2-(1-Bromo-1-methyl-ethyl)-2-methyl-[1,3]dioxolane

Juan M. Castro, Pablo J. Linares-Palomino, Sofía Salido, Joaquín Altarejos,* Manuel Nogueras and Adolfo Sánchez

Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain. Tel.: 34-953-002743, fax: 34-953-012141
E-mail: jaltare@ujaen.es
Received: 16 February 2004 / Accepted: 25 March 2004 / Published: 29 March 2004
Keywords: Bromination, a-bromoketone, dioxolane ring.

1

2

3

A solution of bromine ($0.3 \mathrm{~mL}, 5.90 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(2 \mathrm{~mL})$ was slowly added over a stirred mixture of 3-methyl-butan-2-one (1) ($505 \mathrm{mg}, 5.90 \mathrm{mmol}$) and $\mathrm{AcOH}(0.33 \mathrm{~mL}$) at room temperature. After complete addition of bromine it was left reacting for 1 h and then, the reaction was quenched by pouring carefully aqueous $\mathrm{NaHSO}_{3}\left(25 \mathrm{~mL}, 40 \% \mathrm{w} / \mathrm{v}\right.$). The organic layer was washed with $40 \% \mathrm{NaHSO}_{3}$ (25 mL), saturated $\mathrm{NaHCO}_{3}(3 \times 25 \mathrm{~mL})$ and brine $(3 \times 25 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and 15 mL of MeOH were added to evaporate the azeotrope under reduced pressure. The residue (1.03 g), which contains mainly 3-bromo-3-methyl-butan-2-one (2), was resolved in benzene (20 mL) and anhydrous p - TsOH ($171 \mathrm{mg}, 1.00 \mathrm{mmol}$) and ethyleneglycol ($928 \mathrm{mg}, 14.90 \mathrm{mmol}$) were added. Then a Dean-Stark trap device was fit and the reaction refluxed for 4.5 h . The crude reaction was worked up by washing with saturated $\mathrm{NaHCO}_{3}(3 \times 25 \mathrm{~mL})$ and brine $(4 \times 25 \mathrm{~mL})$ and the organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, after that, $\mathrm{MeOH}(15 \mathrm{~mL})$ was added to evaporate the azeotrope under reduced pressure. The residue (811 mg) was purified by reduced pressure distillation ($0.15 \mathrm{mmHg}, 32^{\circ} \mathrm{C}$) to yield the title compound 3 ($770 \mathrm{mg}, 3.70$ $\mathrm{mmol}, 62 \%$ from 1) as a colorless liquid.

IR (neat, $\mathrm{n}, \mathrm{cm}^{-1}$): 1161, 1093, 1045, 951 (C-O-C), 649 (C-Br).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~d}, \mathrm{ppm}$): 1.52 (3H, s, Me-2), 1.79 ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}-1$ '), 4.05 ($4 \mathrm{H}, \mathrm{br} s, \mathrm{H}-4, \mathrm{H}-5$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~d}, \mathrm{ppm}$): 20.52 (Me-2), 29.51 (C-2’, Me-1’), 65.93 (C-4, C-5), 69.99 (C-1’), 111.92 (C-2).

MS (70 eV, m/z): 195 ([M+2] $\left.{ }^{+}-\mathrm{Me}, 1 \%\right), 193\left(\mathrm{M}^{+}-\mathrm{Me}, 2\right), 129\left(\mathrm{M}^{+}-\mathrm{Br}, 5\right), 153\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{81} \mathrm{Br}^{+}, 1\right), 121$
$\left(\mathrm{C}_{3} \mathrm{H}_{6}{ }^{79} \mathrm{Br}^{+}, 1\right), 114\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{Me}, 6\right), 99\left(\mathrm{M}^{+}-\mathrm{Br}-2 \mathrm{Me}, 5\right), 87\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{+}, 98\right), 69$ (9), 57 (22), 43 (100).

Acknowledgements:

We wish to thank the Ministerio de Ciencia y Tecnología for financial support (R+D Project PPQ2000-1665) and the Ministerio de Educación, Cultura y Deporte for a fellowship to J. M. Castro.
© 2004 MDPI. All rights reserved.

