1-(4-Hydroxy-3-methoxyphenyl)-4-methyl-3-pentanone

Guy L. Plourde

University of Northern British Columbia, Department of Chemistry, 3333 University Way, Prince George, British Columbia, Canada, V2N 4Z9
Tel: 250-960-6694, Fax: 250-960-5545, E-mail: plourde@unbc.ca
Received: 7 July 2002 / Accepted: 15 October 2002 / Published: 30 March 2003

The discussion and purpose for the synthesis of this compound has been reported elsewhere [1]. To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of diisopropylamine $(0.72 \mathrm{~mL}, 520 \mathrm{mg}, 5.1 \mathrm{mmol}, 1.25 \mathrm{eq})$ in dry THF $(20 \mathrm{~mL})$ was added under an atmosphere of N_{2} a solution of BuLi in hexane ($1.6 \mathrm{M}, 3.2 \mathrm{~mL}, 5.1 \mathrm{mmol}, 1.25 \mathrm{eq}$) and the solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The solution was cooled to $-94^{\circ} \mathrm{C}$ (acetone $/ \mathrm{N}_{2}$), isopropylmethyl ketone ($0.55 \mathrm{~mL}, 443 \mathrm{mg}$, $5.1 \mathrm{mmol}, 1.25 \mathrm{eq}$) was added and the solution was stirred at $-94^{\circ} \mathrm{C}$ for 1 h . 4-Benzyloxy-3-methoxybenzaldehyde ($985 \mathrm{mg}, 4.1 \mathrm{mmol}$) was added, the suspension was allowed to warm up to $0^{\circ} \mathrm{C}$ and stirred at that temperature for $3 \mathrm{~h} .10 \% \mathrm{HCl}(10 \mathrm{~mL})$ was added, the solution was stirred at room temperature for 1 h and extracted with dichloromethane ($3 \times 35 \mathrm{~mL}$). The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo to give a yellow oil. The crude product was partially purified by chromatography on silica gel ($15 \% \mathrm{EtOAc} /$ hexanes) to give an oil. The oil was dissolved in EtOAc (20 mL), $\mathrm{Pd} / \mathrm{C}(52 \mathrm{mg})$ was added and the solution was stirred under a positive atmosphere of H_{2} for 2 h . The solution was filtered through celite and the solvent was
 22%).

IR (neat) $\mathrm{cm}^{-1}: 3439(\mathrm{OH}), 1709(\mathrm{CO})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ d: $1.07\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.76(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 3.87(\mathrm{~s}$, $\left.3 \mathrm{H} \mathrm{OCH}_{3}\right), 5.49\left(\mathrm{~s}, 1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 6.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}-6, \mathrm{ArH}-2), 6.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{ArH}-5)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ d: $18.3(\mathrm{C}-5), 29.8(\mathrm{C}-2), 41.2(\mathrm{C}-4), 42.6(\mathrm{C}-1), 56.1\left(\mathrm{OCH}_{3}\right), 111.2(\mathrm{ArC}-2), 114.5$ (ArC-5), 121.0 (ArC-6), 133.5 (ArC-1), 144.0 (ArC-4), 146.5 (ArC-3), 214.3 (CO).

MS m/e (rel \%): 222 [M+] (50), 179 (34), 151 (17), 137 (100), 119 (11).
Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{C} 70.23$, H 8.17, found C 70.31, H 8.16.

Acknowlegment

The author is thankful for the financial support provided by the University of Northern British Columbia.

Reference

1. Plourde G.L. Tetrahedron Letters 2002, 43, 3597-3599.
(C) 2003 MDPI. All rights reserved.
