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Abstract: The rules that specify how the information contained in DNA is translated into 
amino acid “language” during protein synthesis are called “the genetic code”, commonly 
called the “Standard” or “Universal” Genetic Code Table. As a matter of fact, this coding 
table is not at all “universal”: in addition to different genetic code tables used by different 
organisms, even within the same organism the nuclear and mitochondrial genes may be 
subject to two different coding tables. Results In an attempt to understand the advantages 
and disadvantages these coding tables may bring to an organism, we have decided to 
analyze various coding tables on genes subject to mutations, and have estimated how these 
genes “survive” over generations. We have used this as indicative of the “evolutionary” 
success of that particular coding table. We find that the “standard” genetic code is not 
actually the most robust of all coding tables, and interestingly, Flatworm Mitochondrial 
Code (FMC) appears to be the highest ranking coding table given our assumptions. 
Conclusions It is commonly hypothesized that the more robust a genetic code, the better 
suited it is for maintenance of the genome. Our study shows that, given the assumptions in 
our model, Standard Genetic Code is quite poor when compared to other alternate code 
tables in terms of robustness. This brings about the question of why Standard Code has 
been so widely accepted by a wider variety of organisms instead of FMC, which needs to 
be addressed for a thorough understanding of genetic code evolution. 
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1. Introduction 

How the genetic code evolved has been a matter of interest for many researchers over the past  
decades – Crick [1] had postulated the coevolution and frozen accident hypotheses, where similar amino 
acids would end up using similar codons as a result of coevolution of coding tables and genes, and 
remain “frozen” at an optimum coding that reduces deleterious effects of mutations (reviewed in [2]). 
One of the important properties of a genetic code is its robustness to error, which means that if a mutation 
occurs in a gene, the amino acid substitution ideally renders a functionally similar protein, thus a robust 
code reduces the deleterious effects of mutations. Thus one would at first sight assume that the coding 
table that has been adopted by a wider range of organisms would appear more robust, which has been the 
basic premise behind our analysis. 

The genetic information about the individuals is stored in the DNA, which make up the genes. DNA is 
made up of different monomers, or nucleotides, containing one of the four heterocyclic bases: adenine 
(A), guanine (G), cytosine (C) and thymine (T). Genes use triplet codes (“codons”) to translate the 
information into proteins – each of the 20 amino acids is coded by three-base combinations (Figure 1). 
The Genetic Code Tables summarize how this codon assignment is made, saving three codons to signal 
“STOP” for protein synthesis machinery, i.e. 20 amino acids are encoded by 61 different codons. There 
are various exceptions to this Universal/Standard Coding Table, however – for instance vertebrate and 
invertebrate mitochondria use different coding tables for their own genes, as do Ciliates (Table 1).  
The alternate coding tables are believed to have arisen from the evolution of the standard genetic code 
through codon reassignments, and most studies on possible mechanisms of this evolution start out by the 
assumption that the changes resulting in codon reassignment would be strongly disadvantegous and 
consequently get eliminated from the system [3,4]. Using a similar assumption, our present study aims to 
compare the possible “evolutionary” advantages of these different genetic codes in terms of robustness 
and resilience to mutations. 

In our study, genes or “individuals” are represented by bit-strings which are 32 bits long and are 
initially set to zero. Each bit represents a given age or generation: as the individual reproduces we move 
down on the bit-string. Bits which are set to zero represent that no deleterious mutations happened at that 
age. However, if a bit is set to one, it means that the individual suffers a severe mutation at that 
generation and its probability of survival or viability is compromised. This is based on previous reports 
that a lineage of organisms where mutations result in chemically conserved amino acid substitutions may 
actually have higher survivability as compared to those with a less conservative code [5,6], and according 
to the error-minimization hypotheses, the universal or standard genetic code has evolved an inverse 
relationship between the severity and frequency of these alterations [5,7]. We have previously used this 
model to show the optimal number of amino acids that could be encoded by 64 codons without affecting 
survivability of populations due to deleterious mutations [8]. In this initial set of analyses, we make two 
simplified assumptions: first of all, we assumed that nucleotide substitutions occur at similar frequencies 
(current work is integrating unequal substitution rates; unpublished data). Secondly, we assume that any 
change in amino acid composition would be deleterious, hence we do not incorporate similarity matrices 
for the purposes of simplification in this present study (ongoing work is incorporating BLOSUM 
matrices, without significant alterations in our findings; unpublished data).  

