

Short Note

2-[2-(Aziridin-1-yl)ethyl]-5,5-dimethyl-2,5-dihydro-4*H*-benzo [*e*]isoindol-4-one (Cytotoxic Oxonaphthalene-Pyrroles, Part IV)

Helmut Spreitzer * and Christiane Puschmann

Department of Drug and Natural Product Synthesis, Faculty of Life Sciences, University of Vienna, Althanstraße 14, A- 1090 Vienna, Austria

* Author to whom correspondence should be addressed; E-Mail: helmut.spreitzer@univie.ac.at.

Received: 27 June 2012 / Accepted: 27 September 2012 / Published: 1 October 2012

Abstract: An aziridine-containing side chain is attached to an oxonaphthalene-annelated pyrrole in expectation of DNA alkylating properties. The cytotoxicity is evaluated against two cell lines, KB-31 and KB-8511, respectively.

Keywords: pyrrole; DNA-alkylation; anticancer

Introduction

Chlorambucil and melphalan are chemotherapy drugs belonging to the class of nitrogen mustard alkylating agents. Both compounds are believed to exert their antitumor effects by cross-linking DNA via aziridinium cation intermediates arising from the bis(2-chloroethyl)amine moiety [1]. In continuation of our department's previous studies in the field of antitumor agents [2–10], we are reporting in this paper the synthesis of the oxonaphthalene-annelated pyrrole 2 with an attached side chain containing an aziridine group. The rationale is that the three-membered aziridine ring is structurally analogous to the ammonium-intermediate formed from the nitrogen mustards. The aziridine moiety is not charged and the reactivity results from the strain on the three-member ring structure [11]. Recent studies with aziridine substituted quinones showed promising results against breast cancer tumor cells [12–16]. The cytotoxic activity of 2 was evaluated.

Results and Discussion

Reaction of 1 [17] with *t*-BuPh₂Si-protected hydroxyethyl bromide [18] with NaH in THF afforded the *N*-alkylated product. The following deprotection with tetrabutylammonium fluoride [19] furnished the alcohol which was treated with methansulfonic chloride [20]. The resulting mesylate was

converted via reaction with aziridine into the target compound **2** (Scheme 1). The biological activity of **2** was tested against two cancer cell lines, KB-31 and KB-8511, respectively. KB-31 is a drugsensitive human epidermoid cell line, whereas KB-8511 is a multi-drug resistant subline, typically overexpressing P-glycoprotein. The IC₅₀[μ M] values of **2** are >10.000 (KB-31) and 8.680 (KB-8511), respectively (3 days incubation time; staining with 0.05% methylene blue; optical density measured at 665 nm; for further experimental details, see [21,22]).

Scheme 1. Synthesis of target compound 2.

Experimental

2-[2-(Aziridin-1-yl)ethyl]-5,5-dimethyl-2,5-dihydro-4H-benzo[e]isoindol-4-one (2)

(a) To a solution of 0.3 g (12.38 mmol) NaH (60% in mineral oil, washed twice with hexane) in 20 mL of dry THF was added dropwise under argon a solution of **1** [8] (2.61 g, 12.38 mmol) in 20 mL of dry THF. After stirring for 0.5 h at 0 °C at room temperature, a solution of 6.74 g (18.58 mmol) of 2-(bromoethoxy)(*tert*-butyl)diphenylsilane in 30 mL of dry THF was added. After stirring for 20 h under reflux the reaction mixture was treated with a saturated aqueous solution of ammonium chloride and extracted with ether. The organic phase was dried (Na₂SO₄) and concentrated. Yield 3.34 g (55%) of colorless crystals (m.p. 117–118 °C, TLC, silica gel, light petroleum/ethyl acetate 70/30).

(b) The resulting product from (a) (3.34 g, 6.78 mmol) was dissolved under argon in a mixture of 40 mL of dry THF and 13.5 mL of a 1M solution of TBAF in THF and stirred for 2 h at room temperature. Subsequently after addition of H₂O the resulting mixture was extracted with ether. The ether extract was dried (Na₂SO₄) and concentrated. Yield 1.23 g (71%) of colorless crystals (m.p. 112–113 °C, TLC, silica gel, ethyl acetate/light petroleum 80/20).

(c) The obtained product from (b) (1.23 g, 4.88 mmol) was dissolved under argon in a mixture of 1.0 mL (7.39 mmol) of dry TEA and 16 mL of dry CH_2Cl_2 . Afterwards 0.46 mL (5.89 mmol) of freshly distilled methanesulfonic chloride under argon was added dropwise and the resulting reaction mixture was stirred for 1 h at 0 °C. Subsequently the reaction mixture was extracted with CH_2Cl_2 , dried (Na₂SO₄) and concentrated. Yield: 1.56 g (96%) of colorless crystals (m.p. 122–123 °C, TLC, silica gel, ethyl acetate/light petroleum 80/20).

