and adhesiotecules in NR8383 macrophages and human
endothelial cells [91-93].

3.5 Antimutageni ¢/anticarcinogenic properties

Dietary polyphenols could modulate diverse biocloainiprocesses involved in carcinogenesis
(Table 6). Curcumin exerted antitumor activities byhibition of cellular proliferation and
angiogenesis, blockade of tumor cell cycle progoessand induction of programmed cell death in
vivo and in vitro [109,110]. Cellular signaling casles mediated by N&B or AP-1 acted as a
centerplay in regulating many of aforementioneabemical processes [102,110].

Table 6. Antimutagenic/anticarcinogenic properties of diggaolyphenols.

Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref

Hydroxytyrosol Inhibiting cellproliferation In human promyelocytic Invitro | 98
Inducing apoptosis by arresting the cells in théG30| leukaemia cells HL60
phase with a concomitant decrease in the fcell

percentage in the S and G2/M phases

Inhibiting cell proliferation and downregulatingln human colon tumor cells Invitro | 99

telomerase activity

Inducing apoptosis mediated by p53-dependelmt HepG2 cells Invitro | 100
pathway

Inhibiting cell proliferation by interfering with | In estrogen-responsivéICF-7 | Invitro | 101

Resveratrol estrogen receptar{ERu)-associated PI3K pathway | human breast cancer cells

Suppressing COX-2 expression by blocking the dorsal skin of female ICR Invitro | 102

activation of MAPKs and AP-1 mice

Decreasing the expression of COX-1, COX-2, c-nmytn mouse skin Exvivo | 50
c-fos, c-jun, transforming growth factor-betal (FGQF

B1) and TNFe

Inhibiting oncogenic disease through the inhibitafn| In HelLa cell lysates Invitro | 103

protein kinase CKII activity

Inhibiting the Ca(2+)-dependent activities of PKC On the activities of PKQ Invitro | 104

and PKG@I isozymes
Inhibiting nitrobenzene(NB)-DNA adducts and NB-n male Kunming mice Invivo 105
Hb adducts
Chlorogenic acid Inhibiting the formation of DNA gie strand breaks In supercoiled pBR322 DNA| Invitro | 106
Quercetin Blocking EGFR tyrosine kinase activity In MiaPaCaaacer cells Invitro | 107

Luteolin
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Table 6. Cont.
Myricetin Inhibiting human CYP1A1 activities On 7-ethoxyresorufin Ot Invitro | 26
Apigenin Inhibiting the formation of diolepoxide 2(DE2) anddeethylation
Quercetin B[a]P activation
Kaempferol
Silymarin Interacting with P-glycoprotein and modulating thén two separate BCRP-Invitro | 108
Hesperetin activity of ATP-binding cassette transporter, bteasverexpressing cell lines
Quercetin cancer resistance protein (BCRP/ABCGZ2)
Daidzein
EGCG Inhibiting telomerase In human cancer cells Invitro | 114
In nude mice models In vivo
Curcumin Suppressing proliferation and angiogenesis In various pancreatic cancer cellnvitro | 109
Inhibiting NF«B-regulated gene products (cyclin D1, clines and nude mice In vivo
myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis
protein-1, COX-2, MMP, and VEGF)
Inducing apoptosis by sustained phosphorylatiodNK | In HCT116 cells Invitro | 110

and p38 MAPK
Inhibitiing NF«B transcriptional activity
Inducing phosphorylation of c-jun and stimulatidnA¢-

1 transcriptional activity

Inducing apoptosis through activation of caspasBiB, | In human acute myelogenoudnvitro | 111
cleavage and cytochrome c release leukemia HL-60 cells

Suppressing ectopic expression of Bcl-2 and Bcl-xl

Inhibiting the Akt/mTOR/p70S6K pathway arjdin U87-MG and U373-MG In vitro | 112
activating the ERK1/2 pathway malignant glioma cells Invivo
Inhibiting tumor growth and inducing autophagy In the subcutaneous xenograft

model of U87-MG cells

Resveratrol could block the activation of MAPKs akid-1 in the skin of mice [102Consumption
of berries and red fruits rich in polyphenols cdnited to the reduction of cancer through many
mechanisms such as in vitro inhibiting human cytoote P450-dependent monooxygenases 1Al
(CYP1A1) activities [26], blocking the epidermalogith factor receptor (EGFR) tyrosine kinase
activity [107], and decreasing protein kinase Cédtivity [103].