Here, we have analyzed a variety of genes from different organisms against 12 different coding tables. 
Our analysis is based on the fundamental assumption that if the gene being analyzed is coding for an 
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essential component of the cells in that organism, such as integrity, metabolism, or replication of DNA,  
it becomes very important that the gene remain functional in order for the organism to survive.  
The underlying assumption is that the mutations which render this particular gene completely inactive 
would mean that the individual would not “survive” [8]. Thus, over a number of generations, we could 
analyze what the survivability outcome is with respect to the entire population – since the mutation is 
considered in the light of the particular coding table analyzed, the better the survivability, the more robust 
the coding table (for details, see Methods).  

Figure 1. The “Universal Genetic Code Table”, adopted from Introduction to Biology, 
Campbell and Reece (6th Ed, 2002). START codon (AUG) encodes for Methionine  
(Met, M), and the three STOP codons are indicated (UAA, UAG, UGA). 
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Table 1. Comparison of various genetic coding tables (information accessed from NCBI Entrez). 

Abbrev. 
Standard 

Code Table 
Standard Code 

Differences from Standard 

VMC The Vertebrate Mitochondrial Code 

Code 2 Std 
AGA stop * Arg R 
AGG stop * Arg R 
AUA Met M Ile I 
UGA Trp W stop * 

YMC The Yeast Mitochondrial Code 

Code 3 Std 
AUA Met M Ile I 
CUU Thr T Leu L 
CUC Thr T Leu L 
CUA Thr T Leu L 
CUG Thr T Leu L 
UGA Trp W stop * 
CGA absent Arg R 
CGC absent Arg R 

MSC 
The Mold, Protozoan, and Coelenterate 
Mitochondrial Code and the 
Mycoplasma/Spiroplasma Code 

Code 4 Std 
UGA Trp W stop * 
 

IMC The Invertebrate Mitochondrial Code 

Code 5 Std 
AGA Ser S Arg R 
AGG Ser S Arg R 
AUA Met M Ile I 
UGA Trp W stop * 

CDH 
The Ciliate, Dasycladacean and Hexamita 
Nuclear Code 

Code 6 Std 
UAA Gln Q stop * 
UAG Gln Q stop * 

EMC The Echinoderm Mitochondrial Code 

Code 9 Std 
AAA Asn N Lys K 
AGA Ser S Arg R 
AGG Ser S Arg R 
UGA Trp W stop * 

ENC The Euplotid Nuclear Code 
Code 10 Std 
UGA Cys C stop * 

AYNC The Alternative Yeast Nuclear Code 
Code 12 Std 
CUG Ser S Leu L 
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Table 1. cont. 

AMC The Ascidian Mitochondrial Code 

Code 13 Std 
AGA Gly G Arg R 
AGG Gly G Arg R 
AUA Met M Ile I 
UGA Trp W stop * 

FMC The Flatworm Mitochondrial Code 

Code 14 Std 
AAA Asn N Lys K 
AGA Ser S Arg R 
AGG Ser S Arg R 
UAA Tyr Y stop * 
UGA Trp W stop * 

BNC Blepharisma Nuclear Code 
Code 10 Std 
UAG Gln Q stop * 

 
Our results show that the “Universal Genetic Code” is actually sub-optimal in terms of robustness in 

this simplified analysis, and FMC appears to function significantly better in protecting the genes against 
mutations described in our study. For ciliate and hexamite representative genes only, The Ciliate, 
Dasycladacean and Hexamita Nuclear Code (CDH) appears to be on a par with FMC in terms of 
robustness, while Yeast (YMC) and Vertebrate Mitochondrial (VMC) codes are unsuccessful. It is rather 
puzzling that a relatively poor-performing Standard Code Table has been adopted by such a wide variety 
of organisms, and further analyses need to be performed in order to thoroughly understand the nature of 
the genetic codes. It should be noted, however, that differences in nucleotide substitution rates, and 
various amino acid substitution matrices should be incorporated in a larger study (work still ongoing), 
however our preliminary results indicate that the overall profile of robustness among coding tables do not 
significantly change (unpublished data). It should also be noted that the initial environment when the 
coding tables were still diverging was significantly different than the conditions today, and responses of 
populations to mutations could be similarly different, and some mutations could perhaps have been 
allowed. This study should therefore be further improved in order to consider many aspects, but should 
be seen as an initial step towards such an improvement. 

