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Abstract: Benzyl 3,4,6-tri-O-benzyl-β-D-arabino-hexos-2-ulo-1,5-pyranoside was subjected to manno-
selective ketone alkynylation with propiolaldehyde dibenzyl acetal, resulting in the formation of
a 2-C-alkynyl β-mannoside bearing a γ-dibenzyl acetal functionality. Subsequent transacetalization
of the acetal moiety with methanol and 1,3-dihydroxypropane and acetylation of position 2,
respectively, gave 4 different 2-C-alkynyl branched mannosides. Lindlar hydrogenation of the latter
under optimized conditions in dimethylformamide afforded a series of 2-C-cis-alkenyl mannosides.
X-ray molecular structures of benzyl 3,4,6-tri-O-benzyl-β-D-arabino-hexos-2-ulo-1,5-pyranoside and
of the branched glycoside benzyl 3,4,6-tri-O-benzyl-2-C-((Z)-3,3-dibenzyloxyprop-1-en-1-yl)-β-D-
mannopyranoside are reported.

Keywords: branched carbohydrates; alkynylation; alkynes; cis-alkenes; Lindlar hydrogenation;
partial hydrogenation; β-mannosides; 2-ulosides

1. Introduction

Carbon-branched carbohydrates and especially 1,2-annulated carbohydrates have been the target
of considerable synthetic efforts in recent years, for such sugar derivatives may have potential
medical application as glycosidase inhibitors [1–4]. In the context of our current project regarding
the development of synthetic strategies towards bicyclic annulated carbohydrate derivatives [5,6],
we became interested in the synthesis of 2-C-cis-alkenyl substituted β-mannosides bearing a γ-formyl
moiety. Such C-branched glycosides having an additional aldehyde group were thought to be useful
synthetic precursors for 1,2-annulated glycosides. Therefore, we contemplated a reaction sequence in
which a 2-keto-glucoside (2-uloside) is manno-selectively alkynylated with propiolaldehyde dibenzyl
acetal and subsequently partially hydrogenated. Initially, we next anticipated a synthetic route
featuring dihydroxylation of the cis-alkene and subsequent deprotection/hemiacetal formation for the
synthesis of reducing bycyclic sugar derivatives. Due to the observed inertness of the side chain alkene
moiety under several osmium-catalyzed dihydroxylation conditions, most probably caused by the
sterical crowdedness of the dibenzyl acetal function, derivatives of the alkynylation product bearing
less bulky acetal protecting groups (dimethyl acetal and dioxane) were synthesized and hydrogenated
to give the corresponding cis-alkenes. In addition, acetylation of the axial C2-OH function was
performed to study a possible adverse effect of the free hydroxyl group in the planned dihydroxylation
reactions. Here, we wish to report on the detailed synthesis of a series of four variably protected
2-C-alkynyl branched mannosides as well as 2-C-cis-alkenyl branched mannosides derived thereof.
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2. Results and Discussion

Our synthetic sequence started by subjecting benzyl β-glucoside 1 [7] to Dess-Martin oxidation to
afford the corresponding perbenzylated 2-uloside 2 (Scheme 1). Previously, Fokt et al. [8] described the
synthesis of 2 via glycosylation reactions with a 2-ulosyl bromide. However, based on our previously
encountered difficulties with comparable glycosylation reactions [5] (i.e., low yields and the formation
of side products) we anticipated our approach via Dess-Martin oxidation of 1 to be more efficient.
Indeed, 2-uloside 2 was obtained in this way in an excellent 96% yield. Due to the high crystallinity
of 2-uloside 2, X-ray structural analysis was performed in order to complete the analytical data of
2. Compound 2 crystallized as thin needles upon diffusion of n-pentane into a solution of 2 in ethyl
acetate/chloroform (2:1). The space group was found to be P21 and the asymmetric unit contained
one molecule of 2. The molecular structure (Figure 1) revealed a carbonyl bond length of 1.204 Å
(C2-O21) as well as carbonyl angles of 115.3 Å (C1-C2-C3) and 122.3◦ (C1-C2-O21 and C3-C2-O21).
The carbohydrate system was found to comprise a distorted 4C1 conformation.
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Figure 1. Molecular structure of 2. Hydrogen atoms as well as a disorder involving the O51 benzyl
group are omitted for clarity. Ellipsoids are drawn at a 50% probability level. Red = oxygen,
gray = carbon.