3.6 Maintenance of gastrointestinal health and effects on digestive enzymes

It had been reported that digestive enzymes suclipase, a-amylase, andi-glucosidase, were
inhibited by proanthocyanidins and tannins in yowigcks, which decreased the digestibility of
protein, starch and lipid [119, 120]. Resveratrould inhibit pancreatic bile salt-dependent lipase
(BSDL) activity, expression and secretion in the pancreatic AR4-2J cells [121]. Cyanidin-®-
rhamnoside and quercetin=®-rhamnoside could inhibit-glucosidase and advanced glycation end
product (AGE) formationn vitro [123]. The inhibition of digestive enzymes by dist polyphenols



Int. J. Mol. Sci. 2007, 8 965

may represent an under-reported mechanism foredelty some of the health benefits attributed to a
diet rich in fruit and vegetables.

3.7 Modulation of signal transduction pathways

Table 7. Effects of dietary polyphenols on signal transducpathways.

Dietary Protective effects and mechanisms Conditions Levels Ref

polyphenols

Inhibiting both myeloid differential factor 88 (My&3)-and TIR| In 293T cells Invitro | 124
domain-containing adapter inducing IFN{TRIF)-dependen
Curcumin pathways

Inhibiting homodimerization of Toll-like recepto(A_R4)
Suppressing the activation of NdB by inhibiting kB kinasep
activity in MyD88-dependent pathway

Inhibiting IFN-regulatory factor 3 (IRF3) activation

Inhibiting the level of NOS mRNA and protein In macrophages Invitro | 125
Suppressing NkB activation through inhibitory ofkB kinase

activity

Suppressing COX-2 expression by inhibiting AP-1 hifrdkB In  BV2 microglial | Invitro | 126

cells

Inhibiting IL-6-inducible STAT3 phosphorylation anduclear| In  human multiple| Invitro | 118

translocation myeloma cells

Upregulating CYP3A4 via pregnane X receptor (PXRjvation | In HepG2 cells Invitro | 127
Activating the electrophile responsive elem@pRE) of HO-1
and enhancing the gastrointestiﬁ@ll)-GPx activity

Suppressing JAK-STAT inflammatory signaling througin both rat primary| Invitro | 97
activation of SHP-2 microglia and muring

BV2 microglial cells

Proanthocyanidins| Promoting apoptosis through aiters in Cdki-Cdk-cyclin| In human epidermoid Invitro | 128
cascade, and caspase-3 activation via loss of hatalrial | carcinoma A431 cells

membrane potential

Proanthocyanidins| Inhibiting the phosphorylation of ERK1/2, JNK and3p3 In SKH-1 hairless| Invivo 129
Inhibiting the activation of NReB/p65 through inhibition of mice

degradation ofdBo and activation ofdB kinaseo
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Table7. Effects

Caffeic acid Modulating ceramide-induced signal transductionhpaty and| In U937 cells In vitro | 113
NF-«B activation