2. Results and Discussion 

A previous study [8] had studied how an in silico population survived over generations, by calculating 
the probability of “survival” upon random mutations of an essential gene – the so-called “human 
cytokine” gene – where a mutation that renders the protein non-functional resulted in death of the 
organism. The results in that study were rather interesting, showing that the optimum number of amino 
acids that could be encoded by the coding table that resulted in optimum survival of the population was 
indeed 22, rather than the 20 amino acids normally found in the Universal Coding Table (Figure 1, [8]). 

This result by itself was rather intriguing, taken together with the fact that some genetic code 
reassignments and expansions of the coding tables are still ongoing [9]. This has led us to the question of 
the performance of the alternate coding tables. Using the same statistical analysis, we wished to address 
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whether the universal coding table was even slightly more robust than the alternate tables in terms of 
resilience against mutations.  

To that end, we have analyzed several genes that are either ubiquitous or important for the integrity 
and functionality of cells of the body in humans and primates; such as actins, which are highly conserved 
proteins involved in cell motility and maintenance of the cytoskeleton, and tubulin isoforms, which are 
the main components of the microtubular network and functionally important for cellular integrity as well 
as mitosis (see Table 2 for a comprehensive list of genes and NCBI accession numbers). 

Table 2. Representative genes that are encoded by different coding tables were used in this study. 

Coding 
Table 

GenBank Accession 
Number 

Gene Name / Explanation 

YMC X69431 Kluyvermomyces thermotolerans cox 2 
YMC X69430 Candida glabrata cox 2 
YMC X02439 Hansenula saturnus cox 2 
YMC AF442220 Kluyveromyces lodderae cox 2 (truncated) 
YMC KLU75348 Kluyveromyces lactis ATPase 9 
YMC Mitochondrion Candida glabrata average * 
YMC Mitochondrion Kluyveromyces thermotolerans average * 
YMC Mitochondrion Kluyveromyces lactis average * 
IMC AF329059;  

CDS 34-618 
Haementeria tuberculifera NADH dehydrogenase subunit I (ND1) 
gene, partial cds; mitochondrial. 

IMC DQ202128; 
CDS 32-520 

Drosophila stalkeri voucher NADH dehydrogenase subunit 2 
(NADH2) gene, partial cds; mitochondrial. 

IMC AB275882 Caenorhabditis mitochondrial ND5 gene for NADH 
dehydrogenase 

IMC X99667 Drosophila melanogaster mRNA for mitochondrial ATPase 
synthase, subunit d 

IMC DROMTM2A Drosophila melanogaster NADH dehydrogenase 3 
IMC AF164587 Drosophila melanogaster NADH dehydrogenase subunit 1 
IMC S76764 Drosophila melanogaster ND5, NADH dehydrogenase subunit 5 
IMC Caenorhabditis elegans average * 
IMC Drosophila melanogaster average * 
VMC NM_002488 Homo sapiens NADH hydrogenase 1 alpha subcomplex 2 
VMC BC128726 Rattus norvegicus ATP synthase, H+transporting, mitochondrial 

F0 complex, subunit c 
VMC BC010318 Mus musculus PEP carboxykinase 2, mitochondrial 
VMC X79547 Equus caballus mitochondrial DNA complete sequence NADH 

dehydrogenase 
VMC NM_001079924 Pan troglodytes NADH drhydrogenase (ubiquinone) 1 alpha 

subcomplex, NDUFA4, mitochondrial 
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Table 2. cont. 
VMC PTU12706 Pan troglodytes Ptr5 mitochondrion cytochrome oxidase subunit II 

(COII) gene 
VMC NM_008617 Mus musculus malate dehydrogenase 2, NAD (mitochondrial) 

