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Abstract: Planar bis(1,2-dithiooxalato)nickelate(II), [Ni(dto)]2´ reacts in aqueous solutions with
lanthanide ions (Ln3+) to form pentanuclear, hetero-bimetallic complexes of the general composition
[{Ln(H2O)n}2{Ni(dto)2}3]¨ xH2O. (n = 4 or 5; x = 9–12). The complex [{Ho(H2O)5}2{Ni(dto)2}3]¨ 10H2O,
Ho2Ni3, was synthesized and characterized by single crystal X-ray structure analysis and powder
diffraction. The Ho2Ni3 complex crystallizes as monoclinic crystals in the space group P21/c. The
channels and cavities, appearing in the crystal packing of the complex molecules, are occupied by a
varying amount of non-coordinated water molecules.
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1. Introduction

During the last decades, molecular hetero-bimetallic 3d–4f complexes with transition metals and
trivalent lanthanide ions have gathered increasing interest due to their magnetic properties [1–17].
Such complexes are promising precursors for, e.g., catalysts, magnetic materials, luminescent materials
and new molecular devices. Since lanthanide ions provide a large angular momentum and the
f–f transition is less influenced by the ligand field compared to the spin-orbit coupling, magnetic
behavior different from the transition metals has been observed [16]. When transition metals are
bridged to the lanthanide ions by small bridging ligands 3d–4f complexes with interesting magnetic
properties are formed, e.g., as single-molecule magnets [18]. The design and construction of extended
hetero-nuclear 3d–4f complexes with a discrete multinuclear aggregation is still a challenge for
coordination chemists. A series of pentanuclear, hetero-bimetallic 3d–4f complexes of the general
composition [{Ln(H2O)n}2{Ni(dto)2}3]¨ xH2O (n = 4 or 5; x = 9–12) was first described by Trombé,
Gleizes and Galy [19,20]. Dependent on the decreasing ionic radii of the lanthanide ions, two types of
structures were observed: a monoclinic structure for the larger lanthanide ions (La–Dy) and a triclinic
structure for the smaller lanthanide ions (Er, Yb). The analogue Ho2Ni3 complex is the borderline case
between both structural forms and its structural type was unclear. Here we can report the structure
of this complex [{Ho(H2O)5}2{Ni(dto)2}3]¨ 10H2O, Ho2Ni3. The here reported complex reported here
crystallizes in the monoclinic space group P21/c. The structural information of the Ho2Ni3 complex is
new in this series to the best of our knowledge.

2. Results and Discussion

2.1. X-ray Structures

A single crystal of the complex Ho2Ni3 was measured by X-ray diffraction. Table S1 summarizes
the crystallographic data and refinement parameters for this complex. The Ho2Ni3 complex crystallizes
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in the monoclinic space group P21/c. In the crystals, two different forms of enclosed water molecules
can be observed: defined coordinated water at the lanthanide ion and non-stoichiometric amounts of
inserted water in the cavities and between the layers of the complex molecules.

Figure 1 shows the molecular structure of the pentanuclear heterobimetallic Ho2Ni3 complex with
the characteristic z-shape of this type of molecule [21–24]. The two holmium centers are bridged by a
nearly planar bis(1,2-dithiooxalato)nickelate(II) unit. Two peripheric bis(1,2-dithiooxalato)nickelate(II)
moieties are coordinated only bidentate in a non-bridging mode. The structure of the complex is close
to planarity with a little twisting, due to the non-symmetric coordination geometry of the lanthanide
ions (see Figure 2). The coordination spheres of the lanthanide ions are completed by five coordinated
water ligands at each lanthanide ion, resulting in a coordination number of nine. The nine donor
atoms in the coordination sphere of the lanthanide ion occupy the corners of a tricaped trigonal prism.
The molecule is centrosymmetric with a crystallographic symmetry center at the Ni1 atom.
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Figure 2. Molecular structure of the Ho2Ni3 complex, view along the crystallographic b-axis
(non-coordinated water molecules und hydrogen atoms are omitted for clarity).

The complex is almost isostructural to the already reported analogue Eu2Ni3, Nd2Ni3, Ce2Ni3,
and Dy2Ni3 complexes [21–24]. The deviations in the structures are only due to small differences
of the ion radii of the individual lanthanide ions. The crystal packing of the molecules contains
channels and cavities, which are filled by non-coordinated water molecules. Whereas the coordinated
water molecules are in fixed positions, the non-coordinated water molecules are strongly disordered.
The slightly varying number of non-coordinated water molecules could be calculated (estimated) by
thermoanalytical investigations and was determined with approximately nine to 12 inserted water
molecules per formula unit [22]. This inserted water is very flexible and already partly released at
laboratory conditions with dry air, making it difficult to determine their exact number. This also
applies to the Ho2Ni3 complex in this series. Therefore, the crystal was completely embedded in
perfluoropolyalkyl ether to protect it against decay during the X-ray crystal structure analysis. This
effect is also responsible for the relatively high remaining electron density for this type of complex.
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2.2. IR Spectroscopy

