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Abstract: The interaction between water and the protein of the contractile machinery as 
well as the tendency of these proteins to form geometrically ordered structures provide a 
link between water and muscle contraction. Protein osmotic pressure is strictly related to 
the chemical potential of the contractile proteins, to the stiffness of muscle structures and 
to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and 
the steady rate of contraction are linked by modulating a single parameter, a viscosity 
coefficient. Muscle operation is characterized by working strokes of much shorter length 
and much quicker than in the classical model. As a consequence the force delivered and the 
stiffness attained by attached cross-bridges is much larger than usually believed. 

Keywords: Water, muscle contraction, osmotic pressure, chemical potential, stiffness, 
viscosity, working stroke. 

 

1. Introduction 

The sliding-filament theory of muscle contraction [1, 2] is almost universally accepted. The relative 
motion of thick and thin filaments in the sarcomere is generated by myosin heads which undergo an 
actin-activated ATPase cycle during which they form transient cross-bridges between the filaments  
[3, 4]. We are not interested, however, in the details of the mechanism but on the gross features of the 
contractile apparatus: the non ideality [5], the viscosity [6] and the response time of the system. 

Most of this review is concerned with the involvement of water in muscle contraction. The 
involvement is due to the hydrophilic nature of the proteins of the contractile apparatus. The water 
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solutions of these proteins, with the exception of G-actin (Grazi, unpublished results), are highly non-
ideal (Appendix A). The consequence of this property is that a small change of the protein 
concentration induces a large change of the water chemical potential and consequently an opposite 
change of the protein chemical potential. The chemical potential of the proteins is related to the 
stiffness of the contractile structure, a property of first importance in the operation of the contractile 
apparatus. Furthermore the increase of the chemical potential of the proteins is accompanied by the 
increase of the viscosity of the solution. 

A further point is the ability of the hydrated proteins of the contractile apparatus to assemble 
spontaneously in vitro to form ordered structures. Under proper condition G-actin molecules assemble 
into the double helical polymeric F-actin and myosin molecules assemble into the bipolar myosin 
filaments (thick filaments). In the absence of ATP, specific surfaces of the actin monomer and of the 
head of myosin associate to form actin-myosin the heavier component of the contractile apparatus. 
This association provides a geometric frame that relates protein osmotic pressure (and protein 
concentration) both to the inter-filament distance and to the elastic force acting on each protein 
structure. As a consequence, the change of the volume of the system is linked exclusively to the 
change of the inter-filament distance and this latter determines the change of the angle formed between 
the attached cross-bridges and the thick and thin filaments. This constitutes, as a whole, a coherent 
system, which links the protein osmotic pressure to the elastic reaction of the cross-bridge components. 

We will: 
1) Describe the non-ideal behaviour of the myosin filaments suspensions. 
2) Mimic the behaviour of detached and of attached cross-bridges. 
3) Reason on the force-length constant. 
4) Describe the osmotic properties of myosin subfragnent-1. 
5) Describe the effect of protein osmotic pressure on the stiffness of the attached cross-bridges and 

on the contractile force. 
6) Define the power stroke. 
7) Introduce viscosity, an inseparable partner of muscle contraction. 

2. Results 

2.1. Non-ideal behaviour of the myosin filaments suspensions 

The osmotic pressure induced by myosin filament suspensions at various concentrations is 
illustrated in Figure 1. It is clear the non-ideal behaviour of both myosin (filled circles) and of myosin 
rods (open circles). In fact the two curves do not obey the expression, 

π = 103 RT m 
that relates osmotic pressure, π, and solute concentration, m, in an ideal solution. 

The relation between protein osmotic pressure and protein molality (Appendix A) allows to 
calculate the chemical potential change of myosin as a function of myosin molality (Figure 2). 
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Figure 1. Protein osmotic pressure as a function of the molality of myosin. (a) Ideal 
solution, π = 103 RT m, the pressure, in this scale, almost coincides with the bottom line of 
the figure. (b) Myosin, (filled circles): data are fitted by the curve π = 103 RT (m +  
1.7 × 1010 m4). (c) Myosin rods, (open circles): data are fitted by the curve π = 103 RT (mr 

+ 2 × 109 mr
4.4) [7]. 

