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Abstract: 4,6-Dichloro-2-(methylthio)pyrimidine (3) reacts with EtONa in EtOH, at ca. 20 ◦C, for
2 h, to give exclusively 4-chloro-6-ethoxy-2-(methylthio)pyrimidine (5) in 89% yield. The latter is
presented as a useful multifunctionalised pyrimidine scaffold.
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1. Introduction

Pyrimidines are well known owing to their presence in biological systems as components of the
nucleic acid bases cytosine, thymine, and uracil, as well as the vitamin thiamine, which illustrates their
importance. The presence of pyrimidines has been reported for over a century and their chemistry has
been reviewed [1]. Pyrimidines also find a plethora of uses as pharmaceuticals, as anti-inflammatory [2],
anti-microbial [3], anti-HIV [4], anti-malarial [5] and anti-tumour [6] agents.

As part of our ongoing work in the chemistry of 1,2,6-thiadiazines [7–10] we identified
4,5,6-trichloropyrimidine-2-carbonitrile (1) as a product of the degradation of 3,4,4,5-tetrachloro-
4H-1,2,6-thiadiazine (2) (Scheme 1) [8]. The former was also previously identified as a minor side
product from the reaction of tetracyanoethene (TCNE) with SCl2 [11].
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Scheme 1. Isolation of trichloropyrimidine 1 from 3,4,4,5-tetrachloro-4H-1,2,6-thiadiazine (2) [11].

Polyhalogenated pyrimidines are useful scaffolds as they can be modified either by nucleophilic
aromatic substitution or by palladium coupling reactions. However, these reactions often suffer from
regioselectivity issues. For example, the Suzuki-Miyaura coupling of 2,3,4,5-tetrachloropyrimidine
with arylboronic acids gives either the 2- [12] or the 4-arylpyrimidine [13]. Moreover, on the same
scaffold, while nucleophilic substitution by alkoxide occurs at C2 [14], hydroxide attacks the C4
position [15]. On the other hand, nucleophilic substitution by amine nucleophiles often gives mixtures
of products [16,17]. The complexity of the chemistry of pyrimidines means that it is often difficult to
access specific pyrimidine targets from a simple and symmetrical pyrimidine scaffold, indicating the
necessity for asymmetrical and sometimes multi-functionalized scaffolds.
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2. Results and Discussion

In our efforts to develop an independent synthesis for the trichloropyrimidine 1 we prepared the
known 4,6-dichloro-2-(methylthio)pyrimidine (3) as an early and readily available [18] intermediate
towards the preparation of 3,4,5-trichloro-2-(methylthio)pyrimidine (4). Nevertheless, attempts to
chlorinate the C5 position, using either NCS or PCl5 to obtain 3,4,5-trichloro-2-(methylthio)pyrimidine
(4) all failed. As such, we attempted to increase the electron density at C5 to facilitate the desired
chlorination. To do this, we introduced an ethoxy group via simple nucleophilic aromatic substitution
of chlorine. Interestingly, treating the dichloropyrimidine 3 with EtONa (1.1 equiv.) in EtOH proceeded
smoothly at ca. 20 ◦C to give exclusively the mono-displaced 4-chloro-6-ethoxy-2-(methylthio)pyrimidine
(5), but this disappointingly also failed to undergo C5 chlorination to give the expected 5,6-dichloro-4-
ethoxy-2-methylthiopyrimidine (6) (Scheme 2).
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Scheme 2. Synthesis of 4-chloro-6-ethoxy-2-(methylthio)pyrimidine (5) and attempted synthesis of
5-chlorinated pyrimidines 4 and 6.

Despite this setback, we note that ethoxypyrimidine 5 is potentially a useful pyrimidine scaffold.
Pyrimidine 5 has been previously prepared by treatment of dichloropyrimidine 3 with NaOEt in dry
dimethylformamide, at 70 ◦C overnight [19], however, the synthesis described herein uses a non-toxic
solvent (EtOH) and milder conditions (20 ◦C) that are more suitable for a regioselective reaction. A very
similar analogue 4-chloro-6-methoxy-2-(methylthio)pyrimidine [20] is a versatile scaffold and can
undergo Suzuki-Miyaura coupling to afford 4-aryl-6-methoxy-2-(methylthio)pyrimidines [21], as well
as, amine [20] or alcohol displacement of the chloride [22], oxidation to sulfone [23], and condensation
reactions to give polycyclic systems [24,25].