Subsequently, alkynylation of 2 with propiolaldehyde dibenzyl acetal [9] and n-butyllithium
gave 2-C-alkynyl mannoside 3a in 85% yield. The attack of the nucleophile solely occurred from the
equatorial side and no diastereomeric byproduct could be detected. Similarly, high stereoselectivities
were previously observed for a wide variety of nucleophilic addition reactions to β-2-ulosides [5,10–12].
In order to expand the synthetic applicability of the thus prepared branched mannosides we performed
a series of transacetalizations affording products with variably orthogonally protected side chain
formyl moieties. Thus, iodine-catalyzed [13] and acid-catalyzed transacetalization of 3a with methanol
and 1,3-dihydroxypropane, respectively, afforded dimethyl acetal 3b (88%) and 1,3-dioxane 3c (84%)
(Scheme 1). Acetylation of the tertiary 2-OH function under standard conditions [14] gave acetate 3d
in 81% yield. The subsequent partial hydrogenation of 3a employing Lindlar’s catalyst and H2 [15]
was initially performed in ethyl acetate as well as methanol. However, only minor hydrogenation of
the starting material was observed in these solvents over several days. We attributed this finding to
the sterical crowdedness of the alkyne moiety in 3a caused by the bulky dibenzyl acetal and the other
benzyl protecting groups in the glycoside. Changing the solvent to 1,4-dioxane had only a slightly
accelerating effect. In contrast, using DMF as the solvent resulted in a smooth conversion of alkynes
3a–3d to afford the corresponding cis-alkenes 4a–4d in typically 2–5 days and in good yields (81%–93%).
Although the partial hydrogenation of alkynes with Lindlar catalyst has been used frequently, solvent
effects as well as effects of sterical crowdedness seem to be hardly assessable, and the conditions often
need rigorous optimization regarding the individual reaction system [16–19]. Therefore, we believe
the protocol described above might be of further use for the partial hydrogenation of comparable
branched alkyne systems. The vicinal alkene coupling constants J7,8 of glycosides 4 were found to be
in a region between the anticipated values for cis- and trans-alkenes (J7,8 = 12.4 (4a), 12.4 (4b), 12.1 (4c),
12.4 (4d) Hz). Furthermore, 2D NMR experiments (H,H-NOESY) as well as X-ray structural analysis
(vide infra) were utilized for additional structural elucidation and final proof of the structures of 4a–4d.

Originally we anticipated a synthetic route to 1,2-annulated glycosides based on the syn-selective
catalytic osmoylation of cis-alkenes of type 4. However, 4a, 4c and 4d, respectively, appeared to be
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remarkably inert under various osmoylation conditions [20]. Even stoichiometric amounts of osmium
tetroxide at elevated temperatures did not result in dihydroxylation of the double bond. For example,
dibenzyl acetal 4a did not react over several days when stirred at 70 ◦C in acetone/water/t-butyl
alcohol with 1.2 equivalents of osmium tetroxide and 5 vol % of pyridine as an additive. Dimethyl
acetal 4b only resulted in acetal hydrolysis and subsequent decomposition.
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Scheme 1. Synthesis of C-2-alkynylated and cis-alkenylated mannosides via oxidation, alkynylation
and partial hydrogenation. (a) Dess-Martin Periodinane, CH2Cl2, 20 ◦C, 18 h, 96%; (b) propiolaldehyde
dibenzyl acetal, n-BuLi, THF, −80 ◦C, 15 min, 85%; (c) I2 0.04 M in MeOH, 60 ◦C, 48 h,
88%; (d) 1,3-dihydroxypropane, p-TosOH cat., toluene, 100 ◦C, 22 h, 84%; (e) Ac2O, Et3N,
DMAP, chloroform, 65 ◦C, 4 d, 81%; (f) H2, Lindlar catalyst, DMF, 20 ◦C, 2–5 days, 81%–93%;
DMAP = 4-dimethylaminopyridine.

Both glycosides 4a and 4b but not glycosides 4c and 4d exhibited each remarkably complex 1H and
13C-NMR spectra in CDCl3 (Figure 2; for the full spectra see the Supporting Information). We attributed
these unusually complex spectra to a conformational isomerism caused by constrained rotation of the
single bonds adjacent to the bulky alkene moiety. In DMSO-d6 as the solvent compound 4a showed
a simpler NMR spectrum and no rotamers were observed. Similar distinct solvent dependencies
of conformational isomerism have been reported in the literature [21]. In the case of compound 4b,
rotamers were still observable in DMSO-d6, albeit to a much lesser extent. NMR measurements
performed at elevated temperatures (50 ◦C) failed because of decomposition. The structure of
glycoside 4a could finally be unambiguously confirmed by X-ray crystallography. Glycoside 4a
formed thin needles suitable for X-ray analysis by slow diffusion of n-pentane into a solution of
the compound in ethyl acetate. The X-ray structure revealed compound 4a to crystallize in the
triclinic space group P1. The asymmetric unit contained four molecules of 4a. An examination of the
molecular structure (Figure 3) confirmed the expected 4C1 conformation of the carbohydrate system.
The olefinic bond length (C421-C422: 1.325 Å) and torsion angle (C402-C421-C422-C423: 3.0◦) were
found to be as anticipated for an isolated cis-alkene. The sterically crowded side chain dibenzyl acetal
moiety was found to shield both sides of the alkene double bond as illustrated by the torsion angles
involving the acetal oxygen atoms and the alkene carbon atoms (C421-C422-C423-O40A: 94.3◦ and
C421-C422-C423-O421: −144.1◦).

