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Abstract: Protein-protein interactions are important for biochemical processes in biological 
systems. The 3D structure of the macromolecular complex resulting from the protein-
protein association is a very useful source to understand its specific functions. This work 
focuses on computational study for protein-protein docking, where the individually 
crystallized structures of interacting proteins are treated as rigid, and the conformational 
space generated by the two interacting proteins is explored extensively. The energy function 
consists of intermolecular electrostatic potential, desolvation free energy represented by 
empirical contact potential, and simple repulsive energy terms. The conformational space is 
six dimensional, represented by translational vectors and rotational angles formed between 
two interacting proteins. The conformational sampling is carried out by the search 
algorithms such as simulated annealing (SA), conformational space annealing (CSA), and 
CSA combined with SA simulations (combined CSA/SA). Benchmark tests are performed 
on a set of 18 protein-protein complexes selected from various protein families to examine 
feasibility of these search methods coupled with the energy function above for protein 
docking study.  

Keywords: Global optimization; Protein-protein docking; Conformational space annealing; 
Simulated annealing; Combined CSA/SA; FastContact.   

 

1. Introduction  

Most biological processes are known to take place through protein-protein interactions. The  
three-dimensional structure of a protein-protein complex could be a crucial clue to understand the way 
proteins interact with each other and their functions. Therefore, knowing the detailed structure of 



Int. J. Mol. Sci. 2008, 9 66 
 

 

protein-protein complexes at the atomic level has been very important issues in biological sciences. 
Experimental determination of three-dimensional structure of the complexes is not an easy task. In the 
protein data bank [1], where experimentally determined 3D structures of proteins are stored, most of 
the protein structures are a singe protein chain and only a small fraction (about 10 %) of the structures 
correspond to protein-protein complexes. The goal of protein-protein docking is to determine the 
molecular structure of the protein-protein complex formed by interaction of two or more proteins 
without the need for experimental measurement. It is important to develop reliable protein-protein 
docking methods which can predict the structures of complexes with reasonable accuracies from given 
unbound structures of protein components. Various methods have been developed for the  
protein-protein docking studies over the years and many review articles are available in the  
literature [2-9]. 

Protein-protein docking can be divided into rigid and flexible dockings. In the rigid docking, 
interacting proteins are treated as rigid bodies without any conformational changes as they interact 
with each other, while, in the flexible docking, the conformational flexibility of the protein molecules 
upon protein association is taken into account. Total conformational space in the rigid docking is 
represented by six variables, consisting of relative translational vectors (x,y,z) and rotational angles 
(φ,θ,ψ) of the protein components. On the other hand, for the flexible docking, torsional angle changes 
of each protein are added to the conformational space. However, the docking procedure that fully 
considers the conformational flexibilities of the proteins is computationally prohibiting, since the 
enormous number of degrees of freedom should be included. Therefore, a complete procedure [3] for 
protein-protein docking study usually follows two separate steps where the rigid docking is first 
performed, and then the flexible docking is carried out for the refinement of protein-protein complex 
structure obtained from the previous rigid docking step. 

Two key elements are generally required for carrying out a protein-protein docking; an efficient 
conformational search algorithm and an accurate free energy function. The free energy function should 
be reasonably accurate so that it can discriminate the native-like association of two component 
molecules from a variety of non-native associations. The search algorithm should explore the huge 
conformational space extensively, so that it can find conformations with free energy values close to the 
global minimum. There is always some inaccuracy in a free energy function, and in order to take this 
into account, the search algorithm usually generates multiple low-energy conformations in the final 
stage of a docking procedure, instead of producing the one conformation with the lowest energy. 
Several structures are then selected from the final conformations based on an appropriate scoring 
function, and proposed as candidates for the native-like structures for the complex. 