3. Materials and Methods

The reaction mixture was monitored by chromatography (TLC) using commercial glass backed
TLC plates (Merck Kieselgel 60 F254, Darmstadt, Germany). The plates were observed under UV
light at 254 and 365 nm. The melting point was determined using a PolyTherm-A, Wagner and
Munz, Kofler hot-stage microscope apparatus (Wagner and Munz, Munich, Germany). The solvent
used for recrystallization is indicated after the melting point. The UV-VIS spectrum was obtained
using a Perkin-Elmer Lambda-25 UV-VIS spectrophotometer (Perkin-Elmer, Waltham, MA, USA) and
inflections are identified by the abbreviation “inf”. The IR spectrum was recorded on a Shimadzu
FTIR-NIR Prestige-21 spectrometer (Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory
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(Pike Miracle, Madison, WI, USA) and strong, medium, and weak peaks are represented by s, m,
and w, respectively. 1H- and 13C-NMR spectra were recorded on a Bruker Avance 500 machine
(at 500 and 125 MHz, respectively (Bruker, Billerica, MA, USA)). Deuterated solvents were used for
homonuclear lock and the signals are referenced to the deuterated solvent peaks. APT (Advance
Proton Test) NMR studies identified carbon multiplicities, which are indicated by (s), (d), (t) and
(q) notations. The MALDI-TOF (Matrix Assisted Laser Desorption/Ionization-Time of Flight) mass
spectrum (+ve mode) was recorded on a Bruker Autoflex III Smartbeam instrument (Bruker).
The elemental analysis was run by the London Metropolitan University Elemental Analysis Service.
4,6-Dichloro-2-(methylthio)pyrimidine (3) was prepared according to the literature procedure [18].

4-Chloro-6-ethoxy-2-(methylthio)pyrimidine (5)

To a stirred mixture of 4,6-dichloro-2-(methylthio)pyrimidine (3) (50 mg, 0.256 mmol) in EtOH
(1 mL) at ca. 20 ◦C was added dropwise to a freshly prepared solution of EtONa (0.28 mL, 0.28 mmol,
1 M in EtOH). The mixture was protected with a CaCl2 drying tube and stirred at this temperature until
complete consumption of the starting material (TLC, 2 h). DCM (10 mL) was then added, followed by a
saturated aqueous solution of NaHCO3 (10 mL) and the mixture extracted. The aqueous phase was then
extracted with a further 10 mL of DCM. The combined organic phases were dried (Na2SO4), filtered
and evaporated under vacuum to yield 4-Chloro-6-ethoxy-2-(methylthio)pyrimidine 5 (46.6 mg, 89%)
as colourless needles, m.p. 59–60 ◦C (from n-pentane, −60 ◦C); Rf 0.16 (n-hexane/DCM, 90:10); (found:
C, 41.13; H, 4.36; N, 13.60. C7H9ClN2OS requires C, 41.08; H, 4.43; N, 13.69%); λmax (DCM)/nm 276
inf (log ε 3.78), 255 (4.06); vmax/cm−1 3007w (aryl C-H), 2982w, 2934w, 2888w and 2849w (alkyl C-H),
1562s, 1557m, 1541s, 1537s, 1429m, 1420w, 1379m, 1352m, 1333m, 1323m, 1317m, 1273s, 1221w, 1038s,
989w, 833w, 870m, 814s; δH (500 MHz; CDCl3) 6.37 (1H, s, Ar H), 4.41 (2H, q, J 7.1, OCH2), 2.52 (3H, s,
SCH3), 1.37 (3H, t, J 7.1, CH2CH3); δC (125 MHz; CDCl3) 172.7 (s), 169.4 (s), 160.2 (s), 102.4 (d), 63.3 (t),
14.2 (q), 14.1 (q); m/z (MALDI-TOF) 206 (M+ + 2, 53%), 204 (M+, 100), 176 (52), 160 (59).

Supplementary Materials: The following are available online at www.mdpi.com/1422-8599/2017/1/M923.
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