

Short Note

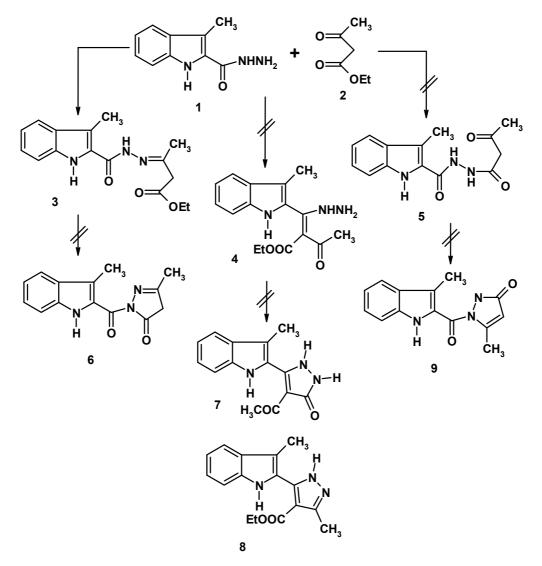
Ethyl 3-{2-[(3-Methyl-1*H*-indol-2-yl)carbonyl]hydrazinylidene}butanoate

Thoraya A. Farghaly and Sobhi M. Gomha *

Department of Chemistry, Faculty of Science, University of Cairo, Giza 12613, Egypt

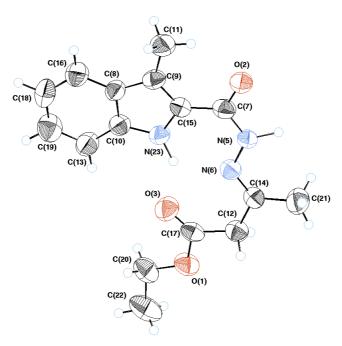
* Author to whom correspondence should be addressed; E-Mail: s.m.gomha@hotmail.com.

Received: 6 January 2012 / Accepted: 4 February 2012 / Published: 7 February 2012


Abstract: The title compound, ethyl $3-\{2-[(3-methyl-1H-indol-2-yl)carbonyl]hydrazinylidene\}$ butanoate (**3**), was prepared *via* reaction of 3-methyl-1*H*-indole-2-carbohydrazide (**1**) and ethyl 3-oxobutanoate (**2**) under reflux. The structure of the synthesized compound was assigned on the basis of elemental analysis, IR, ¹H-NMR, mass spectral and X-ray data.

Keywords: 3-methyl-1H-indole-2-carbohydrazide; X-ray

Indoles are among the most important nitrogen-containing heterocyclic molecules, found extensively in biological systems which play a vital role in biochemical processes. The indole ring system is found in many natural products, pharmaceutical agents and polymer materials [1–7]. The interesting chemical properties of indole have inspired chemists to design and synthesize a variety of indole derivatives [8]. In view of this finding, in the present paper we describe the synthesis of a new indole derivative with expected biological activity.


Results and Discussion

3-Methyl-1*H*-indole-2-carbohydrazide (1) [9] was allowed to react with ethyl 3-oxobutanoate (2) in ethanolic solution under reflux. The expected product of this reaction was assumed to be one of the seven structures 3-9 shown in Scheme 1. IR, ¹H-NMR, mass spectral data and single-crystal X-ray diffraction studies (Figure 1 and Table 1) of the isolated product were in full agreement with the structure **3**, but not with the other structures 4-9.

Scheme 1. Synthesis of the title compound (3).

Figure 1. The X-ray crystal structure of compound 3.

Bond length, Å	Bond length, Å	Bond length, Å
C7—C15, 1.472	N6—C14, 1.286	C12—C17, 1.517
N5—C7, 1.359	C14—C21, 1.487	O1—C17, 1.337
N5—N6. 1.380	C12—C14, 1.493	O1—C20, 1.450
Angle (ω)	Angle (ω)	Angle (ω)
C17—O1—C20, 115.7	O2—C7—N5, 117.4	N23—C10—C8, 108.4
C10—N23—C15, 108.5	O2—C7—C15, 120.3	N23—C10—C13, 129.4
N6—N5—C7, 121.0	N5—C7—C15, 122.3	C8—C10—C13, 122.2

Table 1. Selected bond lengths and bond angles in the ORTEP representation of compound3 in the crystal. The crystallographic numbering does not reflect systematic numbering.