All these complexes show intense water signals around 3300 cm´1 in their IR absorption spectra
(see Figure S2). Furthermore, very broad carbonyl vibrations (between 1600 cm´1 and 1400 cm´1) can
be observed. This broadening results from the overlapping of the different types of coordinated and
non-coordinated carbonyl groups present in the complex: non-coordinated terminal carbonyl groups
of the peripheric 1,2-dithiooxalato ligands, which are found at approximately 1600 cm´1, comparable
to the red form of the mononuclear K2[Ni(dto)2] complex [25], combine with the vibration of the
carbonyl groups of the bridging dto ligands coordinated by the lanthanide ions. Also, the formation of
intermolecular hydrogen bonds towards some of the carbonyl groups contributes to the broadening
of the CO vibrations in the spectra. The resulting absorption bands of carbonyl vibrations are found
at around 1495 cm´1. As already mentioned, the complexes of this series crystallize in two different
crystal systems depending on the decreasing lanthanide radii, and this can also be recognized by IR
spectroscopy. The comparison of vibration bands of v(C-C-S), v(S-C) and v(Ni-S) exhibits a shift of the
absorptions in the range of 10 cm´1 if the crystal system changes from monoclinic to triclinic. These
shifts are attributed to stronger bonding of the lanthanide ions and the dto ligands.

3. Experimental Section

3.1. General Methods, Analytical and Physical Measurements

All infrared spectra were recorded on a Perkin Elmer 16PC FT-IR-spectrometer in a range between
400 cm´1 and 4000 cm´1 using KBr pellets. The elemental analyses (C, H, S) were determined by
a Vario EL III CHNS from elementar Analysensysteme GmbH (Hanau, Germany). The magnetic
susceptibility was measured by a magnetic susceptibility balance MSB-Auto by Sherwood Scientific
Ltd. at room temperature. XRD measurements were conducted with a Bruker AXS (Siemens) D5005
diffractometer using CuKα radiation (λ = 1.540598 Å) (see Figure S1).

X-ray structure of the presented complex was collected using a STOE Image Plate Diffraction
System IPDS-2 at 210 K with graphite-monochromatized MoKα radiation. The reflection data were
corrected by an absorption correction using the program X-Area [26]. The structures were solved
with SHELXS-97 [27] using direct methods and refined with SHELXL-2014 [28]. The nonhydrogen
atoms were refined anisotropically, with the exception of one non-coordinated oxygen atom of a crystal
water molecule with an occupation factor of 0.25 in the structure. The hydrogen atoms of the water
molecules could not be found. CCDC 1450593 contains the supplementary crystallographic data for
this article and can be obtained free of charge from The Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif (or from the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

3.2. Synthesis of [Ho2Ni3 (dto)6(H2O)10]¨ 10H2O

The ligand potassium 1,2-dithiooxalate, K2dto, was synthesized by sulfhydrolysis of diphenyl
oxalate according to the procedure of Matz and Mattes [29] modified by Wenzel et al. [30]. The complex
Ho2Ni3 was prepared according to the general procedure described by Trombe et al. [20].

A solution of K2dto (1 mmol; 200.2 mg) in 5 mL of distilled H2O was added to a stirred solution
of NiCl2¨ 6 H2O (0.5 mmol; 119.7 mg) in 4 mL of distilled H2O. The resulting dark-violet solution was
heated to 50 ˝C. A warm solution (50 ˝C) of HoCl3¨ xH2O (0.33 mmol) in 4 mL water was added drop
wise to the stirred [Ni(dto2]2´ - solution. The resulting reaction mixture was continuously stirred at
50 ˝C for additional 15 min, than slowly cooled down to room temperature. The dark-violet crystalline
precipitate was filtered off, washed with a small amount of distilled water and dried at 80 ˝C.

K2dto: C2O2S2K2 (M = 198.35 g/mol). Elementary analysis (EA) measured (calculated): C 11.95 (12.11);
S 32.08 (32.33) %. IR (KBr): 1530, 1514 (νC-O), 1113 (νC-C-S), 879 (νC-S) cm´1.
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Ho2Ni3, 1: C12H22O23S12Ni3Ho2 (M = 1425.01 g/mol). EA meas. (calc.): C 10.05 (10.11); H 1.55 (1.56);
S 26.58 (27.00) %. IR (KBr), Figure S2: 3166 (νOH), 1490 (νC-O), 1138 (νC-C-S), 990, (νC-S), 458 (νNi-S, δring)
cm´1. µeff meas. (calc.): 14.63 (14.99) B.M.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-8599/2016/2/M895,
Table S1: Crystallographic data and refinement parameters for the complex Ho2Ni3, Figure S1: Experimental
X-ray powder patterns for Ho2Ni3 (1), Figure S2: IR absorption spectrum (KBr) of Ho2Ni3.
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