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Abstract: The title compound, (Z)-4-(carbomethoxymethylene)-2-(4-fluorophenyl)-4H-benzo[d][1,3]
oxazine, was synthesized in 68% isolated yield by palladium-catalyzed oxidative cyclization-
methoxycarbonylation of 4-fluoro-N-(2-((trimethylsilyl)ethynyl)phenyl)benzamide. This new heterocyclic
derivative was fully characterized by IR, 1H-NMR, 13C-NMR spectroscopies, MS spectrometry,
and elemental analysis. The Z configuration around the double bond was unequivocally established
by 2D NOESY experiments.
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1. Introduction

Palladium-catalyzed oxidative alkoxycarbonylation of alkynes is a simple and powerful tool
for the synthesis of complex heterocyclic compounds from easily available starting reagents [1–5].
Over the years, we have successfully applied this effective methodology to access carbonylated
compounds in a one-pot fashion [6–13]. In particular, some years ago, we reported a facile
and efficient route for the synthesis of new functionalized benzo[d][1,3]oxazines by in situ
deprotection of 2-(trimethylsilanyl)ethynylaniline derivatives followed by palladium-catalyzed
cyclization-alkoxycarbonylation [14]. The benzo[d][1,3]oxazine scaffold is found in many biologically
active molecules, including anti-tumor, anti-inflammatory, anti-convulsant, and anti-fungal
agents [15–19]. In this Note, we report the preparation of the fluorinated benzoxazine 2—that is,
(Z)-4-(carbomethoxymethylene)-2-(4-fluorophenyl)-4H-benzo[d][1,3]oxazine—by adopting the same
catalytic carbonylative strategy (Scheme 1). We provide a full characterization of compound 2,
including NMR spectra and a complete assignment of all 1H and 13C-NMR signals.
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Scheme 1. Pd/C-catalyzed synthesis of the title compound 2 (TMS = trimethylsilyl). Scheme 1. Pd/C-catalyzed synthesis of the title compound 2 (TMS = trimethylsilyl).
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2. Results and Discussion

As shown in Scheme 1, the synthesis of (Z)-4-(carbomethoxymethylene)-2-(4-fluorophenyl)-4H-
benzo[d][1,3]oxazine (2) was achieved in one step, through palladium-catalyzed oxidative
alkoxycarbonylation of 4-fluoro-N-(2-((trimethylsilyl)ethynyl)phenyl)benzamide (1). The reaction
was carried out in 7:1 MeCN/MeOH mixture at 65 ◦C in the presence of a catalytic amount of 10%
Pd/C in conjunction with [Bu4N]I and KF and under 24 bar of a 3:1 mixture of CO-air. Under
these reaction conditions, the target product 2 was obtained in 68% isolated yield. The structure of
compound 2 was confirmed by NMR, IR, and mass spectral data. In particular, the Z stereochemistry
of the methoxycarbonylmethylene moiety was confirmed by a 2D NOESY experiment, while 2D
HSQC/HMBC experiments enabled the unequivocal assignment of all proton and carbon signals
(Figures 1 and 2).
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Figure 1. 1H-NMR spectrum of compound 2 (400 MHz, CDCl3) and related assignments. 

 

Figure 2. 13C-NMR spectrum of compound 2 (100 MHz, CDCl3) and related assignments. 

Figure 1. 1H-NMR spectrum of compound 2 (400 MHz, CDCl3) and related assignments.

