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Abstract: Methyl 2,3,6-tri-O-benzoyl-4-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside was
synthesized in 47% yield by the silylation of a partially benzoylated galactose derivative, prepared
from methyl β-D-galactopyranoside. The product was characterized by 1H-NMR, 13C-NMR, IR and
mass spectrometry.
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1. Introduction

Galactose is a monosaccharide found in many glycans that cover a wide range of applications in
biomedicine and in the bioeconomy [1,2]. Galectin-3, for example, plays a crucial role in many
physiological processes, including cancer development and inflammation, by its recognition of
β-galactoside derivatives. Thus, the synthesis of novel β-galactoside compounds as a means of
inhibiting galectin-3 has been a growing area of research in recent years [3,4]. α-Galactosides are also
important, such as α-galactosylceramides, which have been shown to be ligands for natural killer
T-cells and to possess potent anti-tumour activity [5].

The conversion of β-glycosides to α-glycosides by anomerisation has been an interest in our
group [6–9]. In the case of bioactive compounds containing a galactose monomer, improvements in the
anomerisation reactions of galactose mono- and disaccharides could potentially lead to more efficient
syntheses of such compounds from a wider range of starting materials. For this reason we have been
exploring factors affecting reactivity to anomerisation, including the role of protecting groups, which
includes the impact of silyl derivatives. In this context, we have prepared the title compound and
provide the record of its synthesis and analytical data herein.

2. Results and Discussion

Methyl β-D-galactopyranoside (1) was initially protected at the 4- and 6-position (Scheme 1). This
was carried out using benzaldehyde dimethyl acetal [10], forming methyl 4,6-O-benzylidene-β-D-
galactopyranoside (2) as a white solid (67%). This product was then benzoylated at the 2- and
3-positions using benzoyl chloride in the presence of pyridine [11] to give methyl 4,6-O-benzylidene-
2,3-di-O-benzoyl-β-D-galactopyranoside (3) as a white solid (50%). The benzylidene group was then
removed using acetic acid in water (8:2 v/v) to give methyl 2,3-di-O-benzoyl-β-D-galactopyranoside
(4) as a white solid (58%) [12]. Next, regioselective benzoylation gave methyl 2,3,6-tri-O-benzoyl-β-
D-galactopyranoside (5) as an off-white solid (80%). In the final step, compound 5 was silylated at the
5-position using tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) [13] to afford the title
compound methyl 2,3,6-tri-O-benzoyl-4-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (6) as a
white foam (47%). 1H-, 13C- and gCOSY NMR spectra along with IR and mass spectrometry supported
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the structural assignment and gave a qualitative indication of its purity. The NMR spectra obtained for
(6) are provided as Supplementary Materials.

All reactions (with the exception of the deprotection step) were carried out under an inert nitrogen
atmosphere using anhydrous solvents to ensure thoroughly dry reaction conditions. All reactions were
monitored by TLC.
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3. Materials and Methods

3.1. General Information

All analytical data for previously reported compounds (2–5) was found to be in accordance with
data reported previously in the literature, and citations are provided. All reagents used were obtained
from commercial sources and used without further purification. TLC experiments were performed
using aluminium sheets pre-coated with silica gel 60 (HF254, E. Merck, Darmstadt, Germany). NMR
experiments were carried out in CDCl3 using a 500 MHz spectrometer (Varian Ltd., Palo Alto, CA,
USA), with the chemical shifts reported relative to internal Me4Si. NMR spectra were analysed using
MestReNova software (version 11, Mestrelab Research, Santiago de Compostela, Spain). The IR
spectrum was obtained using FTIR Spectrometer (Perkin Elmer Spectrum 100, Shelton, CT, USA).
A mass spectrum was obtained using a Waters LCT Premier XE Spectrometer. Chromatography was
performed with silica gel 60 (Sigma Aldrich, Wicklow, Ireland). Petroleum ether was the fraction with
boiling point 40–60 ◦C.

3.2. Methyl 4,6-O-Benzylidene-β-D-galactopyranoside (2)

Methyl β-D-galactopyranoside (1) (2.01 g, 10.4 mmol) was dissolved in dry acetonitrile (35 mL)
under a nitrogen atmosphere. Benzaldehyde dimethyl acetal (3.11 mL, 20.8 mmol) was added, followed
by camphorsulfonic acid (480 mg, 2.08 mmol). The reaction mixture was stirred under nitrogen for
30 min at 55 ◦C. The reaction was quenched with triethylamine (0.3 mL). The residue was concentrated
to dryness under reduced pressure and then recrystallised from ethyl acetate (EtOAc), to give 1.95 g
(67%) of compound 2 as a white solid. The 1H-NMR data of 2 was in accordance with data reported
previously in the literature [10].
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3.3. Methyl 4,6-O-Benzylidene-2,3-di-O-benzoyl-β-D-galactopyranoside (3)