Inhibiting protein tyrosine kinase activity

Quercetin Inhibiting phosphorylation of JNK and p38 MAPK on BO| In HUVECs Invitro | 117

mediated signaling

Modulating Akt/PKB and ERK1/2 signalling cascades |om primary cortical| In vitro | 130

neuronal viability neurons In vivo
Equol Mediating rapid vascular relaxation by Ca2+-indemgrid In human endothelial In vitro | 131
activation of eNOS/Hsp90 involving ERK1/2 and Aktells
phosphorylation
Inhibiting monocyte CCR2 binding activity in an NO-,ARK- | on THP-1 monocytes| In vitro| 58
and PI3K-dependent manner
Inhibiting CCR2 mRNA in an NO- and MAPK-independent,
P13K-dependent manner
Inhibiting proliferation of cardiac fibroblasts byNO-cGMP | In cultured rat cardia¢ In vitro | 59
Resveratrol signaling pathway fibroblasts

Inducing phase Il genes by regulating ARE/EpRE atitiva In PC12 cells In vitro | 132

Modifying the capability of Keapl in sequestering2\

Dietary polyphenols may not merely exert their dseebiological effects as free radical scavengers,
but may also modulate cellular signaling processesffecting signal transduction pathways [122]
(Table 7). Studies have been reported that curcwairhd in vitro modulate NkB activation [124],
AP-1 DNA binding [126], signal transducer and aator of transcription-3 (STAT3) phosphorylation
[118]. Resveratrol exerted protection in vitro thgbPI13-kinase/Akt pathway, MAPK proteins (ERK,
JNK and P38) activation [58], and the translocatio the nucleus of Nrf2 [132]. Resveratrol could
also upregulate the expressions of GCL, MnSOD,H@€l against oxidative stress via MAPK-ARE-
Nrf2 pathway in PC12 cells [132].

3.8 Improvement of endothelium functions

Several studies have indicated that red wine p@gphc compounds (RWPCs) were able to
inhibit proliferation and migration of vascular Ise(Table 8). RWPCs induced nitric oxide (NO)-
mediated endothelium-dependent relaxations in tedlarteries. The activation of endothelial NO
synthase (eNOS) was due to two distinct mechanidi@s:an increase in [Ca2+] i and (b) a
phosphorylation of eNOS by the PI3-kinase/Akt paiw[137]. In addition, RWPCs caused
endothelium-derived hyperpolarizing factor (EDHFgdiated relaxations of isolated arteries
consecutively to a localized and controlled formatof superoxide anions leading to the activatibn o
the PI3-kinase/Akt pathway [136]. RWPCs also inseeh endothelial prostacyclin release and
inhibited the synthesis and the effects of endathkin endothelial cell [139,141].
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Table 8. Protective effects of dietary polyphenols on endth cells and blood vessels
Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref
EGCG Inhibiting apoptosis through modulation of Bcl-2 aBaix In HUVECs Invitro | 117
Quercetin Inhibiting nuclear transactivation of p53
Decreasing the activity of caspase-3
Blocking JNK- and p38 MAPK-related signaling
Inhibiting the expression of VEGF mRNA and protein In VSMCs Invitro | 133
Preventing the activation of the p38 MAPK pathway
Inhibiting the invasion and migration of VSMCs In VSMCs Invitro | 134
RWPCs Inhibiting pro-MMP-2 expression and its activationia
inhibition of membrane type 1-MMP (MT1-MMP) actiyit
Inhibiting VSMCs migration through inhibiting the 3X | In cultured VSMCs Invitro | 135
activity and p38 MAPK phosphorylation
Inhibiting the phosphorylation of MKK3/6
Inducing EDHF-mediated relaxations through activatof the| In porcine coronary Invivo 136
P13-kinase/Akt pathway arteries
Increasing intracellular Gand activate tyrosine kinases In  bovine aortic| Invitro | 137
Increasing NO production endothelial cells
Inhibiting NADPH oxidase activity and/or reducingd®thelin- | In Twelve-week-old | Invivo 138
1(ET-1) release male Wistar rats
Inhibiting the synthesis d&T-1 In  cultured boving Invitro | 139
aortic endothelial
cells
Elevating NO and prostacyclin (PGI2) In rats In vivo 140
Ehancing PGI2 release In endothelial cell Invitro | 141
Cy3G Enhancing eNOS activity and expression In  bovine vasculaf Invitro | 142
Inducing NO production endothelial cells
Regulating phosphorylation of eNOS and Akt IncregsiGMP
production
EGCG Having endothelial-dependent vasodilator astion In  bovine aortic| Invitro | 143
Activatiing phosphatidylinositol 3-kinase, Akt, aptllOS endothelial cells
Increasing eNOS activity In  bovine aortic| Invitro | 144
Inducing a sustained activation of Akt, ERK1/2, agldOS | endothelial cells
Ser1179 phosphorylation
Catechins Reducing the vascularization induced by the angiogike | In chichen Invitro | 145
protein on chicken CAM
Activin Reducing ICAM-1, VCAM-1 and E-selectin In ggmic sclerosis | Invivo 146
Proanthocyanidin Downregulating VCAM-1 expression; In primary HUVECs | Invitro | 147
Decreasing TN&-induced adherence of T-cells to HUVECs
ProcyanidinsFlavan- | Inhibiting angiotensin | converting enzyme (ACE)ieity In two substrates Invitro | 148
3-ols
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RWPCs could prevent matrix metalloproteinases-2 @B} activation and vascular endothelial
growth factor (VEGF) expression in vascular smopotascle cells (VSMCs) [133,134]. All these
mechanisms might contribute to explain the vastmija vasoprotective and anti-hypertensive effects
of polyphenols in vivo.