Many docking programs [10-13] employ the fast Fourier transformation (FFT) algorithm [14] to 
carry out the global search by extensively exploring the entire search space. FFT generates too many 
structures that are often difficult to manage, so a top fraction of energy-ranked structures are selected 
to be considered as prediction candidates. However, since the conformational diversity among the 
structures is not guaranteed, it is possible for all the selected structures to be distant from the native 
one when the free energy function is inaccurate. Therefore, it is meaningful to devise a search 
algorithm having an ability of achieving both diversity and efficacy in a conformational search. One of 
the most well-known search algorithms is “Simulated Annealing (SA)” [15,16]. The major advantage 
of SA is its ability to avoid becoming trapped at local minima. The SA algorithm employs a stochastic 
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move which is accepted or rejected based on an acceptance probability. SA has been applied to various 
combinatorial problems and many other global optimization problems [17-19]. However, since this 
method generates only one conformation at a time, the conformational diversity cannot be directly 
implemented. Another powerful search algorithm is “Conformational Space Annealing (CSA)” [20]. 
The CSA is based on the genetic algorithms (GA). The major advantage of the CSA is that it can 
generate diverse low-energy solutions. The CSA method has been applied to small-molecule docking 
[21] and protein-protein docking [22] for the CAPRI experiment [23], showing a promising potential 
of the CSA algorithm for the docking study. A new search method is introduced in this work, named 
“CSA combined with SA (combined CSA/SA)”. The combined CSA/SA adapts the genetic operations 
of CSA for a global search and the stochastic search of SA for a local search to maximize the 
effectiveness of conformational search. The combined CSA/SA carries out a rigorous conformational 
search by taking an advantage of the CSA and the SA methods.  

The free energy function used in this work consists of electrostatic, desolvation and repulsive 
energy terms. The electrostatic energy corresponds to the standard Coulombic electrostatic potential 
and the desolvation energy features the desolvation free energy of proteins calculated by an empirical 
atomic contact potential. These two energy terms have been practically used in the FastContact server 
[24,25] which provides a fast computational estimate of the binding free energy of proteins. The third 
term is a simple repulsive term, similar to the steric energy used in the SCWRL side-chain prediction 
program [26]. 

In this work, three conformational search algorithms, CSA, SA, and combined CSA/SA, are 
incorporated with the energy function consisting of the three energy terms to carry out rigid  
protein-protein docking. Instead of explicitly taking into account the flexibility of the interacting 
protein molecules, they are treated as a rigid object allowing small clashes. In order to investigate the 
feasibility of three docking methods, benchmark tests are performed for a set consisting of 18 unbound 
protein-protein pairs selected from the benchmark2.0 developed by Mintseris et al [27]. The rest of this 
article contains details on computational methods including algorithms and implementations followed 
by results. Analysis and discussions are provided at the end by highlighting key findings and 
suggestions for further improvements. 

2. Computational Method 

2.1. Conformational Searches 

Three types of conformational search algorithms are used in this work. They are CSA, SA and 
combined CSA/SA. Details of each method are explained below. 

