Next Article in Journal
2-(4-Diethoxymethylphenyl)-6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo[3.1.0]hex-3-ene
Previous Article in Journal
2-(4-Fluoro-3-nitrophenyl)-6-(4-methoxyphenyl)imidazo[2,1-b]-1,3,4-thiadiazole
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Short Note

N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino) ethyl)amino)ethyl)ethane-1,2-diamine

1
Grupo BIOSCOPE, Departamento de Química Física, Falcultad de Ciencias, Campus de Ourense, Universidad de Vigo, 32004, Ourense, Spain
2
Departamento de Química, FCT-UNL, 2829-516 Monte de Caparica, Portugal
3
Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, Kent. CT1 1QU, UK
*
Authors to whom correspondence should be addressed.
Molbank 2012, 2012(4), M779; https://doi.org/10.3390/M779
Submission received: 20 June 2012 / Accepted: 26 September 2012 / Published: 27 September 2012

Abstract

:
A tetraethylene pentamine-diamine (L4), the biggest compound in the family of dibenzylated diimine-polyamines (L1L4) has been synthesized by classical Schiff-base reaction between benzaldehyde and the diamine tetraethylenepentamine, and the structure was confirmed by elemental analysis, ESI-MS spectrometry and by IR and 1H-NMR spectroscopy.

Graphical Abstract

Improved understanding of the role of polyamines in metabolism [1,2], and the differences in polyamine biology between normal cells and tumor cells [3], have increased current interest in this type of compounds in the field of drug development [4,5]. The activity of polyamines is very much dependent on their charge and the charge density they display at physiological pH [6].
During the last ten years, some of us have been involved in the studies of many different water-soluble bis-chromophoric polyamines as fluorescent chemosensors [7,8,9,10]. However, more recently studies in new active MALDI-TOF-MS matrices reveals that the introduction of imine groups into the polyamine chain increases the energy absorbed in the UV region, and consequently, the potential application as a MALDI matrix increase [11,12].
Following the method previously reported by Bernardo et al. for polyamine systems [13], in this paper we describe the synthesis and characterization of the tetraethylene pentamine-diamine (L4), derived from benzaldehyde and the diamine tetraethylenepentamine. The broader applicability of this method was demonstrated by the synthesis of a few related compounds (L1L3) [14] (See scheme 1).

Experimental

A solution of benzaldehyde (0.129 g, 1.225 mmol) in absolute ethanol (20 mL) was added dropwise to a refluxing solution of tetraethylenepentamine (0.115 g, 0.612 mmol) in the same solvent (15 mL). The resulting solution was gently refluxed with magnetic stirring for 4 h. The colour changed from colourless to yellow. The solution was concentrated under vacuum to 1/3 of its volume. Diethyl ether was added to the solution and then cooled at 0 °C during 24 h. The yellow crystals formed were filtered off and dried under vacuum. At room temperature the crystals were not stable and a yellow oil was obtained.
L4: N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino)ethyl)amino)ethyl)ethane-1,2-diamine
Yield: 125 mg (56%).
ESI-MS: m/z (rel.int%): 366.26 (100) ([M+H]+).
1H-NMR (CDCl3): δ = 8.3 (s, 2H, N=C–H); 7.5–7.7 (m, 4H, C-Har); 7.4–7.1 (m, 6H, C-Har); 3.8–3.2 (m, 4H, CH2); 2.9–2.1 (m, 12H, CH2) ppm.
IR (cm−1): 1658 (C=N, Imine), 1589, 1492 (C=C, Ar).
Elemental analysis: Calcd for C22H31N5: C, 72.29; H, 8.55; N, 19.16. Found: C, 72.26; H, 7.99; N, 19.65.

Supplementary materials

Supplementary File 1Supplementary File 2Supplementary File 3

Acknowledgements

We are grateful to Xunta de Galicia (Spain) for grant 09CSA043383PR (Biomedicine) and to the Scientific Association ProteoMass for financial support. C.N. thanks the Fundação para a Ciência e a Tecnologia/FEDER (Portugal/EU) program postdoctoral contract SFRH/BPD/65367/2009. J.F.L. thanks Xunta de Galicia (Spain) for a research contract by project 09CSA043383PR in Biomedicine. J.L.C. and C.L. thank Xunta de Galicia for the Isidro Parga Pondal Research program.