Cyanidin-3-glucoside (Cy3G) and EGCG could enhamascular eNOS activity and improve
vascular endothelial function in bovine vasculadahelial cells [142]. Catechins had anti-angiogeni
effects by reducing the vascularization on theladmcchorioallantoic membrane (CAM) [145].

3.9 Protective effect on immune cell functions

Dietary polyphenols appear to have a protectivecefon immune cell functions. Alvarex al.
showed that leukocyte functions were improved iengaturely aging mice after five weeks of diet
supplementation with polyphenol-rich cereals [14Bhey could increase macrophage chemotaxis,
phagocytosis, microbicidal activity, and naturdlégti function, and increase lymphoproliferation and
IL-2 release in response to concanavalin A andolybgsaccharide.

Curcumin could prevent tumor-induced T cell apotoBy downregulating Bax level and
augmenting Bcl-2 expression and restore cytokineeddent Jak-3/Stat-5a signaling pathway in T
cells of tumor bearer [150]. Caffeic acid, ellagmd, and ferulic acid could inhibit apoptosis tgh
the Bcl-2 independent mechanism in normal humaipiperal blood mononuclear cells [116]. Thus,
regular intake of these compounds will protect mmgrove quality of life.

3.10 Antiallergic activity

The incidence of type | allergic disorders have nbéscreasing worldwide, particularly, the
hypersensitivity to food. Akiyama and his coworkegported that the apple condensed tannins intake
would inhibit the development of the oral sensti@a and the inhibition could correlate with theer
in the population of TC#-T cells in the intestinal intraepithelial lymphaoeyg [151]. Moreover, the
apple condensed tannins could inhibit the releddeistamine from rat basophilic leukemia (RBL-
2H3) cells stimulated by the antigen-stimulatiord &rom rat peritoneal mast cells stimulated by
compound 48/80. They also inhibited hyaluronidasevidy and increase in intracellular free calcium
concentration in RBL-2H3 cells stimulated with #r@igen [152].

3.11 Antidiabetic effects

Johnston and coworkers demonstrated that glucosakeipnto cells under sodium-dependent
conditions was inhibited by flavonoid glycosidesiaron-glycosylated polyphenols in polarised Caco-
2 intestinal cells [154]. Under sodium-free corahs, aglycones and non-glycosylated polyphenols
inhibited glucose uptake whereas glycosides andgiieacids were ineffective. These data suggest
that aglycones inhibit facilitated glucose uptakkeveas glycosides inhibit the active transport of
glucose. The non-glycosylated dietary polyphenplseared to exert their effects via steric hindrance
while EGCG, ECG and)-epigallochatechin were effective against bothgporters.