 

Figure 2. Chemical potential change of myosin and of the myosin rods as a function of 
their molality. (a) The Δµ of myosin (left curve) is calculated by making use of the 
equation µm = RT (2.26666 × 1010 m3 + ln[m]) + cost. (b) The Δµ of myosin rods (right 
curve) is calculated by making use of the equation mr = RT (2.58823 × 109 mr

3.4 + 
ln[mr])+costant. The molality of reference is 0.72 × 10-3 molal [7]. 

 

2.2. Mimicking the behaviour of the detached and attached cross-bridges 

Suspensions of myosin filaments and of the 1:1 actin-myosin complex were used as a model for 
detached and for attached cross-bridges, respectively. The two suspensions present distinct energy 
profiles as a function of protein osmotic pressure (Figure 3). 

From these energy profiles we may present the hypothesis that, in muscle: 1). detached cross-
bridges change significantly their free energy when sarcomere is shifting from the relaxed to the active 
or to the rigor state; 2). the cross-bridge attachment-detachment process is accompanied by changes of 
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the muscle protein osmotic pressure [8]; 3). the shift of myosin into the 1:1 actin-myosin complex is 
controlled by the protein osmotic pressure. 

Figure 3. Energy profile of myosin and of the 1:1 actin-myosin complex as a function of 
protein osmotic pressure. (a) Myosin, upper line. Data are fitted by the equation: 
Δµ = 3.41389 (π – 0.17 × 104)0.91 + 2.3988 × 10-3 (π – 0.17 × 105)1.38 Joule/mol. 
(b) 1:1 actin-myosin complex, lower line. Data are fitted by the equation: 
Δµ = 4.31613 (π – 0.17 × 104)0.91 – 0.0245796 (π – 0.17 × 104)1.27 Joule/mol [8]. 

 
 

Let us operate at 18 kPa, the putative protein osmotic pressure of relaxed muscle [9]. The 
phenomenological equation that relates protein osmotic pressure to myosin molality is: 

π = 2.45 × 106 (mm + 100 mm
2 + 1.7 × 1010 mm

4) Pa Eq. (1)
thus the concentration of myosin that generates the pressure of 18 kPa is 7.87 × 10-4 molal. 

Once actin-myosin is formed the same total myosin molality (in actin-myosin) generates the lower 
protein osmotic pressure of 12.9 kPa, since the equation that describes the protein osmotic pressure of 
actin-myosin is: 

π = 2.45 × 106 (mm + 2600 mm
2 + 7 × 109 mm

3.99), Pa Eq. (2)
If, on the contrary, 18 kPa is the protein osmotic pressure of muscle in rigor, the corresponding total 

myosin molality is 8.79 × 10-4 molal (Eq. 2). The same concentration of myosin, after relaxation, Eq. 
(1) generates the protein osmotic pressure of 27.2 kPa. Thus, actin-myosin formation has a clearly 
detectable influence on muscle protein osmotic pressure, i.e. on the water chemical potential of the 
highly non-ideal solution that is the contractile apparatus. Alteration of the water chemical potential 
necessarily influences the energetics of all the contractile structures, including those complexed with 
ATP, which cannot be studied by means of systems at the equilibrium. 

2.3. The force-length constant 

The force, F, exerted by the cross-bridge along the direction of the filament, is usually considered 
to be a function only of the position of the base of the cross-bridge relative to the position of its current 
site of attachment. These relative positions are measured by the variable, x, referred to as the 
“distortion” of the cross-bridge and defined so that F(0) = 0. F(x) is usually taken as a linear function 
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containing a force-length constant, k: F(x) = kx [10]. Our studies on the osmotic properties of myosin 
filaments suspensions [7] indicate that force, F, is not at all a linear function of the deformation, x, and 
that the “length-force constant” changes significantly with the deformation as well as with the length 
of the rotating arm. In fact by relating the osmotic behaviour (water chemical potential changes), the 
elastic behaviour (protein chemical potential changes) and the external work applied to the cross-
bridges of the myosin filament suspensions it is recognized that: 
1) Beyond a given myosin concentration (or a given protein osmotic pressure), any change of the 

volume of the solution is accompanied by a change of the volume of the hydrated filament, thus of 
the radius of the hydrated filament. This sets a relationship between the molality of myosin and the 
radius of the hydrated filament.  