In conclusion, we have described a methodology for the straightforward synthesis of 2-C-alkynyl
and 2-C-cis-alkenyl β-mannosides with an acetal-protected γ-aldehyde functionality. The synthesis
comprises the manno-selective alkynylation of a benzylated 2-uloside and subsequent partial
hydrogenation of the intermediate branched alkynes utilizing Lindlar’s catalyst. DMF as the solvent
of choice was found to have a distinctly accelerating effect on the partial hydrogenation, and this
finding could be of further use for the Lindlar hydrogenation of similar sterically crowded alkyne
systems. The 2-C-branched carbohydrates reported here might be valuable building blocks for
synthetic carbohydrate chemistry due to the potential orthogonality of the side chain carbonyl
protection. For example, C-glycosyl-substituted (Z)-acrolein systems might be accessible from the
described compounds.
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3. Experimental Section

3.1. General Methods

NMR spectra were recorded with a Bruker Avance 400 spectrometer (Bruker BioSpin GmbH,
Rheinstetten, Germany) and calibrated for the solvent signal (1H: CDCl3: 7.26 ppm; acetone-D6:
2.05 ppm; DMSO-d6: 2.50 ppm; 13C: CDCl3: 77.16 ppm; acetone-d6: 29.84 ppm; DMSO-d6: 39.52 ppm).
For diastereotopic methylene protons, the signal appearing at higher chemical shift was designated
Ha, the one appearing at lower chemical shift values was designated Hb. NMR spectra of compounds
2-4 are given in the Supporting Information. ESI-TOF-HRMS spectra were measured with a Bruker
maXis 4 g spectrometer (Bruker Daltonik GmbH, Bremen, Germany), ESI-FTICR-HRMS spectra
with a Bruker Apex II spectrometer and FAB-spectra with a Finnigan MAT spectrometer model
TSQ 70 (Finnigan MAT, Bremen, Germany). Elemental analysis was performed with a HEKAtech
Euro 3000 CHN analyzer (HEKAtech GmbH, Wegberg, Germany). Optical rotations were measured
with a Perkin-Elmer Polarimeter 341 (Perkin Elmer Inc., Waltham, MA, USA) in a 10 cm cuvette
at 20 ◦C. Melting points were determined with a Büchi Melting Point M-560 apparatus (BÜCHI
Labortechnik GmbH, Essen, Germany). Reactions were monitored by TLC on Polygram Sil G/UV
silica gel plates from Macherey-Nagel. Detection of spots was effected by charring with H2SO4

(5% in EtOH), staining by spraying the plates with (NH4)2MoO4/Ce(SO4)2 in diluted sulfuric acid
or by inspection of the TLC plates under UV light. Preparative chromatography was performed
on silica gel (0.032–0.063 mm) from Macherey-Nagel (Macherey-Nagel GmbH & Co. KG, Düren,
Germany). All solvents were purchased in technical grade and purified by distillation. For the reactions,



Molbank 2016, 2016, M916 5 of 10

the following solvents were dried according to standard methods and stored over molecular sieves 4 Å:
CH2Cl2, THF and DMF: P4O10; toluene: Na/benzophenone. Dess-Martin periodinane was prepared
via the potassium bromate method [22]. Propiolaldehyde dibenzyl acetal was prepared according
to the method published by Fliegel et al. [9]. The following reagents were commercially available
and used without further purification: Lindlar catalyst, para-toluenesulfonic acid, acetic anhydride,
4-(dimethylamino)pyridine (Sigma-Aldrich Chemie, Munich, Germany), 1,3-dihydroxypropane
(abcr, Karlsruhe, Germany), n-butyllithium (Fisher Scientific, Nidderrau, Germany), triethylamine
(Th. Geyer, Renningen, Germany). All yields given below are isolated yields.

3.2. X-ray Crystallography

Crystals of 2 were grown by slow diffusion of n-pentane into a solution of the compound
in ethyl acetate/chloroform (2:1; 20 mg, 750 µL) at ambient temperature. Crystals of 4a were
grown by diffusion of n-pentane into a solution of 4a in ethyl acetate (20 mg, 500 µL) at ambient
temperature. X-ray data were collected on a Bruker SMART APEX II DUO diffractometer (Bruker AXS
Advanced X-ray Solutions GmbH, Karlsruhe, Germany) using a Cu Kα radiation (λ = 1.54178 Å) or
Mo Kα radiation (λ = 0.71073 Å). Corrections for absorption effects were applied using SADABS [23].
All structures were solved by direct methods using SHELXS and SHELXL for structure solution and
refinement [24–26]. Complete crystallographic data for the structural analysis have been deposited
with the Cambridge Crystallographic Data, CCDC 1505647 (for 2) and CCDC 1505648 (for 4a). Copies
of this information may be obtained free of charge from The Cambridge Crystallographic Data Centre.

