

Short Note

N^1 -((1H-Indazol-5-yl)methylene)- N^2 -(2-((2-((2-(((1H-indazol-6-yl)methylene)amino)ethyl)amino)ethyl)amino)ethyl)amino)ethyl)ethane-1,2-diamine

Cristina Núñez ^{1,*}, Javier Fernández-Lodeiro ², Adrián Fernández-Lodeiro ², Emília Bértolo ³, José Luis Capelo ^{1,2} and Carlos Lodeiro ^{1,2,*}

- ¹ REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, 2829-516, Monte de Caparica, Portugal
- ² BIOSCOPE Group, Faculty of Science, Physical-Chemistry Department, Ourense Campus, University of Vigo, 32004, Ourense, Spain
- Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University. Canterbury, Kent. CT1 1QU, UK
- * Authors to whom correspondence should be addressed; E-Mails: cristina.nunez@fct.unl.pt (C.N.); cle@fct.unl.pt (C.L.).

Received: 18 June 2012 / Accepted: 31 July 2012 / Published: 9 August 2012

Abstract: One novel molecular emissive probe **L** has been synthesized by classical Schiffbase reaction between 1H-indazole-6-carboxaldehyde and tetraethylenepentamine. The structure of compound **L** was confirmed by melting point, elemental analysis, ESI-MS spectrometry and by IR and ¹³C-NMR and ¹H-NMR spectroscopy.

Keywords: imine compounds; amine compounds; indazol

Indazole ring systems have an interesting chemistry, which has been used in biology, catalysis, and medicinal chemistry [1]. Although rare in nature [2], indazoles exhibit a variety of biological activities such as HIV protease inhibition [3–5], antiarrhythmic and analgesic activities [6], antitumor activity [7,8], and antihypertensive properties [9]. Furthermore, antimicrobial and antineoplastic activities have also been shown to be associated with certain indazole derivatives [10].

As a part of our ongoing research into the design and synthesis of novel organic molecular probes, luminescent materials and MALDI-TOF-MS matrices [11–14], here we report the synthesis and

Molbank **2012** M770 (Page 2)

characterization of a new Schiff-base compound L containing two indazole units linked by a flexible polyethylene bridged (See scheme 1).

Experimental

A solution of 1H-indazole-6-carboxaldehyde (0.254 g, 1.718 mmol) in absolute ethanol (10 mL) was added dropwise to a refluxing solution of tetraethylenepentamine (0.162 g, 0.859 mmol) in the same solvent (30 mL) (See scheme 1). The resulting solution was gently refluxed with magnetic stirring for ca. 4 h. The colour changed from yellow to brown. After that time, the mixture was allowed to cool to room temperature and a brown powder precipitate was formed; this was then filtered off, washed with cold absolute ethanol and cold diethyl ether and dried under vacuum. The resulting compound was characterized as **L** follow purification by column chromatography.

Scheme 1. Schematic representation of compound L.

Melting point: 163–165 °C.

Yield: 382 mg (**L**) (93%).

ESI-MS: m/z (rel. int%): 446.27 (100) ([L+H]⁺.

¹H-NMR (CDCl₃) (**L**): δ = 12.1 (s, 2H, N–H); 8.4 (s, 2H, N=C–H); 8.2–7.0 (m, 6H, C-H_{ar}); 3.9–2.1 (m, 16H, CH₂); 1.5 (s, 3H, NH) ppm.

¹³C-NMR (CDCl₃) (**L**): δ = 160.5; 150.3; 147.2; 133.6; 131.2; 127.9; 126.1; 125.0; 124.2; 119.7; 112.3; 110.4; 56.2; 50.6; 49.8.

IR (cm⁻¹) (L): 3051 (C-H, Ar), 1638 (C=N, Imine), 1618, 1593, 1562 and 1509 (C=C, Ar).

Elemental analysis: Calcd for $C_{24}H_{37}N_9O_3$: C, 57.70; H, 7.45; N, 25.25. Found (**L**): C, 58.00; H, 7.15; N, 25.00.

Molbank **2012** M770 (Page 3)

Uv-vis (CHCl₃), [L] = 1.00×10^{-5} M, λ_{max} 275 and 324 nm.

Fluorescence Emission (CHCl₃); [L] = 1.00×10^{-5}): λ_{max} 427 nm.

Acknowledgements

We are grateful to Xunta de Galicia (Spain) for projects 09CSA043383PR and 10CSA383009PR (Biomedicine) and to the Scientific Association ProteoMass for financial support. C.N. thanks the Fundação para a Ciência e a Tecnologia/FEDER (Portugal/EU) programme postdoctoral contract SFRH/BPD/65367/2009. J.F.L. thanks Xunta de Galicia (Spain) for a research contract by project 09CSA043383PR in Biomedicine. J.L.C. and C.L. thank Xunta de Galicia for the Isidro Parga Pondal Research program.

