

Short Note

Synthesis of a 2-Furylpyrazoline Derivative Using Microwave Irradiation

Balapragalathan Thappali Jothikrishnan* and Suban Syed Shafi

Department of Chemistry, Islamiah College, Vaniyambadi-635 751, Tamilnadu, India

* Author to whom correspondence should be addressed; E-mail: bala.pragalathan@gmail.com

Received: 10 May 2009 / Accepted: 14 July 2009 / Published: 10 August 2009

Abstract: A simple method for the synthesis of pyrazoline derivative containing furan moiety was developed. Thus, 5-(6-bromo-1,3-benzodioxol-5-yl)-3-(2-furyl)-1-(3-methyl-phenyl)-4,5-dihydro-1*H*-pyrazole was synthesized using microwave irradiation and it was characterized by NMR, IR, and LCMS.

Keywords: (2Z)-3-(6-bromo-1,3-benzodioxol-5-yl)-1-(2-furyl) prop-2-en-1-one; 3-tolylhydrazine hydrochloride; microwave

Aryl furylpyrazolines exhibit antidepressant and anticonvulsant activities [1]. Pyrazolines can be synthesized by the reaction between chalcones (1) and arylhydrazines (2) using catalytic amounts of acetic acid in ethanol as solvent under reflux conditions [2] and acetic acid as a solvent [3]. In some cases bases like K_2CO_3 [4] and $Ba(OH)_2$ [5] were employed. We are hereby reporting a simple method for synthesizing an aryl furylpyrazoline by a non-conventional method, using microwave conditions, which does not need any catalyst. The work-up procedure is simple and convenient.

A solution of (1) (0.321 g, 1 mmol) which was prepared by the reaction between 6-Bromopiperonal and 2-Acetylfuran and (2) (0.158g,1mmol) in absolute ethanol (5 ml) was placed in a microwave Pyrex vial and irradiated with 200W for 10 min at 150 °C (final temperature). The reaction mixture was cooled to room temperature and concentrated. The solid obtained was washed with a little amount of hexane, filtered and dried under vacuum to give a brown-coloured solid (3).

Yield = 80%

M.p. = 138 °C

¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, *J* = 1.6 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 2H), 7.03 (s, 1H), 6.71 (s, 1H), 6.66 (t, *J* = 7.6 Hz, 2H), 6.59 (d, *J* = 3.6 Hz, 1H), 6.50-6.49 (m, 1H), 5.93 (s, 2H), 5.53 (q, *J* = 10.6 Hz, 1H), 3.91-3.84 (m, 1H), 2.95 (dd, *J* = 6.8 Hz, 17.6 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): 148.22, 148.03, 147.92, 143.95, 143.51, 139.05, 138.98, 134.14, 128.86, 120.48, 114.15, 112.90, 111.73, 111.68, 110.17, 109.79, 107.33, 101.86, 63.01, 41.87 and 21.74.

MS: m/z (ES), 426 [(M+1)⁺].

IR: cm⁻¹ = 3226, 2903, 2359, 1598, 1582, 1409, 1364, 1318, 1240, 1159, 1109, 1035, 1006, 932, 870, 852, 752, 690, 668, 596, 538.

Elemental Analysis: Calculated for C₂₁H₁₇BrN₂O₃ (425.27): C, 59.3%; H, 4.03%; N, 6.59%. Found: C, 58.05%; H, 4.18%; N, 6.26%.

Acknowledgements

The authors thank Syngene Intl. Ltd. Bangalore, India for providing the analytical facilities to carryout the research work and also thank Islamiah College for providing all other facilities.

References and Notes

- 1. Özdemir, Z.; Kandilci, H.B.; Gümüsel, B.; Calıs, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)pyrazoline derivatives. *Eur. J. Med. Chem.* **2007**, *42*, 373–379.
- 2. Holla, B.S.; Akberali, P.M.; Shivananda, M.K. Studies on arylfuran derivatives. Part X. Synthesis and antibacterial properties of arylfuryl-2-pyrazolines. *Il Farmaco* **2000**, *55*, 256–263.
- 3. Khan, S.S.; Hasan, A. Synthesis of some new bioactive 1-N-substituted 3,5-diaryl-2-pyrazolines. *Heterocyclic Commun.* **2007**, *13*, 131–138.
- 4. Kidwai, M.; Kukreja, S.; Thakur, R. K₂CO₃-mediated regioselective synthesis of isoxazoles and pyrazolines. *Lett. Org. Chem.* **2006**, *3*, 135–139.
- 5. Abdel-Magid; Ahmed F.; Koskinen. Barium Hydroxide. In e-EROS *Encyclopedia of Reagents for Organic Synthesis;* John Wiley & Sons, Ltd: USA, 2001.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).