3.3. Benzyl 3,4,6-Tri-O-benzyl-β-D-arabino-hexos-2-ulo-1,5-pyranoside (2)

To a solution of glucoside 1 [7] (1.65 g; 3.05 mmol) in CH2Cl2 (100 mL) Dess-Martin periodinane
(2.85 g; 6.71 mmol) was added in portions over 15 min at r.t., and the mixture was stirred until
TLC (toluene/ethyl acetate, 4:1) indicated complete transformation of the starting material (16 h).
The solution was diluted with CH2Cl2 (100 mL) and washed with water, three times with a 1:1
mixture of satd. aqueous NaHCO3 solution and an aqueous 0.2 M Na2S2O3 solution and with
water (80 mL each). The organic layer was dried with Na2SO4, filtered and concentrated in vacuo.
The crude product was suspended in toluene/acetone (20 mL/15 mL), and the suspension was
purified by column chromatography (SiO2, toluene/acetone, 20:1) to afford pure ketone 2 (1.58 g; 2.92
mmol; 96%) as a colorless solid. Crystals suitable for X-ray structural analysis were obtained from
n-pentane/ethyl acetate/chloroform. Analytical data were found to be in accordance with ref. [8].
Additional characterization data: 13C-NMR (100 MHz, CDCl3) δ: 197.4 (C-2), 138.1, 137.8, 137.4, 136.2
(4 × CAr,quart), 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8 (20 × CAr), 97.4 (C-1), 85.8 (C-3), 80.1
(C-4), 75.9 (C-5), 75.0 ,73.6, 73.6, 70.3 (4 × CH2Ph), 69.1 (C-6). Anal. calcd. for C34H34O6: C, 75.82; H,
6.36. Found: C, 75.54; H, 6.35.

3.4. Benzyl 3,4,6-Tri-O-benzyl-2-C-(3,3-dibenzyloxypropyn-1-yl)-β-D-mannopyranoside (3a)

Propiolaldehyde dibenzyl acetal [9] (1.02 g; 4.04 mmol) was dissolved in anhydrous THF (35 mL)
and cooled to −80 ◦C. n-Butyllithium (1.50 mL; 4.04 mmol; 2.7 M in n-heptane) was added dropwise
and stirring at −80 ◦C was continued for 2.5 h. Next, 2-uloside 2 (1.98 g; 3.67 mmol) in 30 mL THF
was added dropwise over 15 min. After stirring for another 15 min, the reaction was quenched by the
addition of satd. aqueous NaCl solution (25 mL), allowed to warm to ambient temperature, diluted
with chloroform (200 mL) and washed with water, satd. aqueous NH4Cl solution, satd. aqueous
NaHCO3 solution and water (100 mL each). Drying of the organic layer with Na2SO4, filtration,
evaporation of the solvents and chromatographic purification (SiO2, toluene/acetone, 20:1) afforded
alkyne 3a (2.47 g; 3.12 mmol; 85%) as a colorless solid. An analytical sample was recrystallized from
n-hexane/ethyl acetate. Rf = 0.65 (toluene/ethyl acetate, 4:1); [α]20

D +3.5 (c 1, CHCl3); m.p. 85 ◦C
(n-hexane/ethyl acetate); 1H-NMR (400 MHz, CDCl3) δ: 7.50–7.21 (m, 30H, HAr), 5.57 (s, 1H, H-9), 5.14
(d, 1H, Jgem = 10.6 Hz, CH2Ph), 5.04 (d, 1H, Jgem = 12.1 Hz, CH2Ph), 4.95 (d, 1H, Jgem = 10.6 Hz, CH2Ph),
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4.88 (d, 1H, Jgem = 11.1 Hz, CH2Ph), 4.85–4.78 (m, 3H, CH2Ph), 4.74–4.63 (m, 4H, CH2Ph), 4.59 (d, 1H,
Jgem = 10.9 Hz, CH2Ph), 4.56 (s, 1H, H-1), 3.91–3.76 (m, 3H, H-4, H-6a, H-6b), 3.71 (d, 1H, J3,4 = 9.1 Hz,
H-3), 3.52 (ddd, 1H, J4,5 = 9.9, J5,6 = 5.1, 1.9 Hz, H-5), 3.10 (bs, 1H, OH); 13C-NMR (100 MHz, CDCl3) δ:
138.2, 138.1, 137.8 137.4, 137.3, 136.7 (6 × CAr,quart), 128.5, 128.4, 128.4, 128.4, 128.3, 128.0, 128.0, 128.0,
127.9, 127.9, 127.8, 127.8, 127.7 (30 × CAr), 99.7 (C-1), 90.7 (C-9), 85.3 (C-3), 85.1 (C-7), 80.8 (C-8), 76.1
(CH2Ph), 75.3 (C-5), 75.2 (CH2Ph), 75.0 (C-4), 73.6 (CH2Ph), 71.6 (C-2), 70.8 (CH2Ph), 69.0 (C-6), 67.5
(C9-O-CH2Ph), 67.4 (C9-O-CH2Ph); HR-ESI-TOF calcd. for C51H50O8Na [M + Na]+: 813.3398 Found:
813.3384; Anal. calcd. for C51H50O8: C, 77.45; H, 6.37. Found: C, 77.21; H, 6.40.

