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Abstract: Specific rates of solvolysis at 25 oC for p-nitrophenyl chloroformate (1) are 
analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, 
the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent 
nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those 
previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate 
(3). The observations incorporating new kinetic data in several fluoroalcohol-containing 
mixtures, are rationalized in terms of the reaction being sensitive to substituent effects 
and the mechanism of reaction involving the addition (association) step of an addition-
elimination (association-dissociation) pathway being rate-determining. The l/m ratios 
obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for 
benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5). 

Keywords: Solvolysis, addition-elimination, association-dissociation, p-nitrophenyl 
chloroformate, chloroformates, Grunwald-Winstein equation, LFERS, leaving group 
effects. 
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1. Introduction  

Chloroformates (Figure 1) [1, 2] have been extensively used to study substitution reactions 
involving the replacement of chlorine to an acyl carbon, as acid chlorides of the type RCOCl tend to 
react too fast for the kinetics to be followed by conventional techniques [3, 4]. An early survey [5] of 
the kinetics of solvolytic reactions including hydrolysis, suggested that nucleophilic substitution 
reactions of chloroformates [RO(CO)Cl] formally parallel those of other types of carboxylic acid 
esters. Due to an increased initial state stabilization [5-9] experienced with the insertion of an oxygen 
atom between the R group and the acyl carbon, it is possible to obtain information on the kinetics of 
the solvolysis process of a number of alkyl and aryl chloroformate esters by standard titrimetric 
methods. 

Figure 1.   Molecular structures of p-nitrophenyl chloroformate (1), phenyl chloroformate 
(2), p-methoxyphenyl chloroformate (3), benzyl chloroformate (4), and p-nitrobenzyl 
chloroformate (5).  
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Scheme 1.  Alcoholysis of p-nitrophenyl chloroformate (1).  
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Chloroformate esters such as p-nitrophenyl chloroformate (1) have found increased use in the 
synthesis of aromatic polycarbonates for biomaterials [10], and in the present contribution its 
solvolyses expressed in Scheme 1, were conveniently followed at 25.0oC in ten fluoroalcohol 
containing solvents.  

Sixty years ago the original Grunwald-Winstein equation (equation 1) was proposed [11] for the 
correlation of specific rates of solvolysis of initially neutral substrates reacting by an ionization (SN1 + 
E1) mechanism: 

log (k/ko) = mY + c        (1) 

In equation (1), k and ko are the specific rates of solvolysis in a given solvent and in the standard 
solvent (80% ethanol), respectively, m represents the sensitivity to changes in the solvent ionizing 
power Y (initially set at unity for tert-butyl chloride solvolyses), and c is a constant (residual) term. It 
is now realized both that the scales are leaving-group dependent and that adamantyl derivatives 
provide better standard substrates, and for a leaving group X a series of YX scales are available [12]. 

For bimolecular (SN2 and/or E2) reactions [13], the correlation is extended (equation 2) to include a 
term governed by the sensitivity l to changes in solvent nucleophilicity (N): 

log (k/ko) = lN + mY + c       (2) 

Initially, Schadt, Bentley, and Schleyer [14] used methyl p-toluenesulfonate, to arrive at the NOTs 
scale. More recently NT scales based on the solvolyses of S-methyldibenzothiophenium ion [15] have 
been developed, in which the leaving group is a neutral molecule, which is little influenced by solvent 
change, and these values [15, 16] have become the recognized standards for considerations of solvent 
nucleophilicity. A problem with multiparameter equations, such as equation (2), is that strong 
covariances [17] are often observed between N and Y values, hence, Bentley’s group [18] favors the 
use of equation (1) rather than equation (2) in looking for weak nucleophilic assistance, because they 
claim that when multiparameter equations are employed, novel effects may not be detected because of 
the tendency to correlate all of the data moderately successfully. A recent review [19] from our 
laboratories, examined the development and uses of extended forms of the Grunwald-Winstein 
equation in a much greater detail than is presented in this manuscript. 

During the past two decades, the Grunwald-Winstein equations (equations 1, 2) have emerged as 
powerful mechanistic tools that are utilized to understand solvolysis mechanisms in alkyl [20-28], 
alkenyl [29], and aryl [30-37] chloroformate esters. The published results corroborate recent 
suggestions [9, 19, 38, 39] that acid chlorides of monoesters of carbonic acid and of carboxylic acids 
tend to solvolyze with competing addition-elimination (with rate-determining addition) and ionization 
SN1 (assisted by nucleophilic solvation) pathways. The extended form of the Grunwald-Winstein 
equation (equation 2) has been applied successfully to the specific rates of solvolysis of phenyl 
chloroformate (2) [30, 36] and p-methoxyphenyl chloroformate (3) [36, 37] over the full range of 
solvents employed in these types of LFER studies. The reported [37] l value (bond making) of 
1.60±0.05 and m value (bond breaking) of 0.57±0.05 for 2; and a value of 1.66±0.05 for l, and a m 
value of 0.56±0.03 for 3 [36, 37], are consistent with what one would expect for the addition step of an 
addition-elimination mechanism being rate-determining. In the present study, we have augmented 
previously published [32, 33] specific rates of solvolyses of p-nitrophenyl chloroformate (1) in order to 
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analyze the contributions made by the excellent electron withdrawing nitro group which makes the 
carbonyl carbon more positive and thus more susceptible to nucleophilic attack. To better determine 
whether the nitro group manifests this electron withdrawing character we have extended the prior 
study [32, 33] by adding additional solvents having an appreciable fluoroalcohol component. 
Fluoroalchols have been shown to be extremely important, either as pure solvents or as components of 
binary mixtures, in studies leading to analyses in terms of Grunwald-Winstein equations [40-42]. 