(d) The resulting crude product from (c) (1.56 g, 4.67 mmol) was dissolved under argon in a dry mixture of acetonitrile/triethyl amine (18 mL, 1:1) and treated with 9.69 mL (18.7 mmol) of aziridine. After stirring for 20 h at room temperature the reaction mixture was diluted with a mixture of $CH_2Cl_2/EtOH$ (9/1) and subsequently filtered by use of 125 g of silica gel. Evaporation furnished 1.27 g

of crude product which was purified by column chromatography (silica gel, ethyl acetate/triethylamine 95/5) to afford 0.29 g (22%) of colorless crystals of **2**. M.p. 96–98 °C (ethyl acetate). IR (KBr): 3350, 2950, 1643, 1523, 1207, 1160 cm⁻¹. MS (EI, 70 eV) *m/z*: 280 (M⁺, 10%), 224 (M⁺-56, 1), 88 (17), 73 (20), 70 (67), 61 (81), 56 (59), 45 (100). ¹H-NMR (CDCl₃, 200 MHz) δ = 7.56 (m, 1H, 9-H), 7.46 (m, 1H, 6-H), 7.41 (d, *J* = 2.0 Hz, 1H, 3-H), 7.21 (m, 2H, 7-H, 8-H), 7.07 (d, *J* = 2.0 Hz, 1H, 1-H), 4.15 (t, *J* = 5.9 Hz, 2H, 1'-H), 2.60 (t, *J* = 5.9 Hz, 2H, 2'-H) 1.72 (m, 2H, aziridine-H), 1.51 (s, 6H, (CH₃)₂), 1.03 (m, 2H, aziridine-H). ¹³C-NMR (CDCl₃, 50 MHz) δ = 198.4 (C-4), 144.1 (C-5a), 127.0 (C-6), 126.9 (C-9a), 126.6 (C-7), 126.2 (C-8), 125.1 (C-9b), 123.5 (C-3), 122.6 (C-9), 118.5 (C-3a), 115.5 (C-1), 61.6 (C-2'), 50.8 (C-1'), 47.6 (C-5), 28.1 ((CH₃)₂), 27.0 (aziridine-CH₂). HRMS calc. for C₁₈H₂₀N₂O: 280.1576. Found: 280.1569.

Acknowledgement

We are indebted to Novartis AG (Vienna, Austria) for the evaluation of the cytotoxic activity.

References and Notes

- Montgomery, J.A. Agents That React with DNA. In *Cancer Chemotherapeutic Agents, ACS Professional Reference Book*; Foye, W.O., Ed.; American Chemical Society: Washington, DC, USA, 1995; pp. 111–121.
- Shanab, K.; Schirmer, E.; Wulz, E.; Weissenbacher, B.; Lassnig, S.; Slanz, R.; Fösleitner, G.; Holzer; W.; Spreitzer; H.; Schmidt; P.; *et al.* Synthesis and antiproliferative activity of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives: Part II. *Bioorg. Med. Chem. Lett.* 2011, *21*, 3117–3121.
- Shanab, K.; Schirmer, E.; Knafl, H.; Wulz, E.; Holzer, W.; Spreitzer, H.; Schmidt, P.; Aicher, B.; Mueller, G.; Guenther, E. Synthesis and antiproliferative activity of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives. *Bioorg. Med. Chem. Lett.* 2010, 20, 3950– 3952.
- Spreitzer, H.; Puschmann, C. 1-[4-[Bis(2-chloroethyl)amino]benzyl]-5,5-dimethyl-2,5-dihydro-4H-benzo[*e*]isoindol-4-one (Cytotoxic Oxonaphthalene-Pyrroles, Part II). *Molbank* 2010, 2010, M654.
- Spreitzer, H.; Puschmann, C. 2-[4-[Bis(2-chloroethyl)amino]benzyl]-5,5-dimethyl-2,5-dihydro-4H-benzo[*e*]isoindol-4-one (Cytotoxic Oxonaphthalene-Pyrroles, Part I). *Molbank* 2010, 2010, M651.
- Pongprom, N.; Bachitsch H.; Bauchinger, A.; Ettefagh, H.; Haider, T.; Hofer, M.; Knafl, H.; Slanz, R.; Waismayer, M.; Wieser, F.; *et al.* Synthesis of new Benzo[*f*]isoindole-4,9-diones as anticancer compounds. *Monatsh. Chem.* 2010, 141, 53–52.
- 7. Spreitzer, H.; Puschmann, C. Regioselective alkylation of an oxonaphthalene-annelated pyrrol system. *Molbank* **2009**, *2009*, M619.
- 8. Pongprom, N.; Müller, G.; Schmidt, P.; Holzer, W.; Spreitzer, H. Synthesis of anticancer compounds, III (Bioorg Med Chem Lett 17, 6091, 2007), carbinol derivatives of azanaphthoquinone annelated pyrrols. *Monatsh. Chem.* **2009**, *140*, 309–313.