(Mdh2) 
VMC NM_029696 Mus musculus malate dehydrogenase 1B, NAD (soluble) (Mdh1b), 

mRNA, mitochondrial 
VMC NM_008618 Mus musculus malate dehydrogenase 1, NAD (soluble) (Mdh1) 
VMC NM_010344 Mus musculus glutathione reductase 1 (Gsr) 
VMC NM_001009329 Felis catus cytosolic malate dehydrogenase (MDH) 
VMC Equus caballus mitochondrion average * 
VMC Pan troglodytes mitochondrion average * 
VMC Mus musculus mitochondrion average * 
FMC AJ621238 Echinococcus granulosus malate dehydrogenase 
FMC AF188122 Clonorchis sinensis cytochrome oxidase subunit 1 
FMC DQ402037 Echinococcus granulosus NADH dehydrogenase subunit 1 (ND1) 

gene, partial cds; mitochondrial. 
FMC AY147416 Echinococcus granulosus thioredoxin glutathione reductase 
FMC Flatworm (E. granulosus) mitochondria average* 
ENC AY124990 Euplotes aediculatus alpha-2 platein precursor, gene, complete cds
ENC X71353 Euplotes octocarinatus gamma tubulin 
ENC EF030059 Euplotes nobilii pheromone En-6 
ENC DQ866998 Euplotes nobilii heat shock protein 70 
ENC Y09551 Euplotidae crassus gamma tubulin 2 
ENC AF273753 Euplates vannus actin1 
ENC AY295877 Euplates focardii HSP70 
ENC DQ864704 Euplotes octocarinatus beta2 tubulin 
ENC S72098 Euplates focardii beta tubulin 
ENC J04533 Euplotidae crassus actin 
ENC Euplotes focardii average * 
ENC Euplotes vannus average * 
CDH AY293806 Paraurostyla weissei macronuclear DNA polymerase alpha gene, 

complete cds 
CDH HIU37081 Hexamita inflata elongation factor 1 alpha gene, partial cds. 
CDH Z11836 Stylonychia lemnae gene for DNA Polymerase II. 
CDH AY008386 Urostyla grandis macronuclear type II DNA polymerase alpha 

gene, complete cds. 
CDH X57926 Stylonychia lemnae EF1 
CDH AF194336 Stylonychia lemnae micronuclear DNA polymerase 
CDH XM_001032213 Tetrahymena thermophila EF1 
CDH XM_001031057 Tetrahymena thermophila EFG 
CDH Tetrahymena thermophila average * 
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Table 2. cont. 
CDH Stylonychia lemnae average * 
MSC X65223 Trichophyton rubrum NADH 4L 
MSC X65223 Trichophyton rubrum cox 2 
MSC X65223 Trichophyton rubrum cox 1 
MSC NEUMTCOIJ Neurospora crassa cox 2 
MSC AY548157 Neurospora crassa NADH dehydrogenase 1 
MSC Neurospora crassa average * 
MSC Trichophyton rubrum average * 
Std NM_001614  Human actin, gamma1 
Std AB062393 Human tubulin-beta 
Std AF141347  Human tubulin-alpha 
Std HUMACTA1  Human actin-beta 
Std AB292109 Equus caballus HSP70A8 
Std AB292108 Equus caballus EF1A1 
Std NM_001081838 Equus caballus actin beta 
Std X69884 Equus caballus CD2 
Std NM_001009165 Pan troglodytes EF1 alpha1 
Std NM_001009945 Pan troglodytes actin beta 
Std NM_001034095 Pan troglodytes tubulin alpha 1b 
Std NM_001045509 Pan troglodytes tubulin 
Std NM_001098544 Pan troglodytes tubulin alpha 1a 
Std NM_001098572 Pan troglodytes alpha 1 
Std AF091101 Mus musculus dUTPase 
Std MUSHSC70T Mus musculus Hsc70T 
Std NM_007906 Mus musculus EF1 alpha 2 
Std NM_007393 Mus musculus actin beta 
Std NM_009609 Mus musculus actin gamma1 
Std NM_134024 Mus musculus tubulin gamma 1 
Std NM_009984 Mus musculus cathepsin L 
Std NM_013486 Mus musculus CD2 
Std NM_001009326 Felis catus EF1 alpha 
Std NM_001009841 Felis catus CD2 
Std EF407948 Fasciola hepatica cathepsin L mRNA (flatworm) 
Std EF201934 Taenia asiatica calcineurin B (flatworm) 
Std DQ256465 Schistosoma mansoni cathepsin-like protein CD2 (flatworm) 
Std EF199625 Taenia solium dUTPase (flatworm) 
Std Human average * 
Std Equus caballus average * 
Std Pan troglodytes average * 
Std Mus musculus average * 
Std Felis catus average * 