2. Results and Discussion 

To give additional specific rates of solvolysis of p-nitrophenyl chloroformate (1), five values in 
aqueous 2,2,2-trifluoroethanol (TFE), three values in aqueous 1,1,1,3,3,3-hexafluoro-2-propanol 
(HFIP), and two values in TFE-ethanol mixtures were measured at 25.0 oC.  These specific rate values 
are reported in Table 1.   

Table 1. Specific rates of solvolysis (k) of p-nitrophenyl chloroformate (1), phenyl 
chloroformate (2), and p-methoxyphenyl chloroformate (3), in several binary solvents at 
25.0ºC and the solvent nucleophilicity (NT), and the solvent ionizing power (YCl) values, for 
the solvents. 

 

Solvent (%)a 1; 105k(s-1)b 2; 105k(s-1)c 3; 105k(s-1)d NT
e YCl

f 

97% TFE (w/w) 0.113±0.008 0.0570±0.0030 0.0300±0.0013 -3.30 2.83 
90% TFE (w/w) 8.87±0.28 1.15±0.08 0.825±0.032 -2.55 2.85 
80% TFE (w/w) 56.8±0.4 7.02±0.28 8.63±0.24 -2.22 2.90 
70% TFE (w/w) 153±1.5 17.4±1.3 15.2±0.6 -1.98 2.96 
50% TFE (w/w) 438±44 63.5±3.0 52.6±2.8 -1.73 3.16 
90T-10E (v/v) 8.82±0.17   -2.67 2.33 
80T-20E (v/v) 45.5±0.7 2.43±0.21 3.52±0.13 -1.76 1.89 

90%HFIP (w/w) 1.20±0.06 0.166±0.004 0.172±0.007 -3.84 4.31 
70%HFIP (w/w) 83.8±0.9 10.5±0.3 7.58±0.22 -2.94 3.83 
50%HFIP (w/w) 277±2 31.6±0.6 24.9±0.5 -2.49 3.80 

a Volume-volume (v/v) basis at 25.0ºC or weight-weight (w/w) basis, as described; other 
component water, except for TFE-ethanol (T-E) solvents.  b with associated standard deviation.  c 

From refs. [30, 36].  d From refs. [30, 36, 37].  e From ref. [16].   f From refs. [42-44].  

For the solvents listed in Table 1, the nitro group exerts a greater inductive electron withdrawing 
effect making the nucleophilic solvent attack at the electrophlic carbonyl carbon center easier, and 
accordingly the reported specific rates of solvolysis increase in the order; k (1) > k (2) ≈ k (3), 
indicating that a bimolecular type mechanism is in operation. In Table 2, the initial sensitivity values 
were obtained (l = 1.85±0.21 and m = 0.48±0.05) from the correlation analyses using just the 
previously studied data of 29 aqueous ethanol, aqueous methanol, and aqueous acetone mixtures [32, 
33], together with NT values [16] and YCl values [42-44].  This multiple regression analysis using the 
extended Grunwald-Winstein equation (equation 2), gave a multiple correlation coefficient of 0.870, 
and an F test value of 41, suggesting that these results must be interpreted with considerable caution.  
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The new data in ten solvents with appreciable fluoroalcohol content (Table 1) were then combined 
with the 29 literature values [32, 33]. For the 39 solvents, we obtained a good linear correlation with 
values of l = 1.68±0.06, m = 0.46±0.04, c = 0.074±0.08, 0.976 for the correlation coefficient, and 363 
for the F-test value (Figure 2). With the application of equation 2, both the multiple correlation 
coefficient (from 0.870 to 0.976) and the F-test values (from 41 to 363), improved considerably on 
inclusion of the 10 fluoroalcohol data points from Table 1. These improvements illustrate the need for 
a good selection of solvents for a meaningful application of extended form of the Grunwald-Winstein 
equation. The observed l and m values are within the range previously observed for other reactions at 
acyl carbon which are believed to proceed by an addition-elimination (association-dissociation) 
mechanism shown in Scheme 2, with the addition step rate-determining [19, 20, 22-25, 27-39]. 