3.5. Benzyl 3,4,6-Tri-O-benzyl-2-C-(3,3-dimethoxypropyn-1-yl)-β-D-mannopyranoside (3b)

Dibenzyl acetal 3a (301 mg; 0.38 mmol) was dissolved in anhydrous methanol (20 mL) and iodine
(200 mg; 0.79 mmol) was added. The solution was stirred at 60 ◦C for 48 h until TLC (toluene/ethyl
acetate, 4:1) indicated complete consumption of the starting material. The reaction mixture was
cooled to 0 ◦C, treated with solid Na2S2O3 (1.0 g), stirred for 15 min and allowed to warm to ambient
temperature. Next, chloroform (100 mL) was added and the organic layer was washed with water
(2 × 30 mL) and brine (30 mL). The solution was dried with Na2SO4, filtered and concentrated in
vacuo. Chromatographic purification of the residue (SiO2, toluene/acetone, 20:1) afforded 3b (213 mg;
0.33 mmol; 88%) as a colorless oil. Rf = 0.30 (toluene/ethyl acetate, 4:1); [α]20

D −6.7 (c 1, CHCl3);
1H-NMR (400 MHz, CDCl3) δ: 7.48–7.27 (m, 18H, HAr), 7.22–7.15 (m, 2H, HAr), 5.18 (s, 1H, H-9), 5.08
(d, 1H, Jgem = 10.9 Hz, CH2Ph), 5.00 (d, 1H, Jgem = 12.1 Hz, CH2Ph), 4.90 (d, 1H, Jgem = 10.9 Hz, CH2Ph),
4.85–4.74 (m, 2H, CH2Ph), 4.70–4.51 (m, 4H, CH2Ph, H-1), 3.86–3.67 (m, 4H, H-4, H-6a, H-6b, H-3,
visible coupling constants: J3,4 = 9.1 Hz), 3.52–3.45 (m, 1H, H-5), 3.36 (s, 6H, 2 × CH3), 3.04 (bs, 1H,
OH); 13C-NMR (100 MHz, CDCl3) δ: 138.3, 138.1, 137.9 136.8 (4 × CAr,quart), 128.5, 128.4, 128.0, 128.0,
128.0, 127.9, 127.9, 127.7 (20 × CAr), 99.9 (C-1), 93.1 (C-9), 85.4 (C-3), 84.9 (C-7), 80.5 (C-8), 76.1 (CH2Ph),
75.4 (C-5), 75.2 (CH2Ph), 75.0 (C-4), 73.6 (CH2Ph), 71.7 (C-2), 70.9 (CH2Ph), 69.1 (C-6), 52.8 (CH3), 52.6
(CH3); HR-ESI-TOF calcd. for C39H42O8Na [M + Na]+: 661.2772 Found: 661.2777; Anal. calcd. for
C39H42O8: C, 73.33; H, 6.63. Found: C, 73.04; H, 6.65.

3.6. Benzyl 3,4,6-Tri-O-benzyl-2-C-((1,3-dioxan-2-yl)ethynyl)-β-D-mannopyranoside (3c)

To a solution of dibenzyl acetal 3a (465 mg; 0.59 mmol) in anhydrous toluene (15 mL) was added
1,3-propanediol (426 µL; 5.88 mmol) and a catalytic amount of p-toluenesulfonic acid hydrate (14 mg)
and the solution was stirred at 100 ◦C for 22 h until TLC (toluene/ethyl acetate, 4:1) indicated the
complete transformation of the starting material. The reaction mixture was diluted with toluene
(20 mL), washed with satd. aqueous NaHCO3 solution (20 mL) and water (20 mL). After drying
with Na2SO4, filtration and concentration in vacuo chromatographic purification of the residue (SiO2,
toluene/ethyl acetate, 7:1) afforded 3c (320 mg; 84%) as a colorless amorphous solid. Rf = 0.26
(toluene/ethyl acetate, 4:1); [α]20