2) An equivalence can be set between pressure-volume work and elastic stress and, on the assumption 
that stress is mostly localized to the cross-bridges, the dependence of cross-bridge distortion on 
myosin concentration (or protein osmotic pressure) can be calculated. 

Figure 4. Cross-bridge orientation in one half of the myosin filament. CC’ is the axis of 
the myosin filament, where C’ is toward the end of the filament and C is toward the middle 
of the filament. r0 = OA and AOC = 90° are the radius of the myosin filament and the 
angle α at protein osmotic pressure ~0; r = BD = BO sin(BOC) and BOC are the radius of 
the myosin filament and the angle α at the experimental protein osmotic pressure; F is the 
force orthogonal to the filament axis, acting on each cross-bridge; FV is the component 
directed toward the constraint; FC is the component parallel to the filament axis and 
directed toward the center of the filament [7]. 

 
 

3) It is found that, k, the “force length constant” increases significantly with cross-bridge distortion, x, 
and that the increase depends on the length of the rotating arm. Two models of the rotating arm are 
selected (Figure 4). The first model assumes that the rotating arm equals r0. In this case  
r = r0 × sin(a). The second model assumes that the length of the rotating arm is half of the 
difference between the cross-bridge diameter (30.1 nm) and the shaft diameter (15 nm), thus equals 
7.55 nm. In this case sin(a) = (r - b)/(r0 - b), where b = r0 - 7.55 nm. By increasing protein osmotic 
pressure from 18 kPa to 50 kPa, the likely range of protein osmotic pressure in muscle, k, increases 
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from 0.5 to 1.39 pN/nm for model I (rotating arm 15.05 nm) and from 0.79 to 3.48 pN/nm for 
model II (rotating arm 7.5 nm) (Figure 5). 

4) At constant protein osmotic pressure, if an external, non-osmotic force, parallel to the filament 
axis, is applied to cross-bridges, these structures are deformed and the water activity coefficient is 
altered. As a consequence, in muscle, passive and active shortening of the sarcomere is expected to 
promote the change of the water-water and of the water-protein interactions. We thus depict 
muscle contraction as a chemo-osmo-elastic transduction, where the analysis of the energy 
partition during the power stroke requires consideration of the osmotic factor in addition to the 
chemo-elastic ones [7]. 

Figure 5. The “force length constant”, k = FC/x, as a function of the distortion. (a) First 
model: lower trace; (b) second model, upper trace [7]. 

 

 

2.4. The osmotic properties of myosin subfragment-1 

From the work of Rayment et al. [11] myosin subfragment-1 appears as a highly asymmetric 
particle of 18.5 nm length, 6.5 nm width and approximately 4 nm thickness. The shape of a protein, 
however is likely to change with a change in the water chemical potential due to a change of protein  
concentration (protein osmotic pressure). To detect eventual changes, since in concentrated solutions 
of myosin subfragment-1a regular packing is not easily discernible, we used the scaled particle theory 
of fluid mixtures [12, 13]. Four subfragment-1 models are considered: (a) a cylinder of 16 nm length 
and 1.66 nm radius (fully extended conformation). (b) a cylinder of 8 nm length a 2.22 nm radius 
(partially bent conformation), (c) a spheroid of 3.21 nm radius (completely bent conformation), and (d) 
a dimeric spheroid of 4.047 nm radius. The activity coefficient of either the monomeric cylinder or the 
monomeric or dimeric spheroid is calculated according to the scaled particle of fluid mixtures as 
indicated by Minton [14]. The activity coefficients, which are obtained in the molar (M) scale, are 
converted into the molal (m) scale as indicated by Glasstone [15]. 

