Synthesis of Phenylhydrazone of 5-Acetyl-3-(Methylsulfanyl)-1,2,4-Triazine and 3-Methyl-5-(Methylsulfanyl)-1-Phenyl-1H-Pyrazolo[4,3-e][1,2,4]Triazine from Pivotal Intermediate

Mariusz Mojzych

Institute of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland
e-mail: mojzych@ap.siedlce.pl
Received: 23 April 2004 / Accepted: 29 April 2004 / Published: 1 July 2005
Keywords: 1,2,4-triazine ketoxime, intramolecular cyclization, $1 H$-pyrazolo[4,3-e][1,2,4]triazine.
As part of ongoing research programme on bicyclic heterocycles [1-4] we have elaborated a new approach to 1 H -pyrazolo[4,3-e][1,2,4]triazine derivative $\mathbf{3}$ and its synthetic precursor $\mathbf{2}$ by reaction of oxime 5-acetyl-3-(methylsulfanyl)-1,2,4-triazine (1) with phenylhydrazine hydrochloride under different reaction conditions.

Phenylhydrazone of 5-acetyl-3-(methylsulfanyl)-1,2,4-triazine 2

To a solution of the oxime $\mathbf{1}(184 \mathrm{mg}, 1 \mathrm{mmol})$ and phenylhydrazine hydrochloride ($288 \mathrm{mg}, 2 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml}) 37 \% \mathrm{HCl}(0.3 \mathrm{ml})$ was added. The mixture was heated at $40^{\circ} \mathrm{C}$ for 9 hours and then the solvent was evaporated in vacuo. The solid was collected by filtration, washed with water and recrystallized from ethanol/water mixture (1:1) to give $\mathbf{2}$ in 27% yield.

Melting point: $224^{\circ} \mathrm{C}$.
${ }^{1}{ }^{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.30(\mathrm{~s}, 3 \mathrm{H}) ; 2.69(\mathrm{~s}, 3 \mathrm{H}) ; 6.99-7.08(\mathrm{~m}, 1 \mathrm{H}) ; 7.23-7.28(\mathrm{~m}, 2 \mathrm{H}) ; 7.32-7.41(\mathrm{~m}$, 2H); 8.05 (s, 1H, NH); 9.63 (s, 1H).

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3240(\mathrm{NH}) ; 2980,1600,700$.
EI-MS (70eV, m/z): 259 (7) [$\left.\mathrm{M}^{+}\right] ; 147$ (45); 129 (100); 112 (54); 70 (90).
Elemental Analysis: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$: C 55.60%; H 5.02\%; N 27.03%. Found: C 55.53%; H 5.09\%; N 26.99\%.

3-Methyl-5-(methylsulfanyl)-1-phenyl-1H-pyrazolo[4,3-e][1,2,4]triazine 3

To a solution of the oxime $\mathbf{1}(184 \mathrm{mg}, 1 \mathrm{mmol})$ and phenylhydrazine hydrochloride ($216 \mathrm{mg}, 1.5 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added $37 \% \mathrm{HCl}(0.3 \mathrm{ml})$. The mixture was heated at reflux for 5 hours and then the
solvent was evaporated in vacuo. The solid was collected by filtration, washed with water and recrystallized from ethanol/water mixture (1:1) to give $\mathbf{3}$ in 18% yield.

Melting point: $105{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.73(\mathrm{~s}, 3 \mathrm{H}) ; 2.77(\mathrm{~s}, 3 \mathrm{H}) ; 7.29-7.40(\mathrm{~m}, 1 \mathrm{H}) ; 7.50-7.61(\mathrm{~m}, 2 \mathrm{H})$; 8.31-8.38 (m, 2H).

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2920, 1590, 1500, 1390, 760.

EI-MS (70eV, m / z): 257 (43) $\left[\mathrm{M}^{+}\right] ; 232$ (3); 216 (22); 93 (41); 77 (100).
Elemental Analysis: Calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~S}$: C 56.03\%; H 4.28\%; N 27.23%. Found: C 55.67\%; H 4.13\%; N 27.05\%.

References

1. Rykowski, A.; Mojzych, M.; Karczmarzyk, Z. Heterocycles, 2000, 53, 2175.
2. Karczmarzyk, Z.; Mojzych, M.; Rykowski, A., J. Chem. Cryst., 2000, 30, 423.
3. Mojzych, M.; Rykowski, A., Polish J. Chem., 2003, 77, 1797.
4. Mojzych, M.; Rykowski, A., Heterocycles, 2004, (submited).
© 2005 MDPI. All rights reserved.