References and Notes

- 1. Sather, A.C.; Berryman, O.B.; Rebek, J., Jr. Synthesis of Fused Indazole Ring Systems and Application to Nigeglanine Hydrobromide. *Org. Lett.* **2012**, *14*, 1600–1603.
- 2. Ali, Z.; Ferreira, D.; Carvalho, P.; Avery, M.A.; Khan, I.A. Nigellidine-4-*O*-sulfite, the First Sulfated Indazole-Type Alkaloid from the Seeds of *Nigella sativa*. *J. Nat. Prod.* **2008**, *71*, 1111–1112.
- 3. Han, W.; Pelletier, J.C.; Hodge, C.N. Tricyclic ureas: A new class of HIV-1 protease inhibitor. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3615–3620.
- 4. Patel, M.; Rodgers, J.D.; McHugh, R.J., Jr.; Johnson, B.L.; Cordova, B.C.; Klaba, R.M.; Bacheler, L.T.; Erickson-Viitanen, S.; Ko, S.S. Unsymmetrical cyclic ureas as HIV-1 protease inhibitors: Novel biaryl indazoles as P2/P2' substituents. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3217–3220.
- 5. Sun, J.-H.; Teleha, C.A.; Yan, J.-S.; Rodgers, J.D.; Nugiel, D.A. Efficient Synthesis of 5-(Bromomethyl)- and 5-(Aminomethyl)-1-THP-Indazole. *J. Org. Chem.* **1997**, *62*, 5627–5629.
- 6. Mosti, L.; Menozzi, G.; Fossa, P.; Filippelli, W.; Gessi, S.; Rinaldi, B.; Falcone, G. Synthesis and preliminary biological evaluation of novel N-substituted 1-amino-3-[1-methyl(phenyl)-1H-indazol-4-yloxy]-propan-2-ols interesting as potential antiarrhythmic, local anaesthetic and analgesic agents. *Arzneimittelforschung* **2000**, *50*, 963–972.
- 7. Jakupec, M.A.; Reisner, E.; Eichinger, A.; Pongratz, M.; Arion, V.B.; Galanski, M; Hartinger, C.G.; Keppler, B.K. Redox-Active Antineoplastic Ruthenium Complexes with Indazole: Correlation of in Vitro Potency and Reduction Potential. *J. Med. Chem.* **2005**, *48*, 2831–2837.
- 8. Showalter, H.D.H.; Angelo, M.M.; Berman, E.M.; Kanter, G.D.; Ortwine, D.F.; Ross-Kesten, S.G.; Sercel, A.D.; Turner, W.R.; Werbel, L.M.; Worth, D.F.; *et al.* Benzothiopyranoindazoles, a New Class of Chromophore Modified Anthracenedione Anticancer Agents. Synthesis and Activity against Murine Leukemias. *J. Med. Chem.* **1988**, *31*, 1527–1539.
- 9. Goodman, K.B.; Cui, H.; Dowdell, S.E.; Gaitanopoulos, D.E.; Ivy, R.L.; Sehon, C.A.; Stavenger, R.A.; Wang, G.Z.; Viet, A.Q.; Xu, W.; *et al.* Development of Dihydropyridone Indazole Amides as Selective Rho-Kinase Inhibitors. *J. Med. Chem.* **2007**, *50*, 6–9.

Molbank **2012** M770 (Page 4)

10. Raffa, D.; Daidone, G.; Maggio, B.; Schillaci, D.; Plescia, F. Synthesis and Antiproliferative Activity of Novel 3-(Indazol-3-yl)-quinazolin-4(3*H*)-one and 3-(Indazol-3-yl)-benzotriazin-4(3*H*)-one Derivatives. *Arch. Pharm. Pharm. Med. Chem.* **1999**, *332*, 317–320.

- 11. Lodeiro, C.; Pina, F. Luminescent and chromogenic molecular probes based on polyamines and related compounds. *Coord. Chem. Rev.* **2009**, *253*, 1353–1385.
- 12. Lodeiro, C.; Capelo, J.L.; Mejuto, J.C.; Oliveira, E.; Santos, H.M.; Pedras, B.; Nuñez, C. Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors. *Chem. Soc. Rev.* **2010**, *39*, 2948–2976.
- 13. Bastista, R.M.F.; Oliveira, E.; Costa, S.P.G.; Lodeiro, C.; Raposo, M.M.M. Imidazo-benzo-15-crwon-5 ethers bearing arylthienyl and bithienyl moieitis as novel fluorescent chemosensor for Pd(II) and Cu(II). *Tetrahedron* **2011**, *67*, 7106–7113.
- 14. Fernández-Lodeiro, J.; Nuñez, C.; Carreira, R.; Santos, H.M.; López, C.S.; Mejuto, J.C.; Capelo, J.L.; Lodeiro, C. Novel versatile imine-enamine chemosensor based on 6-nitro-4-oxo-4H-chromene for ion detection in solution, solid and gas phase: Synthesis, emission, computational and MALDI-TOF-MS studies. *Tetrahedron* 2011, 67, 326–333.
- © 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).