More recently, Koboyashat al. have shown that the green tea polyphenols EGCGE&IE also
inhibited glucose transport, possibly by sodiumetetent glucose transporter 1 (SGLT1) inhibition in
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the rabbit small intestine [155]. Song et al havespnted evidence for quercetin-mediated inhibition
of the facilitated diffusion glucose transportdif&.UT2) in Chinese hamster ovary cells [156].

Anthocyanins inhibitedi-glucosidase activity and reduced blood glucosel$ewafter starch-rich
meals. This is a proven clinical therapy for colitig type Il diabetes [158] (Table 9).

Table 9. Antidiabetic activity of dietary polyphenols.

Dietary polyphenols | Protective effects and mechanisms Conditions Levels Ref

Curcumin Inhibiting diabetes-induced elevation in the | In streptozotocin-induced diabetic rat$ In vivo 153
levels of IL-1B, VEGF, and NFReB
Decreasingxidatively modified DNA and

nitrotyrosine

EGCG, ECG, - | Inhibiting SGLT1 and sodium-free GLUT In polaris€dco-2 intestinal cells Invitro | 154

epigallochatechin

Inhibiting SGLT1 and glucose uptake In the ralsbitall intestine In vivo 155

Quercetin Reducing blood glucose levels In Chinese hamster ovary cells Invitro | 156
Inhibiting sodium-dependent vitamin C

transporter 1 (SVCT1) and GLUT2

Mangiferin Inhibiting sucrase, isomaltase, and a&lo In rats Invivo 157
reductase
Tannins Anthocyanin|  Inhibiting-amylase and-glucosidase In the substrate of 2-chloro-4-nitro- | Invitro | 158

phenyl-4-O-b-D-galactopyranosyl-

maltoside

3.12 Regulation of cell cycle progression

It was demonstrated that resveratrol and proantdrdins could regulate cell cycle progression by
upregulating p21 expression, G1 phase arrest amarégulating cyclin D1/D2—Cdk6 in vitro [163-
165, 170] (Table 10).

3.13 Modulation of hormonal effects and contraceptive activity

Some studies showed that dietary polyphenols couddulate the level of hormone. Resveratrol
could exert mixed estrogen agonist/antagonist iiesvin mammary tumor models. It could affect the
expression of 1F-estradiol-responsive progesterone receptor (P&pagsnelin 2 proteins in vitro and
in vivo [159]. Bhatet al. showed that resveratrol exhibited antiestrogenip@rties and inhibited the
levels and activity of PR by downregulating (1)-integrin expression in human endometrial
adenocarcinoma cells [160].