Crystallographic Analysis

The crystals were mounted on a glass fiber. All measurements were performed on an ENRAF NONIUS FR 590. The data were collected at a temperature of 25 °C using the ω scanning technique to a maximum of a 20 of 22.986°. The structure was solved by direct method using SIR 92 and refined by full-matrix least squares. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located geometrically and were refined isotropically [10].

Crystal Data for Compound 3

 $C_{16}H_{19}N_3O_3$, M = 301.346, monoclinic, a = 19.3108 (8), b = 7.7168 (4), c = 21.0944 (10) A^o, v = 3131.2 (3), $\alpha = \gamma = 90.00^{\circ}$, $\beta = 95.065$ (3)^o, space group: P2₁/c, Z=8, D_x = 1.279 Mg m⁻³ reflection 937 measured, $\theta_{max} = 27.50^{\circ}$. Figure 1 illustrates the structure as determined [10].

Synthesis of Ethyl 3-{2-[(3-Methyl-1*H*-indol-2-yl)carbonyl]hydrazinylidene}butanoate (3)

A mixture of the hydrazide **1** (1.89 g, 10 mmol) and ethyl 3-oxobutanoate **2** (10 mmol) in absolute ethanol (20 mL) was heated at reflux temperature for 2 h. The reaction mixture was then cooled and the formed precipitate was filtered off, washed with ethanol to afford the title compound **3**. Yield: 84%; yellow microcrystals (from ethanol); mp: 238–240 °C. IR (KBr): v 1706, 1668 (2 C=O), 3409, 3234 (2 NH) cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 1.24 (t, *J* = 7.0 Hz, 3H, CH₃), 2.03 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 3.43 (s, 2H, CH₂), 4.23 (q, *J* = 7.0 Hz, 2H, CH₂), 6.87–7.98 (m, 4H, ArH), 10.38 (s, 1H, D₂O exchangeable, NH). MS *m/z* (%): 301 (M⁺, 42), 189 (100), 155 (318), 117 (46), 77 (21).

Anal. Calcd for C₁₆H₁₉N₃O₃ (301.34): C, 63.77; H, 6.36; N, 13.94. Found C, 63.39; H, 6.46; N, 13.65.

References and Notes

- 1. Ismail, M.F.; Shmeiss, N.A.M.M.; El-Diwani, H.I.; Arbid, M.S. Synthesis and pharmacological activity of some 2,3-diphenylindole derivative. *Indian J. Chem. Sect. B* **1997**, *36B*, 288–292.
- 2. von Angerer, E.; Knebel, N.; Kager, M.; Ganss, B.J. 1-(Aminoalkyl)-2-phenylindoles as novel pure Estrogen Antagonists. *J. Med. Chem.* **1900**, *33*, 2635–2640.

Molbank 2012

- 3. Biberger, C.; Von Angerer, E.J. 1-benzyl-2-phenylindole- and 1,2-diphenylindole-based antiestrogens. Estimation of agonist and anatagonist activities in transfection assays. *J. Steroid Biochem. Mol. Bio.* **1998**, *64*, 277–281.
- Stevenson, G.I.; Smith, A.L.; Lewis, S.; Michie, S.G.; Neduvelil, J.G.; Patel, S.; Marwood, R.; Castro, J.L. 2-Aryl tryptamines: Selective high-affinity antagonists for the h5-HT_{2A} receptor. *Bioorg. Med. Chem. Lett.* 2000, 10, 2697–2699.
- 5. Smith, A.L.; Stevenson, G.I.; Swain, C.J.; Castro, J.L. Tracelless solid phase synthesis of 2,3- disubstituted indoles. *Tetrahedron Lett.* **1998**, *39*, 8317–8320.
- Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. New bisindole alkaloids of the Topsentin and Hamacanthin classes from the mediterranean marine sponge *Rhaphisia lacazei*. J. Nat. Prod. 2000, 63, 447–451.
- Kaniwa, K.; Arai, M.A.; Li, X.; Ishibashi, M. Synthesis, determination of stereochemistry, and evaluation of new bisindole alkaloids from the myxomycete *Arcyria ferruginea*: An approach for Wnt signal inhibitor. *Bioorg. Med. Chem. Lett.* 2007, 17, 4254–4257.
- 8. Gribble, G.W.J. Recent developments in indole ring synthesis-methodology and applications. *J. Chem. Soc. Perkin Trans. 1* **2000**, 1045–1075.
- 9. Acheson, R.M.; Prince, R.J.; Proctor, G. Two novel indole rearrangements. J. Chem. Soc. Perkin Trans. 1 1979, 595–598.
- 10. Crystal data for compound **3** ref. CCDC 846358 can be obtained on request from the director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EW, UK.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).