References and Notes

  1. Wallace, H.M.; Fraser, A.V.; Hughes, A. A perspective of polyamine metabolism. Biochem J. 2003, 376, 1–14. [Google Scholar] [CrossRef] [PubMed]
  2. Vujcic, S.; Diegelman, P.; Bacchi, C.J.; Kramer, D.L.; Porter, C.W. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 2002, 367, 665–675. [Google Scholar] [CrossRef] [PubMed]
  3. Casero, R.A., Jr.; Marton, L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 2007, 6, 373–390. [Google Scholar] [CrossRef] [PubMed]
  4. Wallace, H.M.; Fraser, A.V. Polyamine analogues as anticancer drugs. Biochem. Soc. Trans. 2003, 31, 393–396. [Google Scholar] [CrossRef] [PubMed]
  5. Agostinelli, E.; Bachrach, U. (Eds.) Special issue: Polyamines and their Analogs in Cancer and other Diseases. Amino Acids 2007, 33, 175–187.
  6. Sonawane, N.D.; Szoka, F.C., Jr.; Verkman, A.S. Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes. J. Biol. Chem. 2003, 278, 44826–44831. [Google Scholar] [CrossRef] [PubMed]
  7. Albelda, M.T.; Díaz, P.; García-España, E.; Lima, J.C.; Lodeiro, C.; de Melo, J.S.; Parola, A.J.; Pina, F.; Soriano, C. Switching from intramolecular energy transfer to intramolecular electron transfer by the action of pH and Zn(II) coordination. Chem. Phys. Lett. 2002, 353, 63–68. [Google Scholar] [CrossRef]
  8. De Melo, J.S.; Pina, J.; Pina, F.; Lodeiro, C.; Parola, A.J.; Albelda, M.T.; Clares, M.P.; García-España, E.; Soriano, C. Energetics and dynamics of naphathalene polyaminic derivatives. Influence of structural design in the balance static vs dynamic excimer formation. J. Phys. Chem. A 2003, 107, 11307–11318. [Google Scholar] [CrossRef]
  9. Alarcón, J.; Aucejo, R.; Albelda, M.T.; Alves, S.; Clares, P.; García-España, E.; Lodeiro, C.; Marchin, K.L.; Parola, A.J.; Pina, F.; et al. Fluorescent Type II Materials from Naphthylmethyl Polyamine Precursors. Supramol. Chem. 2004, 16, 573–580. [Google Scholar] [CrossRef]
  10. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi, A.; Faggi, E.; Giorgi, C.; Lodeiro, C.; Oliveira, E.; Pina, F.; Valtancoli, B. Interaction of polyamine macrocycles with Zn(II) and ATP in aqueos solution. Binary and Ternary systems. A potentiometric, NMR and fluorescence emission studies. Inorg. Chim. Acta 2008, 361, 3410–3419. [Google Scholar] [CrossRef]
  11. Fernandez, L.; Boucher, M.; Fernández-Lodeiro, J.; Oliveira, E.; Núñez, C.; Santos, H.M.; Capelo, J.L.; Nieto-Faza, O.; Bértolo, E.; Lodeiro, C. Exploiting anionic and cationic interactions with a new emissive imine-based β-naphtol molecular probe. Inorg. Chem. Commun. 2009, 12, 905–912. [Google Scholar] [CrossRef]
  12. Fernández-Lodeiro, J.; Núñez, C.; Carreira, R.; Santos, H.M.; Silva-López, C.; Mejuto, J.C.; Capelo, J.L.; Lodeiro, C. Novel versatile imine-enamine chemosensor based on 6-nitro-4-oxo-4H-chromene for ion detection in solution, solid and gas-phase: Synthesis, emission, computational and MALDI-TOF-Ms studies. Tetrahedron 2011, 67, 326–333. [Google Scholar] [CrossRef]