* (based on genome-based codon usage frequencies obtained from http://www.kazusa.or.jp/codon/) 
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 Figure 2. Comparison of various coding tables with respect to robustness for selected human and primate genes that are normally subject to 
Standard Genetic Code. “Average” genes represent hypothetical and idealized genes constructed using average codon usage frequencies (see 
Methods); accession numbers of the genes are listed in Table 2. Coding table abbreviations are given in Table 1. 
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Figure 3. Comparison of various coding tables with respect to robustness for selected genes from cat, horse and mouse that are normally 
subject to Standard Genetic Code. “Average” genes represent hypothetical and idealized genes constructed using average codon usage 
frequencies (see Methods); accession numbers of the genes are listed in Table 2. Coding table abbreviations are given in Table 1. 
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When we have analyzed the effects of various coding tables on these genes as described in Methods 
section, we have observed that the Standard (or Universal) Code has performed significantly worse than 
many other coding tables, ranking between 6th and 9th among all 12 coding tables tested (Figure 2). In 
order to assess whether this low performance was simply due to a bias of these genes with respect to the 
average codon usage frequencies in the corresponding organisms, we have also generated so-called 
“average” genes, which are randomly representative of codon usage frequencies previously determined 
for those particular genomes (http://www.kazusa.or.jp) (Figure 2). The Standard Coding Table provided 
poor resilience towards mutations even in this hypothetical gene, whereas FMC performed much better in 
almost all of the human genes tested.  

Of course, this could have been due to something peculiar about primate genes and requirements of 
these genomes. Thus, we have decided to analyze genes from representative mammals, essentially horse, 
cat and mouse (Figure 3). The ranking of the Standard Code among all other tables tested was pretty 
variable in mouse, albeit still low in terms of performance. Similar to primate genes, we wanted to check 
whether codon usage frequencies of these genomes could in fact have affected the analyses, and 
constructed hypothetical “average” genes also for these genomes. The Standard Code was still poor-
performing, ranking 9th in all three organisms (Figure 3).  

One of the better-performing nuclear coding tables in this analytical scheme was the CDH code, 
usually ranking between 2nd and 3rd positions – thus we wanted to address whether this nuclear code 
would still perform better when genes normally subject to this coding table were analyzed. To that end, 
we have used representative genes from 4 different species, all of which are involved in DNA replication 
machinery, and also constructed two “average” genes based on codon usage frequencies (Table 2). In all 
of the 4 genes selected, FMC was still a better-performing coding table, ranking the first in 
“survivability”, with one exception being the Hexamite Elongation Factor 1 (EF1) gene (Figure 3). 
Interestingly, Standard Code also performed slightly better for these genes, ranking between 4th and 6th 
among the 12 coding tables (Figure 3). 

We have observed similar results in our analyses of ENC and MSC tables (data not shown): 
essentially, FMC was the best scoring table among all, with CDH in the top 4 in all of the assays  
(Figure 4). 

The FMC appearing at the top of the list in most of the analyses was rather intriguing, especially since 
other mitochondrial coding tables have been usually the worst performing tables in all the analyses so far. 
Thus, we wanted to initially address the question of how this coding table performed with respect to the 
genes that normally utilizes this table, namely genes encoded by flatworm mitochondrial DNA. To that 
end, we have used several different mitochondrial genes from various flatworm species; in order to 
compare mitochondrial versus nuclear gene performance, and also constructed “average” genes for this 
table (Table 2). In all mitochondrial genes, FMC appeared as the highest-performing coding table, as with 
other species and coding tables examined so far (Figure 5). The Standard Code was still suboptimal for 
these genes, ranking 5th-8th among the 12 coding tables tested, while CDH is still a better performer than 
the Standard Code (Figure 5). For vertebrate or invertebrate mitochondrial tables, the genes encoded by 
mitochondrial genomes were analyzed, however the overall profile had not changed, with FMC still 
outperforming the Standard Code (data not shown).  
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Figure 4. Comparison of various coding tables with respect to robustness for selected genes 
that are normally subject to CDH Coding Table. “Average” genes represent hypothetical and 
idealized genes constructed using average codon usage frequencies (see Methods); 
accession numbers of the genes are listed in Table 2. Coding table abbreviations are given in 
Table 1. 
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Figure 5. Comparison of various coding tables with respect to robustness for selected genes 
that are normally subject to FMC Coding Table. “Average” genes represent hypothetical and 
idealized genes constructed using average codon usage frequencies (see Methods); 
accession numbers of the genes are listed in Table 2. Coding table abbreviations are given in 
Table 1. 

 

 
 

To summarize all these scores in one table, we have taken the rankings of all coding tables used for 
each gene (Figure 6a). Afterwards, for all genes analyzed from that particular table (for instance MSC), 
these ranks were summed up and their averages were calculated (Figure 6b). When this was calculated 
for all the genes tested from all the different coding tables, we have organized our data in a tabulated 
form (Figure 6c). As can be seen, quite unexpectedly, Standard coding table ranged in performance 
ranking from 4.9 to 7.9, which was rather poor when compared to the FMC table, which was almost 
always 1st in the genes tested across species (Figure 3c). The worst performing table in almost all the 
cases was yet another mitochondrial table, YMC, which indicates that the results are not correlated with 
whether the genes are encoded by nuclear or mitochondrial genomes, or by mutations rates thereof. VMC 
was slightly better than YMC, but interestingly, IMC was closer to the Standard Code than to VMC 
(Figure 3c). 
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Figure 6. Ranks of coding tables across organisms and genes in terms of robustness and 
survivability. (A) A representative list of statistical calculations of survivability for a given 
gene if it were subject to different coding tables. (B) For genes that are normally decoded by 
one given Code Table, the average rank of certain alternate tables in terms of performance 
in survivability (projection of robustness). (C) A summary of performance comparison of all 
the coding tables tested with respect to one another. The rows show averages of all the 
genes analyzed for that particular coding scheme (ie, AVERAGE(FMC) means average 
ranks for genes that are normally subject to FMC), while the columns indicate what would 
have happened if alternative coding schemes were adopted. 
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3. Conclusions 

In this paper, we have used statistical analysis to investigate the optimality of alternate genetic coding 
tables on the “survivability” of genes representative of different organisms. This analysis simply 
calculates the probability of maintenance of a functional protein after generations of single-base 
substitutions in a given gene, depending on whether the mutation is silent, missense or nonsense in that 
particular coding table used (see Methods). Our results indicate that the Standard, or “Universal”, Genetic 
Code is actually one of the lower performance tables in terms of tolerating mutations and rendering 
another functional protein upon genetic substitutions. The best success rates were obtained, surprisingly, 
with FMC for all the organisms tested, which was not paralleled in either the VMC or other 
mitochondrial coding tables analyzed (Figure 6).  

Interestingly, the CDH does in fact give the maximum score for the Hexamita gene, EF1, which in fact 
does use this very coding table, and CDH performs significantly better than the Standard Code for other 
ciliate and Hexamita genes that we have analyzed. This may imply that indeed CDH might be 
evolutionarily more adapted to the organism and the environment against any possible mutations (see 
below). 

There have been many studies trying to explain the presence of alternate genetic codes, or indeed why 
the standard genetic code is still undergoing reassignments of codons [5,7,9,10], which required 
modification of the so-called “frozen-accident” theory [1]. These changes in alternate code tables are 
believed to have stemmed from reassignments of codons of the Standard Genetic Code, and not from 
ancestral lineages of alternate coding tables [10]. Then one could imagine a situation where newly 
evolved codes due to evolution may indeed by better suited for certain organisms and certain conditions, 
in line with our data on FMC, nevertheless this still fails to explain why FMC and not any other 
mitochondrial code?  

This could in part be explained by the nature of codon reassignments in these particular code tables: 
when IMC, VMC, YMC, and FMC are all compared, there are a few common reassignment schemes – 
UGA that is STOP in the Standard Code is reassigned to Trp in these mitochondrial codes, and AUA that 
is Ile in the Standard code is assigned to Met in all these codes except for FMC (see Table 1 and Figure 
1). However, when the differential reassignments are analyzed, it becomes apparent that there is an entire 
subset of codons for Leucine (CUU, CUC, CUA and CUG) that has been reassigned to another amino 
acid, Threonine (Table 1) in YMC table, leaving only two codons still encoding Leu. Also in YMC, the 
UGA STOP codon has been reassigned to Trp, which would lead to failure to stop translation of certain 
proteins. Furthermore, to make things even worse for YMC, two codons, CGC and CGA, have been left 
unassigned (Table 2). Similarly, in the VMC scheme, AGA and AGG codons for Arginine have been 
reassigned to STOP, which could result in immature termination of translation, thus affecting the 
performance of this coding table immensely. 