2.1.1 Conformational space annealing (CSA)  

The CSA unifies the essential ingredients of two optimization methods, GA [28] and Monte Carlo 
with minimization (MCM) [29]. First, as in MCM, the CSA consider only the phase space of local 
minima; that is, all conformations are energy-minimized by a local minimizer. Second, as in GA,  
it deals with a population of conformations, called a bank. The initial bank is constructed by randomly 
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generating a given number (500 in this work) of conformations. This initial bank is copied as the first 
bank, which is kept unchanged throughout the procedure. The number of conformations in the bank is 
also kept constants, but the bank conformations are updated by using new trial conformations obtained 
by procedures similar to genetic operations in GA. Seeds are randomly selected from the bank 
conformations, which are perturbed by replacing its small portion with the corresponding parts  
of a conformation randomly selected from the bank or the first bank. The perturbed conformation is 
then subsequently energy-minimized to generate a new trial conformation. Uniquely in CSA, an 
annealing parameter Dcut is introduced as a cutoff distance reflecting the structural difference between 
the conformations in the phase space of local minima. The major advantage of CSA is that it can 
maintain the structural diversity of conformations generated during the docking procedure for a given 
energy function. The sampling diversity is directly controlled by measuring a distance judging the 
structural difference between two conformations and comparing it with Dcut. To elaborate, a trial 
conformation a is compared with the bank conformations, and the conformation A is selected from the 
bank, which is the closest to the conformation a with respect to a suitable distance measure D(a,A) 
which can be calculated using eq (2). If D(a,A) < Dcut, the conformation a is considered as being more 
or less similar to the conformation A. The conformation with the lower energy between a and A is kept 
in the bank, and the other one is discarded. However, if D(a,A) > Dcut, the conformation a is regarded 
as being distinct from any other conformation in the bank. Therefore, a is compared with the bank 
conformation with the highest energy, and again, the conformation with the lower energy is kept in the 
bank, and the other one is discarded. The diversity of the bank is maintained for a large value of Dcut, 
and the low-energy properties of the conformations are emphasized for a small value of Dcut. Dcut is 
gradually decreased as the algorithm proceeds. Through this annealing procedure, the CSA narrows 
down the search space to a smaller region with low energy values. This implies that there is high 
probability of having a native-like structure in the set of conformations found by the CSA operations.  

The random conformations are generated by assigning random translational vectors (x,y,z) and 
rotational Euler angles (φ,θ,ψ) between two interacting proteins. The initial value of Dcut is set as 
Dave/2, where Dave is the average pairwise distance between the conformations in the first bank and 
defined as follows: 

∑
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where D(i,j) is the distance between the conformations i and j, N is the number of the conformations in 
the bank, ∆Tij(x,y,z) is the translation vector from i to j, and Θij(φ,θ,ψ) is the angle between two Euler 
vectors of i and j. The weight factor ωΘ is determined following the reference [21]. The value of Dcut, 
which is initially set to Dave/2, is gradually reduced to a smaller value each iteration until its final value 
reaches Dave/5 through 200,000 steps according to the annealing scheme. 

When all conformations in the bank are used as seeds, one round of iterations is completed.  
Another round of iterations then is initiated by deleting the information regarding to the usage of 
seeds. The CSA run is arbitrarily terminated after three rounds because the value of the global 
minimum energy is not known. Finally, 500 low-energy and diverse conformations survive in the bank. 
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In this work, the number of bank conformations is 500 and 100 bank conformations among 500 are 
selected as seeds. Each seed conformation produces 5 conformations by replacing a part of the seed 
variables with the corresponding ones of a randomly selected bank conformation. Total 500 perturbed 
conformations are generated from 100 seed conformations and energy-minimized to become trial 
conformations, which are used to update the bank.   

As already mentioned, all conformers generated during the CSA search are energy-minimized by a 
quench method. In this minimization process, the energy is quenched by small random-moves 
combined of translation (up to ±2 Å) and rotation (up to ±5°). The moves that lower the energy are 
only accepted and the others are rejected. The quench-minimization process stops either when 100 
unsuccessful trials occur in a row or when the total number of trials becomes 500. Details of the CSA 
algorithm and its successful applications can be found in the references [21,22,30,31]. 

2.1.2 Simulated Annealing (SA)  

SA is a stochastic global optimization method which is able to avoid being trapped in local minima. 
The SA search is carried out by random moves that can cause the increase or the decrease of an 
objective function, an energy function in this work. A random move that decreases the energy is 
always accepted, and the one that increase it is accepted with a finite probability [16]. The acceptance 
probability is defined as 

kT
E
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∆−

=  (3)  

where ∆E is the change in the energy function, Enew – Eold, T is an absolute temperature, and k is the 
Boltzmann constant.  In practice, when ∆E ≥ 0, a random number R between 0 and 1 is generated and 
the move is accepted only if p ≤ R(0,1) 

Each of 500 parallel runs using SA begins at 300 K and with a randomly generated conformation 
for a protein-protein complex. Total 80,000 moves for each are attempted with up to ±3 Å for 
translation and ±8° for rotation. The temperature decreases by 10 % upon acceptance and increases by 
3 % upon rejection. The possible lowest temperature is set to be 1.0 K. In the final stage, 500 
conformations are collected from all SA runs. 

2.1.3 Combined CSA/SA  

The combined CSA/SA is based on the CSA and the SA algorithms. Instead of performing local 
minimization of conformations by the quench method, the SA technique is used in a local 
minimization to enforce more effective conformational search. Since SA accepts some moves that 
increase the energy function, in contrast to the quench method that accepts only the moves that 
decrease the energy function, small local energy barriers can be overcome.  

The parameters used for CSA and SA are the same as those described in the sub-sections 2.1.1 and 
2.1.2, respectively. 
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2.2. Energy Function 

The energy function consists of three terms; electrostatic potentials, desolvation contact energy and 
repulsive energy. 

repuldeselec EEEE ++=  (4)  

The first two terms are based on the binding free potentials from the FastContact server [24,25] and 
defined as 
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where qi and qj is atomic charge of atoms i and j taken from CHARMM19 [32]; ε(r) (=4r) is the 
distance-dependent dielectric constant; rij is the distance between atoms i and j; eij is the atomic contact 
potential (ACP), which is determined empirically, between atoms i and j. g(rij) is 0 for atoms that are 
more than 7 Å apart and 1 if less than 5 Å apart. It is a smoothly linear function varying between these 
two limits. The last term represents the simple repulsive interaction between atoms of two interacting 
proteins defined as  
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where Dij
vdw is the sum of the hard-sphere radii for atoms i and j. The values for the hard-radii are van 

der Waals parameters taken from CHARMM19. 
The FastContact server provides a service that estimates the binding free energy between two 

proteins by calculating the intermolecular electrostatic potential and the desolvation free energy 
represented by empirical contact potential. In addition, it supplies the residue contact free energies of 
interacting proteins. Determination of ACP was done using 18 atomic types from statistical analysis of 
diverse set of 90 protein structures by converting frequencies of structural factors into atom-atom 
contacts. The ACP is similar to Miyazawa-Jernigan residue contact potential [33,34], but is more 
specific since it is an atom-based contact potential. This server has been successfully tested and 
validated for scoring refined complex structures and blind sets of docking protein decoys. The 
repulsive energy has been modified from the simple steric energy used in the SCWRL program [26]. 
Since the flexibility of proteins is not explicitly taken into account, some softness is added to the 
atomic hard-sphere so that only the interaction between two atoms being within 80 % of the sum of 
their hard-sphere radii is considered repulsive. This term is especially needed since the repulsive 
energy such as that used in the van der Waals interaction is too strict to allow a small clash between 
two atoms. The resulting energy function seems reasonable to describe the protein-protein interaction, 
and it is implemented to this docking study. 
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2.3. Benchmark Test Set 

The protein test set contains total 18 protein-protein complexes which are of 100~400 residues in 
chain-length selected from the benchmark2.0 developed by Mintseris et al [27].  

3. Results and Discussion  

Three optimization methods (SA, CSA and combined CSA/SA) are incorporated into protein-
protein docking. The results obtained from these methods are compared in terms of the effectiveness of 
conformational search and the ability of finding the native-like conformations among the final set of 
500 conformations. Furthermore, the feasibility of the energy function is validated for scoring the 
protein-protein interaction. The docking results are summarized in Table 1.  