D −2.4 (c 1, CHCl3); 1H-NMR (400 MHz, CDCl3) δ: 7.48–7.42 (m, 4H,
HAr), 7.40–7.26 (m, 14H, HAr), 7.21–7.16 (m, 2H, HAr), 5.46 (s, 1H, H-9), 5.10 (d, 1H, Jgem = 10.9 Hz,
CH2Ph), 5.01 (d, 1H, Jgem = 12.4 Hz, CH2Ph), 4.91 (d, 1H, Jgem = 10.9 Hz, CH2Ph), 4.85–4.76 (m,
2H, CH2Ph), 4.69–4.52 (m, 4H, CH2Ph, H-1), 4.22–4.15 (m, 2H, -CH2-CH2-CH2-), 3.86–3.69 (m, 6H,
-CH2-CH2-CH2-, H-6a, H-6b, H-4, H-3, visible coupling constants: J3,4 = 8.8 Hz), 3.48 (ddd, 1H, J4,5 = 9.8,
J5,6 = 5.1, 2.0 Hz, H-5), 3.07 (bs, 1H, OH), 1.81–1.67 (m, 2H, -CH2-CH2-CH2-); 13C-NMR (100 MHz,
CDCl3) δ: 138.3, 138.1, 137.9, 136.9 (4 × CAr,quart), 128.5, 128.4, 128.4, 128.3, 128.0, 127.9, 127.9, 127.8,
127.7 (20 × CAr), 99.9 (C-1), 90.2 (C-9), 85.4 (C-3), 85.1 (C-7), 80.7 (C-8), 76.1 (CH2Ph), 75.4 (C-5), 75.2
(CH2Ph), 75.0 (C-4), 73.6 (CH2Ph), 71.7 (C-2), 70.9 (CH2Ph), 69.1 (C-6), 64.6 (-CH2-CH2-CH2-), 64.6
(-CH2-CH2-CH2-), 25.7 (-CH2-CH2-CH2-); HR-ESI-TOF calcd. for C40H42O8Na [M + Na]+: 673.2772
Found: 673.2777; Anal. calcd. for C40H42O8: C, 73.83; H, 6.51. Found: C, 73.67; H, 6.66.
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3.7. Benzyl 2-O-Acetyl-3,4,6-tri-O-benzyl-2-C-(3,3-dibenzyloxypropyn-1-yl)-β-D-mannopyranoside (3d)

A solution 3a (394 mg; 0.50 mmol), acetic anhydride (4 mL), triethylamine (76 µL; 0.548 mmol) and
DMAP (122 mg; 1.0 mmol) in chloroform (4 mL) was heated to 65 ◦C for 4 d until TLC (toluene/ethyl
acetate, 4:1) indicated complete conversion of the starting material. The reaction mixture was diluted
with chloroform (50 mL) and poured onto an ice-cold satd. aqueous NaHCO3 solution (50 mL).
The organic layer was washed with sat. aqueous NaHCO3 solution and water (20 mL each), dried with
Na2SO4, filtered, concentrated in vacuo and coevaporated with toluene (2 × 10 mL). Chromatography
of the residue (SiO2, toluene/acetone, 50:1) gave 3d (335 mg; 0.40 mmol; 81%) as a colorless oil.
Rf = 0.70 (toluene/ethyl acetate, 4:1); [α]20

D −11.7 (c 0.85, CHCl3); 1H-NMR (400 MHz, CDCl3) δ:
7.43–7.18 (m, 28H, HAr), 7.15–7.10 (m, 2H, HAr), 5.53 (s, 1H, H-9), 5.30 (d, 1H, Jgem = 10.9 Hz, CH2Ph),
4.97 (d, 1H, Jgem = 12.4 Hz, CH2Ph), 4.87–4.62 (m, 8H, CH2Ph), 4.56 (d, 1H, Jgem = 12.1 Hz, CH2Ph),
4.51–4.44 (m, 2H, H-1, CH2Ph), 3.79–3.67 (m, 4H, H-6a, H-6b, H-3), 3.49 (ddd, 1H, J4,5 = 9.6, J5,6 = 4.5,
2.5 Hz, H-5), 2.18 (s, 3H, CH3); 13C-NMR (100 MHz, CDCl3) δ: 168.3 (C=O acetyl), 138.3, 138.2, 138.0,
137.6, 137.6, 136.7 (6 × CAr,quart), 128.7, 128.5, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8,
127.8, 127.7 (30 × CAr), 100.6 (C-1), 91.0 (C-9), 86.1 (C-3), 84.4 (C-7), 82.2 (C.8), 75.7 (C-5), 75.4 (CH2Ph),
2 × 75.2 (CH2Ph, C-2), 74.7 (C-4), 73.6 (CH2Ph), 71.2 (CH2Ph), 69.2 (C-6), 67.6 (CH2Ph), 67.6 (CH2Ph),
22.2 (CH3); HR-ESI-TOF calcd. for C53H52O9Na [M + Na]+: 855.3504 Found: 855.3505; Anal. calcd. for
C53H52O9: C, 76.42; H, 6.29. Found: C, 76.36; H, 6.32.

3.8. Lindlar Hydrogenations: General Procedure for the Synthesis of 4a, 4b, 4c and 4d

Compound 3 was dissolved in anhydrous DMF and Lindlar catalyst was added. The suspension
was stirred under an atmosphere of hydrogen (at a pressure slightly above atmospheric pressure
evoked by a column of water) at r.t. until TLC (toluene/ethyl acetate, 4:1) indicated complete
conversion of the starting material. The mixture was diluted with CH2Cl2. Filtration through
a layer of Celite provided, after evaporation of the solvent and coevaporation with n-heptane,
the cis-alkene 4, typically in high purity. If necessary, chromatographic purification/recrystallization
provided the further purified products.