The experiments were performed either in 100 mm KCl solutions or in 25 mm orthophosphate 
solutions plus 2 mm MgADP. This last condition was used in the attempt to accumulate the 
subfragment-1 – MgADP – Pi intermediate [4]. 

In KCl solutions (KCl, 0.1 mol; triethanolamine, 0.01 mol; MgCl2, NaN3 and 2-mercaptoethanol, 2 
mmol each, pH, 7.45), between 0.6 and 2.5 mm, subfragment-1, behaves like a dimeric spheroid of 
4.05 nm radius and a dimerization constant higher than 3.5 × 104 m-1 (Figure 6). This indicates that 
dimerization occurs with bending of the molecule. Dimerization of subfragment-1 was previously  
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reported to occur at low temperature and at low protein concentration [16]. The identity of the dimeric 
form and of the refractory states of subfragment-1 was also proposed [17]. Since, in muscle, myosin 
heads are constrained in their orientation and aggregation state by the myofilament lattice, it is 
uncertain whether dimers will form in vivo. Bending of the head, however, is expected to occur also  
in vivo. 

Figure 6. Plot of (1000 π) / (RT m) against the molality of subfragment-1 (as dimer) in 
KCl solutions. Theoretic behaviour calculated according to the scaled particle theory on the 
assumption that subfragment-1 is a dimer of spheroidal shape and radius 4.047 nm  
(_____) [18]. 

 
 

 

 

 

 

 

 

 

 

In 25 mm orthophospate solutions, up to the protein osmotic pressure of 10 kPa, the subfragment-1 
particle displays essentially the same behaviour in both the presence and in the absence of MgADP. In 
contrast, between 10 and 40 kPa, the behaviour differs significantly. In particular at 18 kPa, the protein 
osmotic pressure in frog muscle [9], in the absence of MgADP, subfragment-1 behaves like a 
monomeric cylinder with a height to diameter ratio of 2.07, while in the presence of MgADP, it 
behaves like a monomeric spheroid. According to the scaled particle theory, our results indicate that in 
muscle the myosin head is not fully extended. It is bent and bending is increased in the myosin-
MgADP-Pi intermediate (Figure 7) [18]. 

2.5. Protein osmotic pressure, stiffness of the attached cross-bridges and contractile force 

Osmotic pressure, π, is the rate of change of energy in relation to the volume of all the 
exchangeable species. Thus changing the volume fraction or the concentration of the macromolecular 
species by applying osmotic pressure is physical work done on that species. This work can be 
expressed as the chemical potential of the macromolecular subject to stress at fixed temperature, T, 
hydrostatic pressure, p, and activities, ni, of small molecules: 
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Δµ(T,p,ni) = - π ΔV (Joule) 
where, V is the total volume, essentially the water volume that moves to or from the phase of interest 
[19]. Thus when a protein osmotic stress is applied to F-actin or to subfragment-1 decorated F-actin 
osmotic work is transformed into mechanical work that compresses the filament. This occurs because, 
concomitantly with the decrease of the volume of the solution, the macromolecular protein osmotic 
pressure and the distortion of the contractile structures increase, thus changes the orientation of the 
actin monomer in F-actin, in tropomyosin-F-actin, in the myosin subfragment-I decorated F-actin and 
in the myosin subfragment-1 decorated tropomyosin-F-actin (Appendix B and C). 

Figure 7. Plot of the protein osmotic pressure of subfragment-1 solutions in 
orthophosphate, with (open circles) and without MgADP (filled circles). (a), Ideal 
behaviour, 1000 π / RT = m, (_____); (b), theoretical behaviour calculated on the 
assumption that subfragment-1 is a cylinder of 9 nm length and 2.22 nm radius (….); (c), 
and on the assumption that subfragment-1 is a sphere of 3.21 nm radius (-----) [18]. 

