

Short Note

2-Methyl-7-(phenylsulfanylmethyl)naphthalene

Jane Bogdanov †,* and Przemyslaw Maslak

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; E-Mail: nyl@psu.edu

- † Present address: Institute of Chemistry, Faculty of Natural Sciences & Mathematics, Sts. Cyril and Methodius University, PO Box 162, 1000 Skopje, Macedonia.
- * Author to whom correspondence should be addressed; E-Mail: j_b_bogdanov@yahoo.com; Tel.: +389 2 324 9918; Fax: +389 2 3226865.

Received: 16 March 2010 / Accepted: 24 March 2010 / Published: 30 March 2010

Abstract: A new sulfide, 2-methyl-7-(phenylsulfanylmethyl)naphthalene was synthesized and its MS, IR, ¹H NMR, ¹³C NMR and DEPT-135 data are reported.

Keywords: phase-transfer catalysis; 2-methyl-7-(phenylsulfanylmethyl)naphthalene; naphthylmethyl phenyl sulfide

1. Introduction

In connection with our investigation of competitive mesolytic cleavages [1] of radical anions, we needed 2-methyl-7-(phenylsulfanylmethyl)naphthalene (3) as gas chromatography standard. The synthetic method of choice for this naphthylmethyl phenyl sulfide is reaction between naphthylmethyl halide and a corresponding thiophenoxide. From the various developed procedures [2–7] we have decided to utilize the phase-transfer variant used by Guthrie and Maslak [7] for preparation of the analogous ethers. The starting material for these derivatives was 2-bromomethyl-7-methylnaphthalene (1), which could be conveniently obtained by benzylic bromination of the commercially available 2,7-dimethylnaphthalene, using the procedure described by Buuhoi and co-workers [8]. We would like to report a convenient procedure for preparation of 2-methyl-7-(phenylsulfanylmethyl)naphthalene.

Molbank **2010** M670 (Page 2)

Scheme 1. Synthesis of 2-methyl-7-(phenylsulfanylmethyl)naphthalene.

2. Experimental

2.1. General

All chemicals were obtained from commercial sources and were used without further purification. Melting points were determined using a Mel-Temp apparatus and are uncorrected. NMR spectra were recorded on a Bruker 400 MHz instrument, using deuteriochloroform as solvent and tetramethylsilane as internal standard. The IR spectra were recorded on a Perkin Elmer Model 1600 instrument between sodium chloride plates in carbon tetrachloride. The number of hydrogens on each carbon was determined from 13 C NMR and DEPT-135 spectra. The mass spectra were recorded on a Kratos MS-25 RFA double-focusing mass spectrometer in electron impact (EI) mode. Gas chromatography was performed on a Varian 3700 instrument with packed column. The column was 1/8" in diameter and 50 cm in length packed with 5% OV-101 on supelcoport, purchased from Supelco. The carrier gas was helium (30 mL/min flow), the detection was accomplished with flame ionization and monitored with HP-3390A reporting integrator. TLC was carried out using Merck pre-coated plates (60 F_{254} , $250 \mu m$).

2.2. 2-Methyl-7-(phenylsulfanylmethyl)naphthalene (3)

A mixture of 2-bromomethyl-7-methylnaphthalene (1) (0.200 g, 0.861 mmol), 2:1 (v/v) dichloromethane/acetonitrile (5 mL), 1M NaOH (5 mL), freshly distilled thiophenol (0.188 g, 1.71 mmol) and a drop of methyltricaprylammonium chloride (MTCAC) was vigorously stirred at 60 °C for 3 h under argon. The mixture was cooled to room temperature, the layers were separated and the organic layer was washed with 1M sodium hydroxide (2 \times 10 mL), water (2 \times 10 mL) and brine (1 \times 10 mL). Drying over sodium sulfate and removal of the solvent *in vacuo* afforded a yellow solid. Recrystallization from ethanol yielded 0.121 g (54%) of 3 as white plates.

M.p. 89-91 °C.

 R_f (20% dichloromethane in hexanes) = 0.26.

GC: $R_t = 15.80 \text{ min } (100 \,^{\circ}\text{C}, 3 \text{ min}, 8 \,^{\circ}\text{C/min to } 280 \,^{\circ}\text{C}).$

Molbank **2010** M670 (Page 3)

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, J = 8.4 Hz, 1 H), 7.69 (d, J = 8.4 Hz, 1 H), 7.58 (s, 1 H), 7.50 (s, 1 H), 7.38 (dd, J = 8.4 Hz, 1.7 Hz, 1 H), 7.34–7.29 (m, 2 H), 7.27 (dd, J = 8.4 Hz, 1.7 Hz, 1 H), 7.24–7.12 (m, 3 H), 4.24 (s, 2 H, Ar-C<u>H</u>₂-SPh), 2.48 (s, 3 H, Ar-C<u>H</u>₃).

¹³C NMR (100 MHz): δ = 136.35 (C), 135.78 (C), 134.87 (C), 133.52 (C), 130.82 (C), 129.90 (CH), 128.83 (CH), 128.08 (CH), 127.99 (CH), 127.43 (CH), 126.78 (CH), 126.68 (CH), 126.35 (CH), 126.08 (CH) (*Ar*), 39.41 (Ar-<u>C</u>H₂-SPh), 21.70 (Ar-<u>C</u>H₃).

DEPT-135 NMR: $\delta = 129.90$ (†, CH), 128.83 (†, CH), 128.08 (†, CH), 127.99 (†, CH), 127.43 (†, CH), 126.78 (†, CH), 126.68 (†, CH), 126.35 (†, CH), 126.08 (†, CH) (Ar), 39.41 (\downarrow , Ar- CH_2 -SPh), 21.70 (†, Ar-CH₃).

IR (CCl₄, cm⁻¹): 3055, 3022, 2924, 2861, 1638, 1610, 1585, 1515, 1480, 1439, 1383, 1336, 1230, 1078, 1025, 1012, 959, 902.

EI-MS (m/z, rel. intensity): 265 ($M^+ + 1$, 3%), 264 (M^+ , 7%), 197 (3%), 157 (9%), 156 (9%), 155 ($M^+ - SPh$, 100%), 111 (14%).

3. Conclusion

The reaction of 2-bromomethyl-7-methylnaphthalene with thiophenol under phase-transfer catalytic conditions, in the presence of methyltricaprylammonium chloride (MTCAC) gave the desired product **3** in moderate yield. The structure of **3** was unambiguously determined by spectroscopic means (¹H NMR, ¹³C NMR, DEPT-135 NMR, IR and MS). The reaction can be conveniently monitored by GC and/or TLC (20% dichloromethane in hexanes). The reaction was performed in degassed solution under argon atmosphere to avoid the oxidation of the thiophenol into diphenyl disulfide [9]. Diphenyl disulfide can pose a separation problem and can interfere with the mesolytic cleavage studies.

References

- 1. Maslak, P.; Narvaez, J.N. Mesolytic ceavage of C-C bonds. Comparison with homolytic and heterolytic processes in the same substrate. *Angew. Chem. Int. Ed. Engl.* **1990**, *29*, 283–285.
- 2. Frankel, M.; Gertner, D.; Jacobson, H.; Zilkha. A. Syntheses of Poly-S-Alkyl-L-Cysteines. J. Chem. Soc. 1960, 1390–1393.
- 3. Dymicky, M.; Byler, D.M. Synthesis of ethyl *n*-carbobenzoxytyrosyl-*s*-benzylcysteinylglycinate. *Org. Prep. Proced. Int.* **1991**, *23*, 93–101.
- 4. Vögtle, F.; Klieser, B. Cesium-ion assisted synthesis of strained compounds. *Synthesis* **1982**, 294–296.
- 5. Yin, J.M.; Pidgeon, C. A simple and efficient method for preparation of unsymmetrical sulfides. *Tetrahedron Lett.* **1997**, *38*, 5953–5954.
- 6. Herriott, A.W.; Picker, D. Phase-transfer synthesis of sulfides and dithioacetals. *Synthesis* **1975**, 447–448.
- 7. Maslak, P.; Guthrie, R.D. Electron apportionment in cleavage of radical-anions. 2. naphthylmethyl phenyl ethers *vs.* naphthyl benzyl ethers. *J. Am. Chem. Soc.* **1986**, *108*, 2637–2640.

Molbank **2010** M670 (Page 4)

8. Buuhoi, N.P.; Lecocq, J. Side-chain bromination of some alkylnaphthalenes with *n*-bromosuccinimide. *J. Chem. Soc.* **1946**, 830–832.

- 9. McMurry, J. Organic Chemistry, 5th ed.; Brooks/Cole: Pacific Grove, CA, USA, 2000; p. 729.
- © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).