3.9. Benzyl 3,4,6-Tri-O-benzyl-2-C-((Z)-3,3-dibenzyloxyprop-1-en-1-yl)-β-D-mannopyranoside (4a)

A solution of 3a (129 mg; 0.163 mmol) in anhydrous DMF (2 mL) was treated with Lindlar
catalyst (64 mg; 50 wt %) for 48 h as described in the general procedure above. Chromatography
(SiO2, toluene/acetone, 20:1) gave 4a (120 mg; 0.151 mmol; 93%) as a colorless solid. An analytical
sample was recrystallized from n-hexane/ethyl acetate. Crystals suitable for X-ray structural analysis
were obtained from n-pentane/ethyl acetate. Rf = 0.76 (toluene/ethyl acetate, 4:1); [α]20

D −34.0 (c 0.5,
CHCl3); m.p. 95 ◦C (n-hexane/ethyl acetate); 1H-NMR (400 MHz, DMSO-d6) δ: 7.40–7.15 (m, 30H,
HAr), 6.19 (d, 1H, J8,9 = 6.8 Hz, H-9), 5.74 (dd, 1H, J7,8 = 12.4, J8,9 = 6.8 Hz, H-8), 5.67 (d, J7,8 = 12.4 Hz,
H-7), 4.85–4.40 (m, 13H, CH2Ph, H-1), 4.34 (bs, 1H, OH), 3.78–3.63 (m, 4H, H-3, H-4, H-6a, H-6b),
3.58–3.52 (m, 1H, H-5); 13C-NMR (100 MHz, DMSO-d6) δ: 138.5, 138.5, 138.4, 138.4, 138.3, 137.7
(6 × CAr,quart), 133.2 (C-7), 129.9 (C-8), 128.2, 128.2, 128.1, 128.1, 128.0, 127.7, 127.6, 127.6, 127.5, 127.4,
127.4, 127.3, 127.2, 127.2 (30 × CAr), 100.8 (C-1), 97.5 (C-9), 84.3 (C-3), 78.7 (C-2), 75.6 (C-4), 74.9
(CH2Ph), 74.5 (C-5), 74.1 (CH2Ph), 72.3 (CH2Ph), 70.2 (CH2Ph), 69.1 (C-6), 67.5 (CH2Ph), 66.3 (CH2Ph);
HR-ESI-TOF calcd. for C51H52O8Na [M + Na]+: 815.3554 Found: 815.3544; Anal. calcd. for C51H52O8:
C, 77.25; H, 6.61. Found: C, 77.31; H, 6.56.

3.10. Benzyl 3,4,6-Tri-O-benzyl-2-C-((Z)-3,3-dimethoxyprop-1-en-1-yl)-β-D-mannopyranoside (4b)

Alkyne 3b (95 mg; 0.149 mmol) in anhydrous DMF (3 mL) was treated with Lindlar catalyst
(71 mg; 75 wt %) for 5 d as described in the general procedure above. After chromatographic
purification (SiO2, toluene + 2% Et3N), alkene 4b (87 mg; 0.136 mmol; 91%) was obtained as
a colorless, amorphous solid. Rf = 0.23 (toluene + 2% Et3N); [α]20

D −57.0 (c 1, CHCl3); 1H-NMR
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(400 MHz, DMSO-d6) δ: rotameric isomerism, significant signals: 5.69 (d, 1H, J8,9 = 6.3 Hz, H-9), 5.59
(d, 1H, J7,8 = 12.4 Hz, H-7), 5.54 (dd, 1H, J7,8 = 12.4, J8,9 = 6.3 Hz, H-8), 3.14 (s, 6H, 2 × CH3); 13C-NMR
(100 MHz, DMSO-d6) δ: rotameric isomerism, significant signals: 133.2 (C-7), 129.8 (C-8), 100.7 (C-1),
99.0 (C-9), 74.5 (C-5), 52.8, 51.6 (2 × CH3); HR-ESI-TOF calcd. for C39H44O8Na [M + Na]+: 663.2928
Found: 663.2933; Anal. calcd. for C39H44O8: C, 73.10; H, 6.92. Found: C, 72.97; H, 7.01.