When the FMC table was analyzed, however, one can readily observe that the reassignments are 
relatively “mild” when compared to the other coding tables: the UAA STOP codon has been changed to 
Tyrosine, reducing one STOP codon, however at the same time increasing the robustness to any 
mutations to the two Tyrosine codons, UAU and UAC (see Figure 1 and Table 2). The AAA codon for the 
positively-charged Lys has been rassigned to a polar Asn residue, and the two Arg codons, namely AGA 
and AGG, have been reassigned to another polar residue, Ser (Table 2). When compared to our results, 
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these changes would appear to have increased the tolerance of this coding table to mutations that affect 
primary structure of the protein (Figure 5). Of course, one must note that this initial study excludes any 
similarity matrices for mutations as it is, however recent data indicate that improvement of the 
calculations based on input from BLOSUM, PAM (Point Accepted Mutations) and other matrices does 
not significantly alter the ranking profile of these coding tables (Kurnaz and Kurnaz, unpublished data). 
This could partly be explained by the fact that PAM matrix itself may be a result of the nature of the 
genetic code table [11].  

When mechanistics of evolution of alternate genetic codes are investigated, it appears that almost all 
of the present-day alternate codes are much “better” than any random genetic code table constructed [4], 
although in their analyses of how reassignments can have occurred the researchers conclude that the 
“canonical” or standard genetic code is slightly better than the alternates. If one assumes error-
minimization as the basic premise of optimality of code tables, then the standard genetic code appears to 
be the most optimized, as well as most adaptive when compared to alternative genetic codes [11]. In our 
study we observe that the Standard code is not the best among the alternate codes tested, in terms of 
robustness and toleration of mutations. This is probably due to our calculations taking into account only 
robustness of the genetic codes – however one study indicates that changeability of sequences is just as 
important for the evolution of genetic codes, thus adaptability, where the alternate genetic codes would 
suffer in our calculations [11, 12]: although seemingly contradictory, in this work robustness and 
changeability was implied to be equally fundamental for the survivability of organisms and evolution of 
genetic codes. Changeability is defined as a measure of how much a sequence can be altered through 
single base mutations [12], which, while putting a certain population of organisms at a certain 
disadvantage, could also lead to a slight advantage in another subset of organisms. This would be one 
explanation as to why the Standard Code, although so poor in terms of robustness, is the most widely-
used coding table of all. As other researchers point out, although contemporary genomes operate in 
almost error-free environments, ancestors of the standard code were most likely in a highly error-prone 
niche, where robustness would have held a certain disadvantage [11]. A different explanation, in the light 
of still ongoing codon reassignments, could equally well be that the genetic codes are still changing and 
even possibly, evolving. Our hypothesis is more in line with the latter explanation, where the standard 
code was quite possibly the first optimal scheme reached by natural selection, but that it is still evolving, 
both reassigning certain codons, as well as expanding the amount of information contained by the table to 
the optimal number calculated for this coding table, 22 [5,7,8,9,10]. However such hypotheses need to be 
further tested after additional parameters such as the changeability have been included in the calculations. 
Also, combinatorics approaches could be utilized in order to provide comparison to the results obtained 
through the calculations presented in this study. 

4. Methods 

If there is a mutation on a gene which causes a severe change in the amino acid chain, we could safely 
assume that the organism would not be able to build a functional protein. If this protein is a crucial 
protein for the viability of the organism, one could also assume that any deleterious mutations in this 
gene rendering the protein non-functional would be lethal to the organism. Proteins taking part in 
immunity, cell respiration, DNA, RNA synthesis and cell division (tubulin formation) are basic examples 
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for such crucial proteins. This has been previously reported to be the case for a human cytokine gene 
used in simulations and statistical calculations, following experimental findings in literature [8]. If all 
other effects (aging, food restriction, illness etc.) that are not directly related to the genetic code table are 
neglected, deleterious mutations changing the amino acid sequence will be the major cause of death in 
this in silico population. Neutral or “silent” mutations do not cause a change in viability in this model 
(see probability calculations below). We have also omitted reproduction from this model for simplicity, 
therefore we have a population which can only decrease as a result of deleterious mutations in order to 
emphasize the effects of coding tables alone.  