 
 

The distortion of the contractile structures increases their stiffness and, therefore, their elastic 
moduli by bending. In particular, at the protein osmotic pressure of 18 kPa, the monomer in F-actin 
and in tropomyosin-F-actin display an elastic modulus by bending of 4.74 MPa and of 5.8  
MPa, respectively. 

Decoration of these structures with myosin subfragment-1 increases significantly the elastic 
modulus by bending of the monomer. At the protein osmotic pressure of 18 kPa the elastic modulus by 
bending for myosin subfragment-1 decorated F-actin is 22MPa and for myosin subfragment-1 
decorated tropomyosin-F-actin is 22.3MPa. 

The increase from 4.74 to 22 MPa of the rigidity of the monomer of F-actin, following the 
decoration with myosin subfragment-1, is compatible with the development of a force of 3.96 pN per 
monomer, a force correctly oriented to promote the sliding of the actin filament toward the center of 
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the sarcomere. The magnitude of this force is comparable to the average force developed by a single 
cross-bridge in intact skeletal muscle [20, 21]. In contrast, the myosin subfragment-1 decorated 
tropomyosin-F-actin rigor complex develops a much smaller driving force that favours relaxation. 
Apparently tropomyosin uncouples the osmotic and the mechanical event. 

We thus propose that the energy for muscle contraction is stored as elastic energy in the actin 
filament and in the cross-bridge. The elastic energy is provided by protein osmotic pressure. We have 
shown that the stiffness of the cross-bridge components increases with protein osmotic pressure. Since 
the contractile force cannot be larger than the stiffness of the cross-bridge, it follows that the 
magnitude of the contractile force increases with protein osmotic pressure [22, 23]. 

2.6. The working stroke 

Originally the cross-bridge step size was fixed at 15 nm [24]. Worthington and Elliott with their 
impulsive force theory [25, 26] criticized this choice. They proposed that cross-bridge step size is 
smaller, 2 nm, and of variable length. This view found experimental support from the work of 
Reconditi et al. [27] who showed that working stroke is smaller and slower at higher load. In these 
experiments a load step of 150 µs is first applied to the fibre (phase 1) and is accompanied by fibre 
shortening because of the compliance of the myosin heads and the actin and myosin filaments. After 
the load step rapid shortening continues for a few milliseconds. This phase 2 shortening is thought to 
be due to the working stroke. A filament sliding of 5.2, 6.4 and 8.1 nm per half sarcomere occurs after 
load steps to 0.75, 0.50 and 0.25T0, respectively. 

In our model [6] the power output is defined as the ATPase rate [28] time the number of the myosin 
head per the half sarcomere. Since the working strokes occur randomly [29, 30] they mostly occur one 
at the time. Thus, in order to contribute to contraction, they must deliver a force at least equal to the 
contractile force, F1, experienced by the half sarcomere at that moment. The energy available to each 
working stroke, 7.44 × 10-8 pJ per molecule (EATP) [31], is the free energy of hydrolysis of ATP in 
muscle conditions. The maximum length, lM, possibly spanned in the course of the working stroke is 
thus, lM = EATP/F1, and the estimated time length of the working stroke is, 

tW = EATP/F1/vv 
where vv is the actual shortening rate experienced by the half sarcomere at that moment. During the 
steady shortening of the fiber the time length of the working stroke is 2.4 µs, 0.296 µs and 0.488 µs at 
0.947, 0.368 and 0.105 P/P0, respectively, where P, is the tension and P0, is the isometric tension 
(Figure 8). Longer time lengths of the working stroke are experienced in the pre-steady state. At 0.105 
P/P0, (Figure 9, upper part) the time length of the working stroke is 3 µs as compared to 0.488 µs of 
the steady state. At 0.947 P/P0 (Figure 9, lower part) the time length of the working stroke is 100 µs as 
compared to 2.4 µs of the steady state. Please notice that the pre-steady lasts more than 20 µs at 0.105 
P/P0 and about 5 µs at 0.947 P/P0. 