- Shanab, K.; Pongprom, N.; Wulz, E.; Holzer, W.; Spreitzer, H.; Schmidt, P.; Aicher, B.; Müller, G.; Günther, E. Synthesis and biological evaluation of novel cytotoxic azanaphthoquinone annelated pyrrolo oximes. *Bioorg. Med. Chem. Lett.* 2007, *17*, 6091–6095.
- 10. Spreitzer, H.; Puschmann, C. Synthesis of Anticancer Compounds, I, "Dual function" antitumor agents based on bioreduction and *DNA*-alkylation. *Monatsh. Chem.* **2007**, *138*, 517–522.
- 11. Pratt, W.B.; Ruddon, R.W.; Ensminger, W.D.; Maybaum, J. Covalent DNA Binding Drugs. In *The Anticancer Drugs*, 2nd ed.; Oxford University Press: New York, NY, USA, 1994; pp. 108–154.
- 12. Huang, C.H.; Kuo, H.S.; Liu, J.W.; Lin, Y.L. Synthesis and Antitumor Evaluation of Novel Bis-Triaziquone Derivatives. *Molecules* **2009**, *14*, 2306–2316.
- 13. Lin, Y.L.; Su, Y.T.; Chen, B.H. A study on inhibition mechanism of breast cancer cells by bis-type triziquone. *Eur. J. Pharmacol.* **2010**, *637*, 1–10.
- Fahey, K.; O'Donovan, L.; Carr, M.; Carty, M.P.; Aldabbah, F. The influence of the aziridinyl substituent of benzimidazoles and benzimidazolequinones on toxicity towards normal and Fanconi anaemia cells. Europ. J. Med. Chem. 2010, 45, 1873–1879.
- 15. O'Donovan, L.; Carty, M.P.; Aldabbagh F. First synthesis of *N*-[(aziridin-2-yl)methyl] benzimidazolequinone and analysis of toxicity towards normal and Fanconi anaemia cells. *Chem. Commun.* **2008**, 5592–5594.
- Bonham, S.; O'Donovan, L.; Cary M.P.; Aldabbagh F. First synthesis of an aziridinyl fused pyrrolo[1,2-*a*]benzimidazole and toxicity evaluation towards normal and breast cancer cell lines. *Org. Biomol. Chem.* 2011, *9*, 6700–6706.
- Spreitzer, H.; Holzer, W.; Puschmann, C.; Pichler, A.; Kogard, A.; Tschetschkowitsch, K.; Heinze, T.; Bauer, S.; Shabaz, N. Synthesis and NMR-investigation of annelated pyrrole derivatives. *Heterocycles* 1997, 45, 1989–1997.
- 18. Rudisill, D.E.; Stille, J.K. Palladium-catalyzed synthesis of 2-substituted indoles. *J. Org. Chem.* **1989**, *54*, 5856–5866.
- 19. Groth, U.; Halfbrodt, W.; Koehler, T.; Kreye, P. Synthesis of (±)-chokol A by a tandem Michaeladdition/Dieckmann cyclization. *Liebigs Ann. Chem.* **1994**, *9*, 885–890.
- Artis, D.R.; Cho, I.S.; Jaime-Figueroa, S.; Muchowski, J.M. Oxidative Radical Cyclization of (ω-Iodoalkyl)indoles and Pyrroles. Synthesis of (–)-Monomorine and Three Diastereomers. *J. Org. Chem.* 1994, 59, 2456–2466.
- Meyer, T.; Regenass, U.; Fabbro, D; Alteri, E.; Rösel, J.; Müller, M.; Caravatti, G.; Matter, A. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and *in vitro* anti-proliferative as well as *in vivo* anti-tumor activity. *Int. J. Cancer* 1989, 43, 851–856.
- Nicolaou, K.C.; Scarpelli, R.; Bollbuck, B.; Werschkun, B.; Pereira, M.M.; Wartmann, M.; Altmann, K.H.; Zaharevitz, D.; Guscio, R.; Giannakakou, P. Chemical synthesis and biological properties of pyridine epothilones. *Chem. Biol.* 2000, *7*, 593–599.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).