The aim of the rigid-body docking is to produce many conformations of a protein-protein complex, 
among which at least one native-like conformation is expected to be found. The evaluation [35] for 
prediction can be made using the RMSD (root-mean-square deviation). The RMSD is defined as the 
RMSD of Cα atoms at the interface calculated after the receptor part of the predicted structure is 
superimposed using Cα atoms on the receptor part of the bound experimental structure. The interface is 
defined as any residue in one component having at least one atom within 10 Å of an atom in the other 
component in the native structure of the bound complex. According to the evaluation criteria [35], a 
predicted model is considered being acceptable if the RMSD ≤ 4.0 Å. The prediction accuracy is 
considered high if the RMSD ≤ 0.1 Å and medium if 1.0 Å < the RMSD ≤ 2.0 Å. The RMSD is 
calculated for 500 conformations in the final set for each of 18 complexes. The acceptable native-like 
conformations are found for the 6 complexes (1ACB, 1CGI, 1CSE, 1TGS, 1UDI and 2TEC) when the 
SA method is used. They are found for the 7 complexes (1ACB, 1CGI, 1CHO, 1CSE, 1MEL, 1PPE 
and 2TEC) and for the 9 complexes (1A0O, 1ACB, 1CGI, 1CHO, 1CSE, 1PPE, 1UDI, 2TEC and 
4HTC), when the CSA and the combined CSA/SA methods are used, respectively.  The result shows 
that the combined CSA/SA demonstrates the ability of finding the most acceptable structures. The 
acceptable native-like structures of 1ACB, 1CGI, 1CSE and 2TEC are found using all three methods. 
However, none of these three methods can find the acceptable ones for the 7 complexes (1AVZ, 1BRC, 
1BRS, 1STF, 1TAB, 2KAI and 2PTC). This failure can be explained by the following possible reasons. 
One reason is that conformational changes of side-chains and/or backbone occur upon binding. This 
docking study is basically carried out based on the rigid-body docking so it is hard to reproduce a 
native-binding mode involving noticeable conformational changes, although small softness effect is 
added to the energy function. To observe the overall conformation changes of the complexes upon 
binding, the RMSD values between the bound and the unbound structures of each protein component 
were calculated over the side-chains at the binding interface after the Cα atoms at the interfaces of the 
two structures were superimposed. The sum of the RMSD values of the interface side-chains of 
receptor and ligand proteins for each complex are varied from 0.7 to 3.5 Å. The smallest summed 
RMSD, 0.7 Å, corresponds to the complex 2TEC for which all three algorithms found the acceptable 
native-like conformations. The largest RMSD, 3.5 Å, is observed for 2KAI whose native-like 
conformation was not found using three search methods. The calculated RMSD values are 3.2, 2.9, 2.9, 
1.6, 1.2, 3.5 and 2.2 Å for seven complexes (1AVZ, 1BRC, 1BRS, 1STF, 1TAB, 2KAI and 2PTC ), 
for which a native-like conformation was not found, and only two complexes out of seven give the 
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RMSD less than 2.0 Å.  The RMSD values for eleven complexes having a least one native-like 
structure using three methods are also varied from 0.7 to 3.2 Å, and five among them show the RMSD 
less than 2.0 Å. The RMSD comparison between the bound and the unbound structures of component 
molecules shows that there is higher probability of finding a native-like structure by conformational 
searches for complexes showing smaller RMSD between the bound and the unbound states,  
i.e. smaller conformational changes upon binding. Another possible, yet critical, reason is originated 
from incomplete PDB structures. Some protein structures, for example, 1TGS, have missing atoms 
and/or residues, which produces a sequence discrepancy between bound and unbound protein 
components. 

Table 1. Performance of the protein-protein dockings using SA, CSA and combined CSA/SA. 

SA CSA combined CSA/SA complex  
pdbA

smallest 
 RMSDB

no. of  
acceptable

C

smallest  
RMSD 

no. of  
acceptable

smallest  
RMSD 

no. of  
acceptable 

1A0O 4.10 0 4.16 0 3.08 1 
1ACB  1.33D 6 0.97 9 1.28 8 
1AVZ 5.73 0 4.79 0 4.90 0 
1BRC 5.29 0 4.04 0 5.03 0 
1BRS 10.47 0 4.96 0 7.67 0 
1CGI 3.46 3 2.73 5 2.94 1 
1CHO 4.02 0 1.11 3 1.45 2 
1CSE 3.29 2 1.27 2 1.62 3 
1MEL 9.38 0 3.66 1 7.31 0 
1PPE 4.07 0 3.11 6 2.40 8 
1STF 4.98 0 4.95 0 4.96 0 
1TAB 5.86 0 4.98 0 5.97 0 
1TGS 1.64 1 5.87 0 5.24 0 
1UDI 2.14 4 4.05 0 2.25 4 
2KAI 5.66 0 5.28 0 5.55 0 
2PTC 5.29 0 4.98 0 5.61 0 
2TEC 2.63 4 2.60 1 2.37 3 
4HTC 6.14 0 7.54 0 3.57 1 

A complex pdb stands for the pdb ID of the native structure of the corresponding complex-complex structures 
B The RMSD is defined as the RMSD over Cα atoms of the interface residues between a predicted structure and its 

native complex and the smallest RMSD is the RMSD value calculated for the most native-like conformation in the 

final set 
C The number of the acceptable native-like structures found in the final set of 500 conformations 
D The smallest RMSD being “acceptable” is written with bold italic types. 
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Figure 1. Scatter plots of RMSD (Å) versus energy for the complex, 1ACB,  
for (a) SA, (b) CSA, and (c) combined CSA/SA.  
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This hampers an accurate calculation of the binding free energy. Other reason might be that the energy 
function used in this study is not accurate enough. The performance of the energy function can be 
evaluated by observing the relation of the RMSD and the energy values. The binding free energy 
landscape in protein-protein interaction is known to have a quite rugged and funnel-like shape [36, 37]. 
If the energy function is reasonably correct, the energy values are supposed to increase with the RMSD 
values, which would results in a positive correlation. The native structure should correspond to the 
global minimum in the energy landscape and the energies of native-like conformations should be 
relatively low since the landscape looks funnel-like. The figure 1 shows the scatter plot of the RMSD 
versus the energy values for the complex, 1ACB, one of the targets in which all three methods are able 
to find the native-like conformations. The conformations having unrealistic interactions including no 
residue-residue contacts and too much penetration are excluded from the plot. In fact, a good 
correlation is not observed in all three cases (SA, CSA and combined CSA/SA) in Figure 1. Three 
plots show a similar phenomenon that the conformations seem to be largely grouped into two clusters. 
This figure also shows that the methods adapting the CSA algorithm, CSA and combined CSA/SA, 
search the conformational space more broadly than that using SA. This validates that CSA rigorously 
explores the search space by maintaining the conformational diversity in the final set. This diversity 
allows the CSA search to have more possibility of keeping a native-like conformation. The results also 
demonstrate that the combined CSA/SA method enforces the local search by utilizing the SA 
algorithm. It is promising that the combined CSA/SA method shows the best performance of docking 
even though the energy function is not too good.  

The limitation of this study is in the absence of explicit treatment of protein flexibility although 
softness effect is added to the energy function. Since it is computationally too expensive to conduct a 
rigorous conformational search while fully allowing the conformational changes, the generally 
accepted procedure in docking involves rigid docking followed by the refinement for flexibility. The 
rigid-body docking should be performed with a reasonable and efficient global search algorithm, so 
that it is highly likely that at least one native-like conformation is included in the set of conformations, 
which will be the initial set for the next refinement. The flexibility will be considered in the next work 
for more complete docking study. An additional work will be left to develop the energy function for 
better native-recognition. Use of the biological information of interest will be also included in the 
future work since the biological information plays an important role in greatly reducing the search 
space. This will make the conformational search more efficient.  
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