5-Hydroxy-2-methyl-3-ox0-6-(2,2,3-trimethyl-cyclopent-3-enyl)-hexanoic acid ethyl ester

Mercedes Pérez-Bonilla, Juan M. Castro, Pablo J. Linares-Palomino, Sofía Salido, Joaquín Altarejos,* Manuel Nogueras and Adolfo Sánchez

Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
Tel.: 34-953-002743, Fax: 34-953-012141, e-mail: jaltare@ujaen.es
Received: 16 February 2004 / Accepted: 6 July 2004 / Published: 1 July 2005
Keywords: a-Campholenic aldehyde, ethyl 2-methylacetoacetate, aldol reaction.

Sodium ($241 \mathrm{mg}, 10.48 \mathrm{mmol}$) was added to absolute ethanol $(40 \mathrm{~mL})$ and the mixture refluxed until sodium reacted completely. Then ethyl 2-methylacetoacetate (2) ($1.2 \mathrm{~mL}, 8.25 \mathrm{mmol}$) was added to the solution. The mixture was refluxed for 1 h and, then, after reaching room temperature, aldehyde $\mathbf{1}(1.26 \mathrm{~g}$, 8.27 mmol) was added and the mixture refluxed again for 2 h . Finally, ethanol was partially evaporated under reduced pressure and the residue neutralized with aqueous 2 N HCl and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 15$ $\mathrm{mL})$ and brine ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under reduced pressure to yield a residue (1.65 g) which was purified by flash chromatography on silica gel, using a 6.5:4.5 hexane/EtOAc mixture as eluent, to give the title compound $\mathbf{3}$ ($356 \mathrm{mg}, 1.20$ mmol, 15%).

Melting point: $131.0-132.8^{\circ} \mathrm{C}$ (white dust, from hexane/ethyl acetate).
IR (neat, $\left.\mathrm{cm}^{-1}\right): 3450-2600,1101(\mathrm{OH}) ; 3036(\mathrm{C}=\mathrm{C}) ; 1610(\mathrm{CO}) ; 1610,1246,1153$ (COOEt).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79\left(3 \mathrm{H}, s, \mathrm{Me}-2^{\prime}\right) ; 1.01\left(3 \mathrm{H}, s, \mathrm{Me}{ }^{\prime}-2^{\prime}\right) ; 1.21(3 \mathrm{H}, t, \mathrm{~J}=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.36(3 \mathrm{H}, d, \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{Me}-2) ; 1.62\left(3 \mathrm{H}, ~ b r s, \mathrm{Me}-3^{\prime}\right) ; 1.70-2.87(7 \mathrm{H}, m, \mathrm{H}-4, \mathrm{H}-6, \mathrm{H}-1$ ', $\left.\mathrm{H}-5^{\prime}\right) ; 3.48\left(2 \mathrm{H}, q, \mathrm{~J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.61(1 \mathrm{H}, q, \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{H}-2) ; 4.69-4.81(1 \mathrm{H}, m, \mathrm{H}-5) ; 5.24(1 \mathrm{H}$, br s, H-4').
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.92(\mathrm{C}-1) ; 51.68(\mathrm{C}-2) ; 201.52(\mathrm{C}-3) ; 43.98(\mathrm{C}-4) ; 73.19(\mathrm{C}-5)$; 35.25* (C-6); 7.71 ($\mathrm{Me}-2$); $15.22\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 65.81\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; 44.91 (C-1'); 46.79 (C-2'); 148.67 (C-3'); 121.00 (C-4'); 35.17* (C-5'); 19.73 (Me-2'); 25.46 (Me'-2'); 12.54 (Me-3').
*These signals may be interchanged.
EI-MS (70 eV, m/z): $279\left(\mathrm{M}^{+}-\mathrm{OH}, 0.1 \%\right) ; 267\left(\mathrm{M}^{+}-\mathrm{Et}, 0.1\right) ; 251\left(\mathrm{M}^{+}-\mathrm{OEt}, 0.8\right) ; 235$ (0.7); 217 (0.9); 205 (0.4); 193 (1); 171 (2); 161 (9); 141 (9); 133 (11); 119 (20); 108 ($\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}, 100$); 93 (29); 79 (12); 43 (34).

Acknowledgements

We wish to thank the Ministerio de Ciencia y Tecnología for financial support ($\mathrm{R}+\mathrm{D}$ Project PPQ2000-1665) and the Ministerio de Educación, Cultura y Deporte for a fellowship to J. M. Castro.
© 2005 MDPI. All rights reserved.