Compound 2 (1.95 g, 6.88 mmol) was dissolved in dry pyridine (10 mL) under nitrogen.
4-Dimethylaminopyridine (10 g) was added next, and the solution was then cooled to 0 ◦C. Benzoyl
chloride (4.81 mL, 41.41 mmol) was added slowly, and the mixture was left at room temperature for
24 h. The mixture was then diluted with dichloromethane, washed with hydrochloric acid (to react
with excess pyridine), dried over Na2SO4 and then concentrated to dryness under reduced pressure.
Column chromatography, using a mixture of petroleum ether–EtOAc (2:1) as the mobile phase afforded
1.68 g (50%) of compound 3 as a white solid. 1H-NMR spectroscopic data for the product was in
agreement with data reported previously [14].

3.4. Methyl 2,3-di-O-Benzoyl-β-D-galactopyranoside (4)

Compound 3 (1.68 g, 3.42 mmol) was dissolved in AcOH–H2O (20 mL, 8:2 v/v), heated to 60 ◦C
and left to react for 24 h. The mixture was then diluted with EtOAc and washed through with NaHCO3

(2 × 15 mL) and brine (15 mL). Column chromatography on silica gel using petroleum ether–EtOAc
(1:2) as the mobile phase afforded 805 mg (58%) of compound 4 as a white solid. 1H-NMR spectroscopic
data for the product was in agreement with data reported previously [15].

3.5. Methyl 2,3,6-tri-O-Benzoyl-β-D-galactopyranoside (5)

Compound 4 (805 mg, 2.00 mmol) was selectively benzoylated at the 6-position using benzoyl
chloride (0.348 mL, 3.00 mmol) and the same method outlined previously. Column chromatography
on silica gel using petroleum ether–EtOAc (3:1) as the mobile phase gave 807 mg (80%) of compound 5
as an off-white solid. 1H-NMR spectroscopic data for the product was in agreement with data reported
previously [16].

3.6. Methyl 2,3,6-tri-O-Benzoyl-4-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (6)

Methyl 2,3,6-tri-O-benzoyl-β-D-galactopyranoside (5) (807 mg, 1.59 mmol) was dissolved in dry
pyridine (10 mL) under nitrogen. TBSOTf (0.730 mL, 3.18 mmol) and 2,6-lutidine (0.370 mL, 3.18 mmol)
were added via syringe at 0 ◦C. The reaction mixture was then stirred under nitrogen for 24 h at 60 ◦C.
The solution was washed with excess 1 M HCl (2 × 25 mL), dried over Na2SO4 and then concentrated
to dryness under reduced pressure. Column chromatography using petroleum ether–EtOAc (4:1) as
the mobile phase afforded the title compound 6 (468 mg, 47%) as a white foam; 1H-NMR (500 MHz,
CDCl3) δ 8.08–8.04 (m, 2H, aromatic H), 7.98–7.92 (m, 4H, aromatic H), 7.62–7.57 (m, 1H, aromatic H),
7.52–7.44 (m, 4H, aromatic H), 7.35 (m, 4H, aromatic H), 5.82 (dd, J = 10.5, 7.9 Hz, 1H, H-2), 5.24 (dd,
J = 10.5, 2.8 Hz, 1H, H-3), 4.67 (d, J = 7.9 Hz, 1H, H-1), 4.63 (dd, J = 11.1, 6.5 Hz, 1H, H-6a), 4.46 (m, 1H,
H-4), 4.42 (dd, J = 11.1, 6.7 Hz, 1H, H-6b), 4.05 (m, 1H, H-5), 3.55 (s, 3H), 0.96 (s, 9H), 0.01 (s, J = 2.9 Hz,
3H), −0.10 (s, 3H); 13C-NMR (126 MHz, CDCl3) δ 166.60 (C=O), 166.35 (C=O), 165.68 (C=O), 133.55
(C-Ar), 133.42 (C-Ar), 133.20 (C-Ar), 130.03 (C-Ar), 129.85 (C-Ar), 129.83 (C-Ar), 129.80 (C-Ar), 129.36
(C-Ar), 128.67 (C-Ar), 128.57 (C-Ar), 128.45 (C-Ar), 102.29 (CH, C-1), 75.25 (CH, C-3), 72.90 (CH, C-5),
69.26 (CH, C-2), 68.55 (CH, C-4), 63.14 (CH2, C-6), 56.78 (CH3-O), 26.01 (TBS), 18.45 (TBS), −4.39 (TBS),
−4.46 (TBS); FT-IR: 2931, 2857, 1720, 1602, 1451, 1264, 1069, 832, 775, 706 cm−1; HRMS (TOF MS ES+)
m/z: [M + Na]+ Calc. for C34H40O9SiNa+: 643.2334. Found: 643.2397.

Supplementary Materials: 1H- and 13C-NMR spectra of compound 6 are available online.
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