According to He et al. [28], at 0.105 and 0.947 P/P0, the rates of actin-myosin ATPase are  
16.836 s-1 and 5.786 s-1 and the periods 0.0594 s and 0.173 s, respectively. Thus, according to our 
model, the time length of the working stroke is only a very minor part of the ATPase period. This 
means that the available chemical energy is converted very rapidly into mechanical energy and that the 
force delivered and the stiffness acquired are orders of magnitude larger than those of the classical 
models. A further consequence is that the stiffness fades with the working stroke therefore the cross-



Int. J. Mol. Sci. 2008, 9                                                                                                                             
 

1444

bridges, still attached, oppose very little to the sliding of the filaments. In the pre-steady state the 
fraction of the attached cross-bridges seems to be larger than in the steady state as judged from the 
significantly longer time length of the working stroke. 

In conclusion our view on the working stroke is definitely different from the classical view, this 
latter is based on the Huxley-Simmons manoeuvre and on the alleged cross-bridge synchronization, 
where the working stroke spans a distance of a few nanometers with time lengths of a  
few milliseconds. 

Figure 8. Estimated time length of the working stroke as a function of the load at steady 
fibre shortening. Elaborated, according to [6], from the data of [28]. 

 

Figure 9. Pre-steady fibre shortening, estimated time length of the working stroke. 
Elaborated, according to [6], from the data of He et al. [28]. (a) Upper figure, 0.105 P/P0; 
(b) Lower figure, 0.947 P/P0. 
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2.7. Viscosity, an inseparable partner of muscle contraction 

The question whether viscosity is an important component of muscle contraction is debated since 
many decades. It is clear that in contracting muscle some work is dissipated to overcome a viscous 
resistance [32-34]. Wide disagreement occurs however on the impact of viscous hindrance. At the 
extremes, Ernst [35] calculates that the force of the sliding friction is likely to be larger than the 
isometric force while Huxley [36] proposes that the viscous drag force is only 10-4 of the isometric 
force. In fact activated fibers display a significant internal viscosity that could arise from cross-bridge 
interaction [37, 38]. Furthermore Elliott and Worthington [39] calculate a hydrodynamic viscous drag 
of 6 × 10-5 kg s-1 for an actin filament of frog muscle during contraction. 

In our opinion the contribution of viscosity cannot be neglected in the economy of muscle 
contraction [6]. 

The energy delivered by each single power stroke induces the displacement of the masses of the 
half sarcomere (m1) and of the associated load (m2). Contraction takes place only when the power 
strokes reach the right frequency, so that not all the energy provided by a power stroke is used up 
before the following power stroke, performed by another attached cross-bridge, occurs. When this 
condition is satisfied the half sarcomere shortens by a uniformly accelerated motion. 

The uniformly accelerated motion is not the usual motion of the contraction. To convert the 
uniformly accelerated motion into the observed uniform motion [28] a viscous hindrance is introduced 
[40, 41]. Thus a hyperbolic form, 

vV = k ad t/(k+t) 
is assigned to the velocity, vV, of the masses, m1 and m2, which move under the effect of the  
driving acceleration, 

ad = (F1 + F2)/(a1 + a2) 

Figure 10. 1/k, µs-1, as a function of P/P0. Temperature 12 °C. Sarcomere length  
2.7 µm [23]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The reciprocal of the constant, k, defines the viscous hindrance; a1 is the acceleration associated to 

the contractile force, F1; and a2 is the acceleration associated to, F2, the force of the load. 
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The frequency of the power strokes is given by the number of the molecules of ATP hydrolyzed per 
second in the half sarcomere [28]. The value of, k, is adjusted to match the experimental velocity [28]  

The system is solved numerically. At each cycle the values of, vV, ad, a1, F1, change. While 
approaching the stationary state, ad, tends to zero and, vV, tend to the exprimental value. The approach 
to the steady state requires from few microseconds to almost a millisecond depending on the load. 

In Figure 10, 1/k, µs-1, is shown to increase as a function of P/P0. The increase of the load is 
associated both with the increase of the fraction of the attached cross-bridges and with the decrease of 
the distance between the sliding surface of the thin and of the thick filaments. It is therefore reasonable 
that the system experiences an increase of the viscosity coefficient. 

According to our model active muscle shortening attains the steady state in a few microseconds, but 
at very high load the time required is almost a millisecond. This means that, in most cases, the present 
time resolution is not adequate to observe the pre-steady state, the only state where it is meaningful to 
investigate the viscous properties of muscle fibers. 

3. Conclusions 

3.1. The non ideality of the contractile system 

Our experiments were performed in vitro, at the equilibrium, with the aim to study the 
macromolecular osmotic pressure generated by the contractile proteins and to mimic the behaviour of 
the sarcomere. Under these conditions the change of the water chemical potential (change of osmotic 
pressure) and of the protein chemical potential could be determined without any assumption and their 
relation with the stiffness of the protein structures and with the capability to support muscle 
contraction could be established. In general the solutions of the contractile proteins behaved non 
ideally, therefore small changes of the volume of the system were accompanied by large changes of 
the macromolecular osmotic pressure and of the stiffness of the structures. At constant volume the 
interaction of the contractile proteins also perturbed the macromolecular osmotic properties of the 
system and the chemical potential of the proteins. At constant pH and ionic strength the change of the 
concentration of small solutes (change of the micromolecular osmotic pressure) did not significantly 
alter the macromolecular osmotic pressure unless one of the solutes did not specifically bind to one of 
the proteins of the system. In this case a “protein cross-talking through osmotic pressure”  
occurred [44]. 

Recently muscle contraction and cell volume changes were studied in skeletal muscle with a time 
resolution of 400/s [45]. It could be helpful to extend these also to the changes of the volume of  
the sarcomere. 

It was proposed that osmotic mechanisms could contribute to the power stroke of myosin. In 
particular it was pointed out that the pressure of a single molecule (e.g. a phosphate ion) expanding a 
trap could supply part of the energy required to perform the power stroke [46]. Although plausible 
these mechanisms are highly hypothetical and bears no relationship with our studies on the 
macromolecular osmotic pressure of the contractile proteins. In fact our results were obtained in the 
absence of any assumption. 
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3.2. The viscous properties of the system 

The question whether the contractile apparatus is a highly viscous system is debated since a 
longtime. The problem is to explain how a series of impulsive forces, generated by the splitting of 
ATP, is converted into the smooth and steady movement of the contraction. In our model [6] the 
conversion is operated by a viscous hindrance that depends on the condition of the contraction, mostly 
on the load. The reason why the viscous hindrance is usually overlooked is that it can be detected only 
in the pre-steady state of the contraction. Unfortunately in most cases the pre-steady state is too fast (a 
few microseconds) to be detected. 

3.3. The response time of the system 

The present picture of muscle contraction is largely influenced by the time resolution of the 
equipment available. The transition from a resting to an active fiber is usually not explored. The length 
(or load) steps applied to the active fiber have, at best, a time length of ~100 µs. The response of the 
fiber last more than 1 ms, in this time many hundreds of power strokes take place in the sarcomere. It 
is thus desperately impossible to dissect the contribution of a single power stroke. It is our opinion that 
a meaningful representation of the power stroke requires the study of the transition of the muscle fiber 
from the resting to the active state with a time resolution of the order of the microsecond. 
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Appendix A 

Ideal and non ideal solutions 

In an ideal solution the relation between osmotic pressure, π, and the water molar fraction, XW, is 
given by: 

π = -RT ln[XW] (Pa)  
or, in the molal scale: 

π ~ mP
 RT (MW / VW) = 1000 mP RT (Pa) (A1) 

where MW = 0.018 kg is the water molal mass; VW = 18 × 10-6 m3 is the water partial molal volume. 
Are called non-ideal the solutions that diverge from this behaviour. 

The chemical potential of a protein as a function of the osmotic pressure 

In binary systems composed of water and protein the chemical potential of the protein is calculated 
by the the Gibbs-Duhem relation: 

nw dµw + nP dµP = 0 (A2) 
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where dµP and dµW are the chemical potential changes of protein and water, and nP and nW are the 
number of moles of protein and water, respectively; the change of the chemical potential of protein as 
a function of protein molality, m, is: 

dµP = - nW / nP dµW (A3) 
dµP = - 55.5555/m dµW  

since 
µW = µ°W + RT ln[aW]   

and 
π x VW = - RT x ln[aW]  

dµW = - VW d π  
and Eq. (A3) becomes 

dµP = 55.5555 / m VW d π (A4) 
where, VW = 18 × 10

-6
 m

3
 , is the water partial molar volume, π is the protein osmotic pressure and aw 

is the activity of water. 
If the phenomenological expression for, π, as a function of the molality of the protein, is known, 

equation (A4) can be integrated and the Δµ of the protein, as a function of the molality, is obtained. 

Appendix B 

Calculation of the interfilament distance of the actin filament and of the S1-decorated actin filament 

Equilibration of either F-actin or S1-decorated F-actin solutions against poly(ethyleneglycol) 
solutions of known osmotic pressure withdraws water from the protein compartment until the same 
macromolecular osmotic pressure is reached in both compartments. Above the macromolecular 
pressure of ~8 kPa F-actin and S1 -decorated F-actin undergo a filament-to-bundle transition and the 
majority of the filaments is regularly packed [42]. In the course of the process, water is withdrawn 
both from the inter-filament and from the intra-filament spaces, so that not only the inter-filament 
distance decreases (lattice compression in muscle fibres), but also the volume and the diameter of the 
hydrated filament decrease. 

The interfilament distance of the actin filament and of the S1-decorated actin filament is calculated 
from the molal concentration of actin according to the equation:  

d = { [(v × b m) + 1.005 × 10-3] × 4 / (b × N × 2.73 × 10-9 × 2√3) }½ (B1) 
where 1.005 × 10-3 m3 is the water volume plus the salt volume, v is the partial specific volume of the 
protein, m in kDa is the molecular mass, b is the number of moles of F-actin (as monomer)/kg water. N 
is the Avogadro number, and 2.73 × 10-9 is the number of meters of filament/actin monomer [43].  
Eqn. (B1) vanishes below the protein osmotic pressure of 104 Pa. Below this pressure actin filaments 
are not homogeneously organized into bundles. 

Appendix C 

The compression of the actin filament subjected to an osmotic stress 

In the compression of the actin filament by osmotic stress the free-energy change of the solution in 
the protein compartment accompanying the simultaneous compression and water movement is 
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dG = nFdR – ΔPdVW  
where n = b × N is the total number of molecules of actin in the filaments; F is the force orthogonal to 
the filament axis, acting on each actin monomer; R is the radius of the filament; ΔP is the chemical 
potential difference of water in pressure units; and VW, is the water volume. At equilibrium  

nFdR = ΔPdVW  
i.e. 

F = (ΔP / n) × dVW  / dR  
Since the volume of the solution is 

2 √3 R2 × 2.73 × 10-9 × b × N (C1) 
[42] and the volume of the protein is v × m × b, the water volume is 

VW = (2 √3 R2 × 2.73 × 10-9 × b × N) – (v × m × b)  
and 

dVW/dR = 4√3 × 2.73 × 10-9 × N × b × R  
Thus the force F acting on each actin monomer is 

F = 4 √3 × 2.73 × 10-9 × R × ΔP (newtons) (C2) 
The force F is split into two components: FV , directed toward the constraint, and FT, parallel to the 

filament axis and directed toward its pointed end (Figure 4). 
FT  = F × tan (90 - α) (newtons) (C3) 

α, is the angle formed between, l, the axis of the monomer and the pointed end of the filament axis and 
is defined by R/l = Sin[α]. 

The force FT is balanced by the reaction of the monomer or of the decorated monomer. 
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