Table 2. Correlationsa of the specific rates of solvolyses of 1, and a comparison with the 
corresponding specific rate values for 2 and 3 in identical solvents. 

 
Substrate nb  ℓc mc cc l/m Rd Fe 

1 
29f 1.85±0.21 0.48±0.05 0.14±0.05 3.85 0.871 41 
39g 1.68±0.06 0.46±0.04 0.074±0.08 3.65 0.976 363 
38h 1.69±0.07 0.46±0.04 0.074±0.08 3.67 0.974 323 

2 38h 1.59±0.07 0.54±0.03 0.16±0.08 2.94 0.972 299 
3 38h 1.58±0.06 0.57±0.04 0.17±0.07 2.77 0.974 320 

a Using equation (2). b Number of data points. c With associated standard error. d Correlation 
coefficient. e F-test value.  f Specific rates are from the 29 solvents reported in refs. [32, 33].  g 

Specific rates are those from Table 1 plus the 29 used in refs. [32, 33].  h Without 90T-10E; using 
identical solvents for the 38 data-point correlation of the specific rates of solvolysis of 1, 2, and 3. 
 
Scheme 2.  Stepwise addition-elimination mechanism through a tetrahedral intermediate 
proposed for p-nitrophenyl chloroformate (1). 
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Figure 2. The plot of log (k/ko) vs. (1.68 NT + 0.46 YCl) for the solvolyses of p-nitrophenyl 
chloroformate (1) in pure and binary solvents at 25.0 ºC. 
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Figure 3. The plot of log (k/ko) for p-nitrophenyl chloroformate (1) against log (k/ko) for 
phenyl chloroformate (2) in pure and binary solvents at 25.0 ºC. 
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ratios suggest the presence of a tighter rate-determining tetrahedral transition state, and that the 
importance of general base catalysis is very similar for benzyl and p-nitrobenzyl chloroformate esters. 

 
Figure 4.  3-D views for p-nitrophenyl chloroformate (1'), phenyl chloroformate (2'), p-
methoxyphenyl chloroformate (3'), benzyl chloroformate (4'), and p-nitrobenzyl 
chloroformate (5'), computed using the KnowItAll® platform. 
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A visual inspection of the computed 3-D views shown in Figure 4, reveals the reason of the 
powerful inductive effect observed in 1. The planarity observed with the p-nitrophenyl group and its 
ether oxygen as shown in 1' makes them linear, so that they can exert their full inductive ability, and 
this further substantiates the differences seen in the l/m ratios reported in Table 1 for 1, 2, and 3. The 
specific rate order [this work, 33-35] of k (1) > k (5) in all of the common solvents studied, is probably 
in part because the p-nitrobenzyl group twists out of the plane with its ether oxygen (as shown in 5'), 
and therefore is able to exert only a fraction of its possible inductive capability. 

3. Conclusions 

The extended Grunwald-Winstein equation is a versatile tool that can be effectively used to gauge 
solvent effects in solvolysis reactions. The presently reported analyses demonstrate that meaningful 
contributions associated with the extended Grunwald-Winstein treatment of 1 can result when an 
adequate selection of solvents with considerably different NT and YCl values are made available. The l 
and m parameters obtained for 1 are very similar to other chloroformate esters (such as 2, and 3) where 
the addition step of an addition-elimination pathway is rate-determining. The trends in the l/m ratios 
observed (Table 2) and observations from the 3D-views shown above, support our proposal of an 
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earlier step-wise transition state for 1, and a decrease in the importance of general base catalysis in 
going from 1 to 2 and 3.     

4. Experimental Section 

The p-nitrophenyl chloroformate (Sigma-Aldrich, 96%) was used as received. Solvents were 
purified and the kinetic runs carried out as described previously [41]. A 0.6 M stock solution was made 
in acetonitrile (Sigma-Aldrich, 99.5%) and a substrate concentration of approximately 0.03 M in a 
variety of fluoroalcohols was employed. The calculation of the specific rates of solvolysis (first-order 
rate coefficients) were obtained when the conventional Guggenheim treatment [46] was modified [47] 
so as to give the infinity titer, which was then used to calculate for each run a series of integrated rate 
coefficients. The specific rates and associated standard deviations, as presented in Table 1, are 
obtained by averaging all of the values from, at least, duplicate runs. 

Multiple regression analysis were carried out using the Excel 2007 package from the Microsoft 
Corporation, and the SigmaPlot 9.0 software version from Systat Software, Inc., San Jose, CA, was 
used for the Guggenheim treatments. Incorporating prior results [9] for the assigned position of the 
halogen in the ground-state structure of 2, the 3D-views presented in Figure 4 for the 5 molecules in 
this study were computed using the KnowItAll® Informatics System, ADME/Tox Edition, from Bio-
Rad Laboratories, Philadelphia, PA. The KnowItAll® platform contains a 3-D molecular rendering 
program SymApps™ that uses a modified MM2 force field minimization module to convert 2-D 
structure drawings to 3-D images. 
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