Otake and his coworkers demonstrated that queresithresveratrol potently reduced estrogen
sulfotransferase (EST) activity and inhibited studfa of 173-estradiol in normal human mammary
epithelial cells [161]. Both of the compounds péiemhibited recombinant human EST. In fact, they
could serve as substrates for EST. Gossypol, appeholic compound from cotton seed, had
contraceptive activity and could inhibit i-hydroxysteroid dehydrogenase and cause hypokalemia
some men [162].
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Table 10. Regulate cell cycle progression of dietary polypiis.
Dietary Protective effects and mechanisms Conditions Levels Ref
polyphenols
Upregulating p21 expression and cause G1 phdeeHepG2 cells Invitro | 163
arrest
Inhibiting cyclin D1/D2-cdk6, cyclin D1/D2¢ In human epidermoid carcinomalnyvitro | 164
Resveratrol cdk4, and cyclin E-cdk2 complexes A431 cells
Downregulatiing cyclin D1/Cdk4 complex andin the human colonic adenocarcinoméan vitro | 165
Upregulating cyclin E and A expression cell line Caco-2
Decreasing in the hyperphosphorylated form| éfi human epidermoid carcinomalnyvitro | 166
pRb and increasing in hypophosphorylated pRpb A431 cells
Downregulating the protein expression of E2F |(1-
5) family members of transcription factors ahd
their heterodimeric partners DP1 and DP2
Leading to a GO/G1 arrest
Inhibiting the expression of cyclin B1, D1, Alin six human cancer cell lingsinvitro | 167
andp-catenin (MCF7, SW480, HCE7, Seg-1, Bic-1,
and HL60)
Arresting cell cycle in the G1-S phase In VSMCs Invitro | 168
Upregulating the expression of cyclins A, E, anth human SK-Mel-28 melanoma cellsInvitro | 169
Bl
Proanthocyanidins | Increasing G1-phase arrest In human epidermoid carcinomalnvitro | 170
Inhibiting cyclin-dependent kinases (Cdk) Cdk2A431 cells
Cdk4, Cdk6 and cyclins D1, D2 and E
Increasing the protein expression of cyclin-
dependent kinase inhibitors (Cdki), Cip1/p21 dnd
Kipl/p27
Enhancing the binding of Cdki-Cdk

3.14 Effect in the treatment of chronic obstructive pulmonary disease (COPD)

Since a variety of oxidants and free radicals amplicated in the pathogenesis of COPD, it is
possible that therapeutic administration of mudtiphtioxidants will be effective in the treatmefit o
COPD. Various approaches to enhance lung antiokidapacity and clinical trials of dietary
polyphenols in COPD are discussed. Resveratrol, &G&hd quercetin could inhibit inflammatory

gene expression by controling MB-activation and regulate GSH biosynthesis androlatm remodel

in human airway epithelial A549 cells [171,172].r@umin could decrease protein/fmRNA expressions

of pulmonary type | collagen (Col-1) and TGH-in rats [173].
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3.15 Other bioactive effects

It has been demonstrated that dietary polypherale lother bioactive effects (Table 11), such as
antibacterial activity of Gnemonol B and gnetinl#4], anti-HIV effect of proanthocyanidins [176],
hepatoprotective ability of a novel proanthocyamsdilH636 [178], and angiogenesis effect of
proanthocyanidins [177].

Table11. Other bioactive effects of dietary polyphenols.

Type of Dietary Protective effects and mechanisms Conditions Levels Ref
Activity polyphenols

Antibacterial | Gnemonol B and Exhibiting strong antibacterial activities against In Enterococci and Invitro | 174
activity gnetin E vancomycin-resistant Enterococci (VRE) and | Staphylococcus aureus

methicillin-resistant Staphylococcus aureus

(MRSA)

Hydroxytyrosol Antimycoplasmal activity against M. In Mycoplasma Invitro | 175

pneumoniaeM. hominis, andM. fermentans

Anti-HIV Proanthocyanidin | Downregulating the expression of the HIV-1 In normal peripheral Invitro | 176
effects S entry co-receptors, CCR2b, CCR3 and CCR5 | blood mononuclear
cells

Angiogenesis| Proanthocyanidin | Upregulating VEGF expression In cultured Invitro | 177
effect S keratinocytes

Resveratrol
Hepato- A novel Increasing the expression of Bcl-xL In male ICR mice In vivo 178
protective Proanthocyanidin | Attenuating acetaminophen-induced hepatic
ability s IH636 DNA damage, apoptotic and necrotic cell death

of liver cells
Daidzein Ameliorating the d-galactosamine-induced In the rat liver Invivo 179