3. Materials and Methods

Compound 1 was prepared according to procedures reported in the literature [14]. Other
chemicals were obtained from commercial sources and were used without further purification.
Gas chromatography analyses were performed with an Agilent Technology 7820A instrument
(Agilent Technologies, Santa Clara, CA, USA) using a 30 m SE-30 capillary column. Column
chromatography was carried out on silica gel (Merck, Darmstadt, Germany, 0.063–0.200 mm) and
Thin-Layer Chromatography (TLC) on Merck 60F254 plates. Electron ionization (EI) mass spectra
were obtained with an Agilent Technology instrument (Agilent Technologies, Santa Clara, CA, USA)
working at 70 eV ionization energy. NMR spectra were recorded in CDCl3, using the solvent
residual signals as internal reference (7.26 and 77.00 ppm, respectively, for 1H and 13C) on a Bruker
AVANCE 400 spectrometer (Bruker, Milan, Italy). IR spectrum was run on a Nicolet FT-IR 5700
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) paired with a Diamond Smart Orbit
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accessory. Melting point was determined with an Electrothermal apparatus. Elemental analysis was
performed with a Carlo Erba EA 1108-Elemental Analyzer (Carlo Erba, Milan, Italy).
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Figure 2. 13C-NMR spectrum of compound 2 (100 MHz, CDCl3) and related assignments. Figure 2. 13C-NMR spectrum of compound 2 (100 MHz, CDCl3) and related assignments.

The reaction in Scheme 1 was carried out in a 45 mL stainless steel autoclave with magnetic
stirring. The autoclave was charged in the presence of air with amide 1 (0.31 g, 1.00 mmol), 10% Pd/C
(0.011 g, 0.01 mmol), [Bu4N]I (0.369 g, 1.00 mmol), and KF·2H2O (0.141 g, 1.50 mmol) in MeCN/MeOH
(7/1 v/v, 5 mL). The autoclave was pressurized with CO (18 bar) and air (6 bar), reaching a total
pressure of 24 bar at room temperature, and then heated with stirring for 24 h at 65 ◦C. After cooling,
the autoclave was degassed, the solvent was evaporated under vacuum, and the residue was filtered
through a short SiO2 column using CH2Cl2 as eluent. The crude product was purified by column
chromatography on silica gel using hexane/ethyl acetate 9:1 as eluent. Yield: 0.202 g (68% based
on starting 1). Pale yellow solid, mp 143–146 ◦C. IR (ATR diamond, cm−1): ν = 2947 (w), 1714 (s),
1651 (s), 1608 (m), 1591 (m), 1507 (m), 1473 (m), 1276 (m), 1239 (m), 1147 (s), 1120 (m), 1089 (m), 761 (m);
1H-NMR (400 MHz, CDCl3) δ = 8.44–8.36 (m, 2H, H2′, H6′), 7.53 (dd, J = 7.9, 1.2 Hz, 1H, H5), 7.46 (ddd,
J = 8.0, 7.3, 1.3 Hz, 1H, H7), 7.35 (dd, J = 8.0, 0.9 Hz, 1H, H8), 7.23 (ddd, J = 8.0, 7.3, 1.3 Hz, 1H,
H6), 7.17–7.09 (m, 2H, H3′, H5′), 5.70 (s, 1H, H1′ ′), 3.76 (s, 3H, H3′ ′); 13C-NMR (100 MHz, CDCl3)
δ = 165.30 (d, J = 251.7 Hz, C4′), 165.12 (C2′ ′), 156.56 (C4), 153.26 (C2), 140.29 (C8a), 133.12 (C7), 130.71
(d, J = 9.1 Hz, C2′, C6′), 127.86 (C6), 127.18 (C8), 126.56 (d, J = 2.9 Hz, C1′), 122.92 (C5), 118.27 (C4a),
115.63 (d, J = 22.0 Hz, C3′, C5′), 89.60 (C1′ ′), 50.94 (C3′ ′); GC-MS: m/z = 297 (100) [M+], 266 (27), 252
(32), 239 (24), 224 (35), 210 (25), 183 (46); anal. calcd for C17H12FNO3: C, C, 68.68; H, 4.07; F, 6.39; N,
4.71; O, 16.15; found C, 68.84; H, 4.01; N, 4.76.

Supplementary Materials: 1D and 2D NMR spectra are available online at www.mdpi.com/1422-8599/2017/1/
M927.
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