3.11. Benzyl 3,4,6-Tri-O-benzyl-2-C-((Z)-2-(1,3-dioxan-2-yl)vinyl)-β-D-mannopyranoside (4c)

Alkyne 3c (239 mg; 0.367 mmol) in anhydrous DMF (5 mL) was treated with Lindlar catalyst
(144 mg; 60 wt %) for 3 d as described in the general procedure above. Alkene 4c (194 mg; 0.297 mmol;
81%) was obtained as a colorless, amorphous solid. Rf = 0.65 (toluene/ethyl acetate, 2:1); [α]20

D –61.2
(c 1, CHCl3); 1H-NMR (400 MHz, CDCl3) δ: 7.41–7.25 (m, 18H, HAr), 7.23–7.17 (m, 2H, HAr), 5.80 (d,
1H, J8,9 = 5.1 Hz, H-9), 5.70 (dd, 1H, J7,8 = 12.1, J8,9 = 5.2 Hz, H-8), 5.33 (d, 1H, J7,8 = 12.1 Hz, H-7), 4.93
(d, 1H, Jgem = 12.1 Hz, CH2Ph), 4.86 (d, 1H, Jgem = 10.9 Hz, CH2Ph), 4.76–4.52 (m, 6H, CH2Ph), 4.26
(s, 1H, H-1), 4.10–4.01 (m, 2H, -CH2-CH2-CH2-), 3.92–3.72 (m, 6H, H-4, OH, -CH2-CH2-CH2-, H-6a,
H-6b), 3.49–3.43 (m, 1H, H-5), 3.40 (d, 1H, J3,4 = 9.1 Hz, H-3), 2.17–2.03 (m, 1H, -CH2-CHaHb-CH2-),
1.31 (d, 1H, Jvic = 13.4 Hz, -CH2-CHaHb-CH2-); 13C-NMR (100 MHz, CDCl3) δ: 138.5, 138.4, 138.0,
137.2 (4 × CAr,quart), 133.2 (C-7), 132.2 (C-8), 128.8, 128.5, 128.5, 128.4, 128.4, 128.3, 127.9, 127.9, 127.9,
127.8, 127.7 (20 × CAr), 99.8 (C-1), 98.5 (C-9), 84.6 (C-3), 78.7 (C-2), 2 × 76.1 (C-4, CH2Ph), 75.5 (C-5),
75.2 (CH2Ph), 73.7 (CH2Ph), 70.4 (CH2Ph), 69.5 (C-6), 66.7 (CH2-CH2-CH2-), 66.6 (CH2-CH2-CH2-),
25.6 (CH2-CH2-CH2-); HR-ESI-TOF calcd. for C40H44O8Na [M + Na]+: 675.2932 Found: 675.2928;
Anal. calcd. for C40H44O8: C, 73.60; H, 6.79. Found: C, 73.65; H, 6.88.

3.12. Benzyl 2-O-Acetyl-3,4,6-tri-O-benzyl-2-C-((Z)-3,3-dibenzyloxyprop-1-en-1-yl)-β-D-mannopyranoside (4d)

Alkyne 3d (249 mg; 0.299 mmol) in anhydrous DMF (3 mL) was treated with Lindlar’s catalyst
(113 mg; 45 wt %) for 3 d as described in the general procedure above. Alkene 4d (220 mg; 0.263 mmol;
88%) was obtained as a colorless oil. Rf = 0.78 (toluene/ethyl acetate, 2:1); [α]20

D –18.6 (c 1, CHCl3);
1H-NMR (400 MHz, CDCl3) δ: 7.35–7.16 (m, 30H, HAr), 6.21 (d, 1H, J7,8 = 12.4 Hz, H-7), 5.76 (dd, 1H,
J7,8 = 12.4, J8,9 = 7.8 Hz, H-8), 5.67 (d, 1H, J8,9 = 7.8 Hz, H-9), 5.27 (s, 1H, H-1), 4.87 (d, 1H, Jgem = 11.6 Hz,
CH2Ph), 4.65–4.55 (m, 3H, CH2Ph), 4.51–4.46 (m, 3H, CH2Ph), 4.44–4.37 (m, 5H, CH2Ph), 4.95–4.82
(m, 4H, H-5, H-3, H-6a, H-4), 3.77 (dd, 1H, J6a,6b = 9.6, J5,6b = 5.8 Hz, H-6b), 1.83 (s, 3H, CH3);
13C-NMR (100 MHz, CDCl3) δ: 169.4 (C=O acetyl), 138.5, 138.4, 138.2, 138.1, 138.0, 137.8 (6 × CAr,quart),
133.1 (C-7), 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5
(30 × CAr), 127.1 (C-8), 99.9 (C-1), 95.8 (C-9), 80.2 (C-2), 79.7 (C-3), 75.1 (*C-4), 74.9 (*C-5; assignments
may be interchanged), 74.8 (CH2Ph), 73.3 (CH2Ph), 72.3 (CH2Ph), 71.1 (CH2Ph), 70.6 (C-6), 66.9
(CH2Ph), 65.2 (CH2Ph), 22.2 (CH3); HR-ESI-TOF calcd. for C53H54O9Na [M + Na]+: 857.3660 Found:
857.3663; Anal. calcd. for C53H54O9: C, 76.24; H, 6.52. Found: C, 76.14; H, 6.48.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-8599/2016/4/
M916, NMR spectra of compounds 2–4.
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