increase in malondialdehyde-protein adducts and

cytosolicSOD activities

Genistein Reducing experimental liver damage cabged | In rats Invitro | 180

CCI(4) by preventing lipid peroxidation and

strengthening antioxidant systems

4. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary polyphenols

Dietary polyphenols have beneficial antioxidant,ti-aaflammatory and anticancer effects.
However, at higher doses or under certain condititiese compounds may exert toxic prooxidant
activities [181]. Galatiet al. [182] have observed that dietary polyphenols vpkienol rings were
metabolized by peroxidase to form prooxidant phghaadicals which, in some cases were
sufficiently reactive to cooxidize GSH or NADH acgpanied by extensive oxygen uptake and
reactive oxygen species formation. Polyphenols wétechol rings also cooxidized ascorbate, likely
mediated by semiquinone radicals. Incubation ofakmgytes with dietary polyphenols containing
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phenol rings was found to partially oxidize hepstecGSH to GSSG while polyphenols with a
catechol ring were found to deplete GSH througmtdron of GSH conjugates.

Dietary polyphenols with phenol rings also oxidizednan erythrocyte oxyhemoglobin and caused
erythrocyte hemolysis more readily than polyphenaish catechol rings. It is concluded that
polyphenols containing a phenol ring are genemaltyre prooxidant than polyphenols containing a
catechol ring. Subsequent studies revealed th&] [B&ing catechol-type flavonoids showed swift
formation of their two electron oxidized quinongyéy metabolites, even upon their one electron
oxidation by peroxidases. Enzymatic and/or chem(aato) oxidation of the flavonoid generates the
flavonoid semiquinone radical, which may be scaeengy GSH, thereby regenerating the flavonoid
and generating the thiyl radical of glutathioneisTtiiyl radical may react with GSH to generate a
disulfide radical anion which rapidly reduces malac oxygen to superoxide anion radicals.

Huismanet al. [184] found that wine polyphenols and ethanol i significantly scavenge
superoxide nor affect endothelial nitric oxide protion. Studies showed that flavonoids can induce
oxidative damage and nick DNA via the productiomagficals in the presence of Cu and O (2). Al, Zn,
Ca, Mg and Cd have been found to stimulate phen@dital-induced lipid peroxidation [185]. As a
result of such enzymatic as well as non-enzymatimaidant reactions, phenoxyl radicals are formed
as the primary oxidized products. Phenoxyl radicals initiate lipid peroxidation. It is concludduht
the prooxidant cytotoxicity of diet polyphenolsdse to formation of ROS [186], role of phenoxyl
radical/phenol redox couple [187], and stimulatoymetals [185].

5. Bioavailability of dietary polyphenols

Polyphenols are the most abundant antioxidanthénhuman diet. They show a considerable
structural diversity, which largely influences theioavailability [188]. The biological propertiesf
polyphenols depend on the amount consumed andesnttioavailability. Bioavailability appears to
differ greatly between the various polyphenols, #m&most abundant polyphenols in our diet are not
necessarily those leading to the highest concemisaiof active metabolites in target tissues [189].
Both isoflavones and phenolic acids like caffeiecdaand gallic acid are the most well absorbed
polyphenols, followed by catechins, flavanones, qudrcetin glucosides, but with different kinetics.
The least well-absorbed polyphenols are large mdec weight polyphenols such as the
proanthocyanidins, the galloylated tea catechind,the anthocyanins [190].

Ellagic acid was detected in human plasma at a maxi concentration (31.9 ng/mL) after 1 h
postingestion [191]. Absorption of flavanols such aatechins was enhanced when tea polyphenols
were administered as a green tea supplement inuleafism when consumed in the absence of food
and led to a small but significant increase in plasantioxidant activity compared with when tea
polyphenols were consumed as black tea or greefi®a193]. No differences were found in plasma
EGCG concentrations and trolox equivalents detezthioy the trolox equivalent antioxidant capacity
assay after administration as a single large dogbea form of either purified EGCG or as green tea
extract (Polyphenon E) [194]. Hydroxytyrosol, theajor olive oil phenolic compound, is dose-
dependently absorbed from olive oil [195]. Tustkal. showed that hydroxytyrosol intravenously and
orally administered oil-based dosings resulted in sigaifity greateelimination of the phenolics in
urine within 24 h than the oragqueous dosing method. Oral bioavailabiéistimates of hydroxyl-
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tyrosol when administered in an olive sdlution and when dosed as an aqueous solutio®9%asand
75%,respectively [13].

Once absorbed, polyphenols are conjugated to glnale, sulphate and methyl groups in the gut
mucosa and inner tissues. Non-conjugated polypbear@ virtually absent in plasma. Such reactions
facilitate their excretion and limit their potenti@xicity. EGCG and ECG were present in plasma
mostly as the free form, whereas epicatechin andabpcatechin were mostly present as the
glucuronide and sulfate conjugates [192]. Recetd daggest that beta-glucosidases and maybe also
lactase phlorizin hydrolase (LPH) in the small stiree are capable of hydrolysing flavonoid glucesid
and these compounds are thus taken up as thegly@®ia and not as the intact glycosides [196]al h
been reported that around 98% of hydroxytyrosgresent in plasma and urine in conjugated forms,
mainly glucuronoconjugates, suggesting an extensige pass intestinal/ hepatic metabolism of the
ingested primary forms [197-199] and th®33lucuronide of hydroxytyrosol shows stronger atfiv
as a radical scavenger than hydroxytyrosol its¥)0]. The major metabolites identifiedimvitro and
in vivo studies were an Omethylated derivative of hydranoggl, glucuronides of hydroxytyrosol and
a novel glutathionyl conjugate of hydroxytyrosolO(R201]. It has been recently reported that
hydroxytyrosol and its metabolites are capableimding human LDL after olive oil ingestion [202].

The polyphenols reaching the colon are extensivetabolised by the microflora into a wide array
of low molecular weight phenolic acids. It has bes#rown that the plasma concentrations of total
metabolites ranged from 0 toinol/L with an intake of 50 mg aglycone equivalerstsd the relative
urinary excretion ranged from 0.3% to 43% of thgested dose, depending on the polyphenol [189].
The biological properties of both conjugated ddnxes and microbial metabolites will be essential t
better assess the health effects of dietary polyplseAlternatively, some health effects of polypbls
may not require their absorption through the gutiba Their role as iron chelators in the gut lume
briefly discussed. Tannic acid and catechin botéract with the gut but only catechin appears &ble
traverse the gut. In addition, they provide eviderior binding of tannic acid and catechin by
endogenous proteins in the intestinal lumen. Thay fmit their absorption from the small intestine
[203].

6. Conclusions

Consumption of polyphenol-rich fruits, vegetablesd beverages derived from plants, such as
cocoa, red wine and tea, represents a diet beslefiwi human health. Some dietary polyphenols
possess antioxidative and anti-inflammatory propgrtto some extent, contributing to their cancer
chemopreventive potential. These phenolic substanaee the ability to abrogate various biochemical
processes induced or mediated by the tumor prosoteome dietary polyphenols also induce
apoptosis in premalignant or cancerous cells, apgress growth and proliferation of various types o
tumor cells via induction of apoptosis or arresa@pecific phase of the cell cycle.

However, the specific mechanism(s) by which thesmpounds affect human health remains
unclear, despite extensive research conductedisnatiea in recent years. Most of that research has
focused on the antioxidant properties of dietarlypienols, which are well characterized and well
establishedn vitro. Thein vitro data often conflict with results obtained framvivo studies on the
antioxidant capacity of plasma or the resistancpla$éma and lipoproteins to oxidatiex vivo after
the consumption of polyphenols-rich foods by humsabjects. These inconsistencies betweerirthe
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vitro and then vivo data are likely explained by the limited bioavaildy of dietary polyphenols and
their extensive metabolism in humans. Most of therert multifacet action, and any clinical
applications using these substances should be basin@ precise understanding of the physiologicall
relevant action mechanisms.
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