There are many different schemes on the occurrence of mutations – in this preliminary model we have 
assumed that a mutation is a random process, with equal probability [13]. We disregard frameshift 
mutations in this particular model (caused by deletions or insertions), and we only look at single 
nucleotide substitutions – hence we include in this model the effects of only silent mutations, nonsense 
mutations and missense mutations on the protein product. Normally the rates for these replacements 
depend on the two nucleotides being interchanged. The simplest approach to the problem is to take all 
mutation rates to be equal, an approach known as the Jukes-Cantor mutation scheme [14]. 

The mutation is taken to be deleterious if it causes a change in the amino acid chain; and not all the 
mutations kill the individual. To be more explicit, the codons AAA and AAG in the Standard Genetic 
code the same amino acid, “lysine”; hence if AAA turns into AAG as a result of a mutation the amino 
acid will not change and the protein can be constructed safely. However; if AAA turns into AGA, which 
codes the amino acid “arginine”', the amino acid chain will change and we assume that the protein can 
not build up, which means the represented organism will die. 

There can be a mutation which converts AAA to AAX where X ≠ {A, G, C, or T}; then the individual 
dies automatically. As a model, we are looking at a simpler case where a mutation changes A to one of G, 
C, or T, but not X. Since reproduction is not included in the model, the population can only diminish. The 
decrease in population can be found by calculating the probability of a deleterious mutation. The details 
of these calculations can be found in [8]. Essentially, the probability of the mutation changing the amino 
acid depends on the codon; so one needs to find the probability of hitting each different codon type. First, 
the probability of hitting a codon type (Pα) is calculated as the ratio of the number of codons of that type 
in the gene (Nα) to total number of codons. Then we need to exclude the mutations that do not cause a 
change in the amino acid and calculate the probability of a change occurring in the amino acid caused by 
a change in one nucleotide (P(d/α)). The results are reported as the negative of the slope, hence the 
smaller numbers indicate better survival rates over many generations. In general, we let the populations 
continue over a minimum of 10 generations.  

We used only the exon (protein coding) part of the gene considering any mutation in the intron 
would be essentially harmless with respect to amino acid substitutions. As a simple example, the human 
cytokine gene has a total length of 2068 nucleotides; 621 nucleotides in exon part and 1447 ones in 
intron. The probability of hitting the exon part of the gene is simply the ratio of the exon part to the total 
gene:  

 

3032.0
2068
621 exon) P(hitting ==           (1) 
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Hence; the probability of having a deleterious mutation for all the gene is simply a product of 
mutation probability and probability of hitting the exon part of gene. As the chances of hitting any part 
of the gene is a same, we can neglect the intron part in the simulation since this would only be a 
multiplicative constant in the problem. Therefore the probability of having a deleterious mutation for all 
human cytokine gene is simply: 

 

( ) 7729.0ous)P(deleteri
64

1
=∝∑

=

α
α

α dPP ,         (2) 

 
where d is the number of deleterious mutations and α is the number of all possible mutations. Therefore, 
for our purposes, we have not used genomic sequences but rather CDS, or coding sequences, for the 
sake of simplicity because of the calculations discussed above. 

 
The survival probability can be calculated by: 
 

P(surviving) = 1- P(deleterious) = 0.2271         (3) 
 
If we take an initial population of N0 genes (individuals), after n number of mutations, to the first 

order, the number of surviving individuals (Nn) is given by: 
 

( )n
n survivingPNN 0≈            (4) 

 
Hence, we obtain the “probability of survival” with the slope of the number of surviving individuals 

versus time graph: 
 

slope ≈ ln[P(surviving)] = -1.4823         (5) 
 
Similarly the probability of survival can be calculated for all the genes separately. However in this 

calculation once we make a change in the gene sequence and if the individual survives, we forget about 
the change we have made and restart the process for the second mutation cycle with the original gene 
sequence. We have assumed that in Nature, if the individual survives, the second mutation cycle starts 
with the mutated gene sequence and not the original one. Therefore, to be able to get closer to Nature 
we have also written a simulation code which allows for the mutation in the gene sequence to be kept in 
the next mutation mutation cycle. 

The Standard Genetic Coding Table is shown in Figure 1. The variations of the different Coding 
Tables when compared to the Standard Coding Table are summarized in Table 1. The genes that have 
been used for this study are summarized in Table 2. 
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