  13. Bernardo, M.A.; Gurrero, J.A.; García-España, E.; Luis, S.V.; Llinares, J.M.; Pina, F.; Ramírez, J.A.; Soriano, C. Thermodynamic, NMR and photochemical study on the acid-base behaviour or N,N'-dibenzylated polyamines and on their interactions with hexacyanocobaltate(III). J. Chem. Soc. Perkin Trans 2 1996, 2335–2342. [Google Scholar] [CrossRef]
  14. The smaller parent compounds derived from 1,2-ethanediamine (L1), diethylenetriamine (L2), and triethylenetetramine (L3) were obtained by a similar methodology, using 0.038, 0.063 and 0.089 g of diamine, respectively. Compound L1: N1,N2-Dibenzylideneethane-1,2-diamine; Yield: 121 mg (84%); ESI-MS: m/z (rel. int%): 237.13 (100) ([M+H]+); 1H NMR (CDCl3): δ = 8.1 (s, 2H, N=C–H); 7.8 (m, 4H, C-Har); 7.2 (m, 6H, C-Har); 3.8 (s, 4H, CH2) ppm; IR (cm−1): 1647 (C=N, Imine), 1599, 1498 (C=C, Ar); Elemental analysis: Calcd for C16H16N2: C, 81.32; H, 6.82; N, 11.85. Found: C, 80.87; H, 7.02; N,12.05. Compound L2: N1-Benzylidene-N2-(2-(benzylideneamino)¬ethyl)ethane-1,2-diamine; Yield: 103 mg (71%); ESI-MS: m/z (rel. int%): 279.17 (100) ([M+H]+); 1H-NMR (CDCl3): δ = 8.2 (s, 2H, N=C–H); 7.8–7.6 (m, 4H, C-Har); 7.4–7.2 (m, 6H, C-Har); 3.8 (m, 4H, CH2); 2.9 (m, 4H, CH2) ppm; IR (cm−1): 1649 (C=N, Imine), 1586, 1491 (C=C, Ar); Elemental analysis: Calcd for C18H21N3: C, 77.38; H, 7.58; N, 15.04. Found: C, 77.16; H, 8.03; N, 15.34. Compound L3: N1,N1′-(Ethane-1,2-diyl)bis(N2-benzylideneethane-1,2-diamine); Yield: 132 mg (89%); ESI-MS: m/z (rel. int%): 323.22 (100) ([M+H]+); 1H-NMR (CDCl3): δ = 8.1 (s, 2H, N=C–H); 7.7–7.5 (m, 4H, C-Har); 7.4–7.1 (m, 6H, C-Har); 3.7–3.4 (m, 2H, CH2); 2.9–2.1 (m, 8H, CH2) ppm; IR (cm−1): 1656 (C=N, Imine), 1576, 1499 (C=C, Ar); Elemental analysis: Calcd for C20H26N4: C, 74.50; H, 8.13; N, 17.38. Found: C, 74.78; H, 8.16; N, 17.49.
Scheme 1. Schematic representation of compounds L1L4.
Scheme 1. Schematic representation of compounds L1L4.
Molbank 2012 m779 sch001

Share and Cite

MDPI and ACS Style

Fernández-Lodeiro, J.; Núñez, C.; Bértolo, E.; Capelo, J.L.; Lodeiro, C. N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino) ethyl)amino)ethyl)ethane-1,2-diamine. Molbank 2012, 2012, M779. https://doi.org/10.3390/M779

AMA Style

Fernández-Lodeiro J, Núñez C, Bértolo E, Capelo JL, Lodeiro C. N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino) ethyl)amino)ethyl)ethane-1,2-diamine. Molbank. 2012; 2012(4):M779. https://doi.org/10.3390/M779

Chicago/Turabian Style

Fernández-Lodeiro, Javier, Cristina Núñez, Emilia Bértolo, José Luis Capelo, and Carlos Lodeiro. 2012. "N1-Benzylidene-N2-(2-((2-((2-(benzylideneamino)ethyl)amino) ethyl)amino)ethyl)ethane-1,2-diamine" Molbank 2012, no. 4: M779. https://doi.org/10.3390/M779

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop