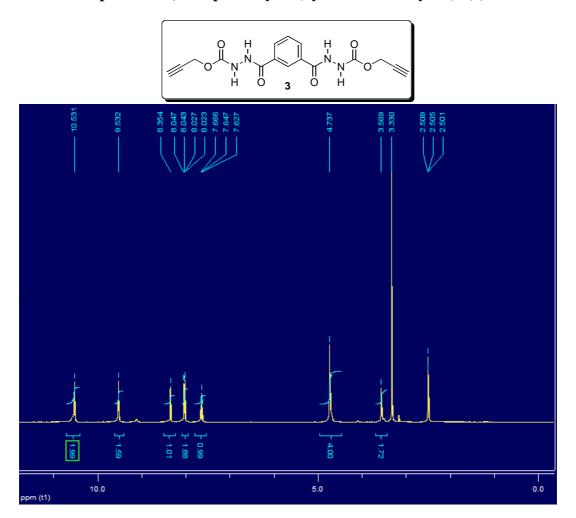
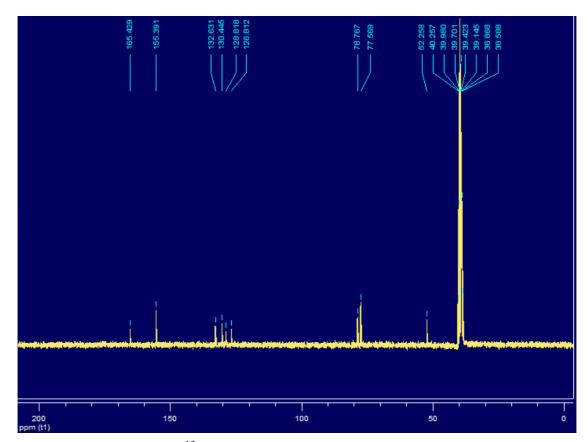


Supplementary Files

Dipropargyl 2,2'-isophthaloylbis(hydrazinecarboxylate)


Thimo Huber ¹ and David D. Díaz ^{1,2,*}

- ¹ Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
- ² ICMA, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- * Author to whom correspondence should be addressed; E-Mail: David.Diaz@chemie.uni-regensburg.de


List of Contents

1. ¹ H and ¹³ C NMR spectra of product 3	2
2. Synthesis, ¹ H and ¹³ C NMR spectra of reagent 2	4
3. References	5

1. ¹H and ¹³C NMR spectra of 2,2'-isophthaloylbis(hydrazinecarboxylate) (3)

Figure S1. ¹H NMR spectrum of **3** (400 MHz, DMSO-d₆).

Figure S2. ¹³C NMR spectrum of **3** (75 MHz, DMSO-d₆).

2. Synthesis, ¹H and ¹³C NMR spectra of dipropargyl dicarbonate (2)

$$\begin{array}{c}
O \\
CI
\end{array}$$

$$\begin{array}{c}
O \\
NaOH, -10 \, ^{\circ}C, 3 \, h
\end{array}$$

$$\begin{array}{c}
O \\
O \\
O \\
\textbf{2} (25 \% \text{ yield})
\end{array}$$

Compound **2** has been previously reported [1] although not NMR data are provided. Experimental procedure based on ref. 11 of the main paper: A solution of tetrabutylammonium bromide (580.3 mg, 1.80 mmol) in CH₂Cl₂ (10 mL) was added dropwise to 20% aqueous NaOH solution. The mixture was cooled to -10 °C and vigorously stirred. A solution of commercially available propargyl chloroformate (1.76 mL, 18.0 mmol) in CH₂Cl₂ (50 mL) was then added over a period of 20 min. The mixture was stirred at -10 °C for 3 h and neutralized with acetic acid. The organic layer was extracted twice with NaHCO₃ solution, washed with water and then dried over anhydrous Na₂SO₄. Evaporation of the solvent afforded product **2** (820 mg, 25% yield) as colorless oil: TLC R_f (CH₂Cl₂/MeOH 4:1) 0.58; 1 H NMR (300 MHz, CDCl₃) δ /ppm = 2.54 (t, J = 2.4 Hz, 2 H), 4.73 (d, J = 2.7 Hz, 4 H); 13 C NMR (75 MHz, CDCl₃) δ /ppm = 55.7, 76.0, 76.7, 154.0; FT-IR (ATR) v_{max} (cm⁻¹) 3293, 1751.

Note: Compound 2 should be stored in the refrigerator to prevent decomposition.

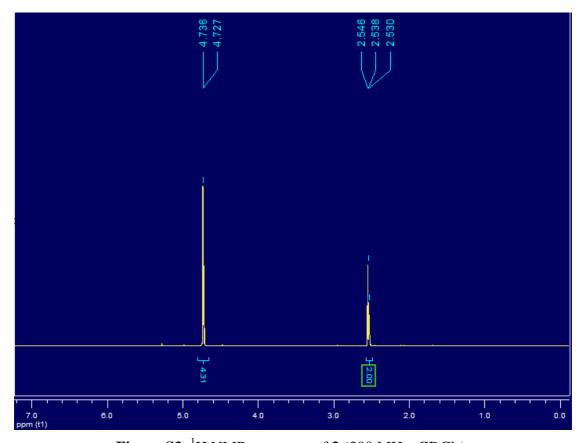


Figure S3. ¹H NMR spectrum of 2 (300 MHz, CDCl₃).

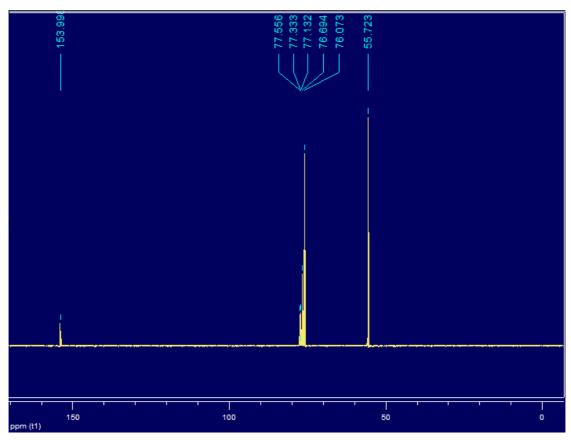


Figure S4. ¹³C NMR spectrum of 2 (75 MHz, CDCl₃).

3. References

1. Shamshurin, A.A.; Krivoshchekova, O.E. A new acceptor in the preparation of pyrocarbonic esters. *Zhurnal Vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleeva.* 1965, *10*, 594.