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Abstract: Furyl and thienyl moieties were introduced into a purine structure to elevate its fluorescence
properties, while a trityl group was used to increase the amorphous properties of the purine
compounds. The title compounds were prepared by a sequence involving a Mitsunobu, a SNAr and a
Suzuki–Miyaura reaction and their photophysical properties were studied. Quantum yields in the
solution reached up to 88% but only up to 5% in the thin layer.
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1. Introduction

The synthesis and development of novel push–pull purine derivatives with potential as new
materials and/or heavy metal sensors are currently in high demand [1]. Purines containing five-
membered heterocycles in their structure show fluorescence with good quantum yields in the
solution [2,3]. In 2017, functionalized purine chromophores were developed using a Stille cross-
coupling between 6-bromopurine and distannyl π-linkers of benzodithiophene, thiophene,
or dithienylbenzothiadiazole [4]. These chromophores showed high thermal stability, long excited
state lifetimes and high quantum yields, which will permit the use of such purine derivatives in
material chemistry in the future.

We have developed novel purine derivatives, containing a group at N(9) to enhance their
amorphous properties [5], for study a fluorescent materials in thin films. Our approach for building
push–pull structures is based on the introduction of electron donating piperidinyl groups at C(2) and
C(6) of the purine cycle and by extending the conjugation through introduction of a furan or thiophene
at C(8).

Various approaches have been used for the introduction of thienyl and furyl substituents at the
purine C(8) position. Ozola and co-workers used palladium-catalyzed Stille cross-coupling reactions
in the presence of CuO to install the 2- and 3-furanyl rings [6]. The Sedlaček group also successfully
introduced a 2-thienyl group to the 9-substituted 2,6-diaminopurine using a Stille cross-coupling
and a 3-thienyl group using a Suzuki–Miyaura reaction [7]. 2-Iodothiophene was used for direct
cross-coupling at the purine C(8) position in the presence of CuI and Pd(OAc)2 giving the 8-substitued
product in 15% yield [8].

2. Results and Discussion

The Mitsunobu reaction between 2,6-dichloropurine 1 and 2-hydroxyethyl 3,3,3-triphenylpropanoate
2 led to the C(9)-substituted 2,6-dichloropurine 3 (Scheme 1) which was used as a starting material in
subsequent steps.
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Scheme 1. The Mitsunobu reaction. 

In the SNAr reaction of 2,6-dichloropurine 3 with piperidine, the most reactive chlorine atom at 

C(6) was replaced followed by the less active C(2) chlorine. A complete conversion to 

2-chloro-6-piperidinylpurine derivative was observed by HPLC over a period of 15 min, followed by 

the slower substitution at C(2) of the purine giving product 4 in 56% yield. In isopropanol, this 

reaction runs without any significant formation of side-products. 

The 8-bromo derivative 5 was obtained by bromination of the 8-position of the purine ring in 

71% yield. Subsequently, the Suzuki–Miyaura reaction with the furyl- and thienylboronic acids 

resulted in the 2,6,8-tri-substituted purine derivatives 6a–c in 50–63% yields (Scheme 2). 

 

Scheme 2. Synthesis of 8-furyl- and 8-thienylpurine derivatives. 

Fluorescence quantum yields were measured for compounds 6a–c in solution (DCM) and as 

thin films. The quantum yields were much lower in the films than in solution. Compound 6c 

exhibited the highest quantum yield (0.88, solution) among the three synthesized compounds. In the 

case of compounds 6b and 6c, there is a significant drop in fluorescence quantum yields in the thin 

film in comparison to the solution, from 0.60 and 0.88 to 0.04 and 0.05, respectively (Table 1). 

Typically, amorphous thin films are characterized by a significant degree of disorder which might 

result in the concentration induced or aggregation induced fluorescence self-quenching [9–16]. 

Compounds 6a–c exhibited an absorption maximum around 320–350 nm and an emission maximum 

around 380–450 nm when excited at 320–350 nm (Figure 1). 

Scheme 1. The Mitsunobu reaction.

In the SNAr reaction of 2,6-dichloropurine 3 with piperidine, the most reactive chlorine atom
at C(6) was replaced followed by the less active C(2) chlorine. A complete conversion to 2-chloro-6-
piperidinylpurine derivative was observed by HPLC over a period of 15 min, followed by the slower
substitution at C(2) of the purine giving product 4 in 56% yield. In isopropanol, this reaction runs
without any significant formation of side-products.

The 8-bromo derivative 5 was obtained by bromination of the 8-position of the purine ring in 71%
yield. Subsequently, the Suzuki–Miyaura reaction with the furyl- and thienylboronic acids resulted in
the 2,6,8-tri-substituted purine derivatives 6a–c in 50–63% yields (Scheme 2).
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Scheme 2. Synthesis of 8-furyl- and 8-thienylpurine derivatives.

Fluorescence quantum yields were measured for compounds 6a–c in solution (DCM) and as thin
films. The quantum yields were much lower in the films than in solution. Compound 6c exhibited
the highest quantum yield (0.88, solution) among the three synthesized compounds. In the case of
compounds 6b and 6c, there is a significant drop in fluorescence quantum yields in the thin film
in comparison to the solution, from 0.60 and 0.88 to 0.04 and 0.05, respectively (Table 1). Typically,
amorphous thin films are characterized by a significant degree of disorder which might result in the
concentration induced or aggregation induced fluorescence self-quenching [9–16]. Compounds 6a–c
exhibited an absorption maximum around 320–350 nm and an emission maximum around 380–450 nm
when excited at 320–350 nm (Figure 1).
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Table 1. Photophysical properties of target compounds 6a–c.

Compound Solvent/Thin Layer λabs, nm log ε λem, nm QY

6a
DCM 323 4.4 380 0.18

Thin layer 326 - 382 <0.01

6b
DCM 333 4.3 408 0.60

Thin layer 336 - 415 0.04

6c
DCM 353 4.3 449 0.88

Thin layer 356 - 445 0.05
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Figure 1. (a) Absorption and (b) emission spectra for 0.5 × 10−5 M 6a–c in DCM. 

3. Materials and Methods 

1H- and 13C-NMR spectra were recorded at 300 and 75.5 MHz, respectively. The proton signals 

for residual non-deuterated solvents (δ 7.26 for CDCl3 and δ 2.50 for DMSO-d6) and carbon signals (δ 

77.1 for CDCl3 and δ 39.5 for DMSO-d6) were used as internal references for 1H- and 13C-NMR 

spectra, respectively (see Supplementary Materials). Coupling constants are reported in Hz. Infrared 

spectra were recorded using a Perkin Elmer Spectrum BX spectrometer (PerkinElmer, Inc., Hebron, 

KY, USA). Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 

aluminum plates precoated with a 0.25 mm layer of silica gel. For HPLC analyses Agilent 

Technologies 1200 Series system (Agilent Technologies, Foster City, CA, USA) was used (XBridge 

C18 column, 4.6 × 150 mm, particle size 3.5 µm) with a flow rate of 1 mL/min; eluent system: 0.01% 

TFA water solution/MeCN (95:5, v/v). The content of MeCN was changed as follows: 20–95–95–20% 

(0–5–10–12 min). The wavelength of detection was 260 nm. The UV–vis absorption spectra of 

compounds were acquired using a Perkin-Elmer 35 UV–vis spectrometer. Emission spectra were 

measured on a QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, 

Inc., Ford, West Sussex, UK). Absolute photoluminescence quantum yields were determined using a 

QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, Inc.) equipped 

with a 6-inch integrating sphere by LabSphere, using a florescence standard of quinine sulfate in 0.1 

M H2SO4 as the reference. 
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Figure 1. (a) Absorption and (b) emission spectra for 0.5 × 10−5 M 6a–c in DCM.

3. Materials and Methods

1H- and 13C-NMR spectra were recorded at 300 and 75.5 MHz, respectively. The proton signals for
residual non-deuterated solvents (δ 7.26 for CDCl3 and δ 2.50 for DMSO-d6) and carbon signals (δ 77.1
for CDCl3 and δ 39.5 for DMSO-d6) were used as internal references for 1H- and 13C-NMR spectra,
respectively (see Supplementary Materials). Coupling constants are reported in Hz. Infrared spectra
were recorded using a Perkin Elmer Spectrum BX spectrometer (PerkinElmer, Inc., Hebron, KY, USA).
Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 aluminum plates
precoated with a 0.25 mm layer of silica gel. For HPLC analyses Agilent Technologies 1200 Series system
(Agilent Technologies, Foster City, CA, USA) was used (XBridge C18 column, 4.6 × 150 mm, particle
size 3.5 µm) with a flow rate of 1 mL/min; eluent system: 0.01% TFA water solution/MeCN (95:5,
v/v). The content of MeCN was changed as follows: 20–95–95–20% (0–5–10–12 min). The wavelength
of detection was 260 nm. The UV–vis absorption spectra of compounds were acquired using a
Perkin-Elmer 35 UV–vis spectrometer. Emission spectra were measured on a QuantaMaster 40
steady state spectrofluorometer (Photon Technology International, Inc., Ford, West Sussex, UK).
Absolute photoluminescence quantum yields were determined using a QuantaMaster 40 steady state
spectrofluorometer (Photon Technology International, Inc.) equipped with a 6-inch integrating sphere
by LabSphere, using a florescence standard of quinine sulfate in 0.1 M H2SO4 as the reference.
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DIAD (0.41 mL, ρ = 1.03 g/cm3, 6.31 mmol) were added. The resulting solution was stirred at 20 ◦C for
12 h. The reaction mixture was filtered, washed with cold MeOH (2 × 5 mL) and dried under reduced
pressure. Yield: 2.39 g, 87%. Colorless powder, Rf = 0.28 (DCM/MeCN = 20:1). HPLC: tR = 7.31 min,
purity 93%. IR (KBr) ν (cm−1): 2928, 1746, 1593, 1551, 1343, 1232, 1142. 1H-NMR (300 MHz, CDCl3)
δ (ppm): 7.68 (s, 1H, H-C(8)), 7.30–7.12 (m, 15H, 15 × H-C(Ph)), 4.22–4.10 (m, 4H, 2 × (-CH2-)), 3.71
(s, 2H, (-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.4, 153.2, 153.1, 152.0, 146.2, 146.1, 130.8,
129.1, 128.1, 126.6, 61.7, 55.9, 46.0, 43.3. HRMS (ESI): calcd for [C28H22Cl2N4O2 + H]+ 517.1193, found
517.1197.
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powder, Rf = 0.56 (DCM/MeCN = 20:1). HPLC: tR = 7.93 min, purity 90%. IR (KBr) ν (cm−1): 2931,
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2-[8-Bromo-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (5); To a solution of 

compound 4 (1.50 g, 3.25 mmol) in DCM (10 mL) bromine was added (2.60 mL, 32.50 mmol). The 

resulting reaction mixture was stirred at 23 °C for 1 h, evaporated under reduced pressure and 

purified by silica gel column chromatography (DCM/MeCN, gradient 0–2%). Yield: 200 mg, 71%. 

Colorless powder, Rf = 0.56 (DCM/MeCN = 20:1). HPLC: tR = 11.79 min, purity 97%. IR (KBr) ν (cm−1): 

2931, 2851, 1743, 1596, 1568, 1482, 1444, 1311, 1245, 1213, 1142, 1023. 1H-NMR (300 MHz, CDCl3) δ 

(ppm): 7.33‒7.17 (m, 15H, 15 × H-C(Ph)), 4.22‒3.98 (m, 8H, 4 × (-CH2-)), 3.77‒3.63 (m, 6H, 3 × (-CH2-)), 

1.77‒1.51 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.7, 158.2, 152.8, 146.5, 129.3, 

127.9, 126.4, 120.4, 114.3, 67.2, 61.6, 55.9, 46.3 (2C) (determined by the H-C HSQC spectrum), 45.7, 

42.7, 29.8, 26.2, 25.9, 25.1, 25.0. HRMS (ESI): calcd for [C38H41N6O2Br + H]+ 695.2534, found 695.2527. 

General Procedure for the Suzuki–Miyaura Reaction 

2-[8-Bromo-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (5); To a solution of
compound 4 (1.50 g, 3.25 mmol) in DCM (10 mL) bromine was added (2.60 mL, 32.50 mmol).
The resulting reaction mixture was stirred at 23 ◦C for 1 h, evaporated under reduced pressure
and purified by silica gel column chromatography (DCM/MeCN, gradient 0–2%). Yield: 200 mg,
71%. Colorless powder, Rf = 0.56 (DCM/MeCN = 20:1). HPLC: tR = 11.79 min, purity 97%. IR (KBr)
ν (cm−1): 2931, 2851, 1743, 1596, 1568, 1482, 1444, 1311, 1245, 1213, 1142, 1023. 1H-NMR (300 MHz,
CDCl3) δ (ppm): 7.33–7.17 (m, 15H, 15 × H-C(Ph)), 4.22–3.98 (m, 8H, 4 × (-CH2-)), 3.77–3.63 (m, 6H,
3 × (-CH2-)), 1.77–1.51 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.7, 158.2,
152.8, 146.5, 129.3, 127.9, 126.4, 120.4, 114.3, 67.2, 61.6, 55.9, 46.3 (2C) (determined by the H-C HSQC
spectrum), 45.7, 42.7, 29.8, 26.2, 25.9, 25.1, 25.0. HRMS (ESI): calcd for [C38H41N6O2Br + H]+ 695.2534,
found 695.2527.
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2-[8-(Furan-3-yl)-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6a); To a solution 

of compound 5 (500 mg, 0.72 mmol) in anhydrous toluene (10 mL) 3-furanylboronic acid (161 mg, 

1.40 mmol), K2CO3 (200 mg, 1.40 mmol), and Pd(PPh3)4 (41 mg, 0.08 mmol) were added. The 

resulting reaction mixture was stirred for 4 h at 110 °C, then evaporated to dryness. The residue was 

dissolved in DCM (20 mL), washed with saturated aqueous NaHCO3 (5 mL) and water (5 mL). The 

organic layer was dried over anhyd. Na2SO4, evaporated under reduced pressure and purified by 

silica gel column chromatography (DCM/MeCN, gradient 0–2%). Yield: 300 mg, 52%. Yellow 

powder, Rf = 0.55 (DCM/MeCN = 9:1). HPLC: tR = 8.83 min, purity 91%. IR (KBr) ν (cm−1): 2929, 2850, 

1743, 1596, 1563, 1480, 1443, 1314, 1208, 1142, 1022. 1H-NMR (300 MHz, CDCl3) δ (ppm): 7.79 (s, 1H, 

H-C(furyl)), 7.49 (s, 1H, H-C(furyl)), 7.34‒7.11 (m, 15H, H-C(Ph)), 6.84 (s, 1H, H-C(furyl)), 4.29‒4.02 

(m, 8H, 4 × (-CH2-)), 3.82‒3.65 (m, 4H, 2 × (-CH2-)), 3.63 (s, 2H, (-CH2-)), 1.80‒1.52 (m, 12H, 6 × 

(-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.7, 158.7, 154.8, 153.6, 146.3, 143.3, 141.1, 139.1, 

129.2, 127.9, 126.3, 117.2, 113.7, 110.7, 61.7, 55.9, 46.2, 46.1, 45.6, 41.3, 26.2, 25.9, 25.2, 25.1. HRMS (ESI): 

calcd for [C42H44N6O3 + H]+ 681.3548, found 681.3545. 

 
2-[2,6-Di(piperidin-1-yl)-8-(3-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6b); Product 6b was 

obtained by the general synthetic procedure for the Suzuki–Miyaura reaction: compound 5 (500 mg, 

0.96 mmol), 3-thienylboronic acid (113 mg, 1.00 mmol), K2CO3 (200 mg, 1.40 mmol) and Pd(PPh3)4 (55 

mg, 0.05 mmol). The reaction mixture was stirred for 4 h at 110 °C and the crude product was 

purified by silica gel column chromatography (DCM/MeCN, gradient 0–3%). Yield: 320 mg, 63%. 

Colorless powder, Rf = 0.62 (DCM/MeCN = 20:1). HPLC: tR = 9.14 min, purity 95%. IR (KBr) ν (cm−1): 

2930, 2850, 1743, 1595, 1580, 1548, 1480, 1443, 1313, 1209, 1142, 1087. 1H-NMR (300 MHz, CDCl3) δ 

(ppm): 7.59 (d, 1H, 4J = 2.8 Hz, H-C(thienyl)), 7.53 (d, 1H, 3J = 4.6 Hz, H-C(thienyl)), 7.39 (dd, 1H, 4J = 

2.8 Hz, 3J = 4.6 Hz H-C(thienyl)), 7.30‒7.13 (m, 15H, 15 × H-C(Ph)), 4.30‒4.09 (m, 8H, 4 × (-CH2-)), 

3.83‒3.71 (m, 4H, 2 × (-CH2-)), 3.59 (s, 2H, (-CH2-)), 1.79‒1.56 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 

MHz, CDCl3) δ (ppm): 170.7, 158.7, 154.8, 153.8, 146.4, 141.8, 131.7, 129.2, 128.5, 127.9, 126.4, 126.0, 

124.5, 113.6, 61.9, 55.9, 46.1, 46.1, 45.7, 41.6, 26.3, 25.9, 25.2, 25.1. HRMS (ESI): calcd for [C42H44N6O2S + 

H]+ 697.3319, found 697.3332. 

2-[8-(Furan-3-yl)-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6a); To a solution
of compound 5 (500 mg, 0.72 mmol) in anhydrous toluene (10 mL) 3-furanylboronic acid (161 mg,
1.40 mmol), K2CO3 (200 mg, 1.40 mmol), and Pd(PPh3)4 (41 mg, 0.08 mmol) were added. The resulting
reaction mixture was stirred for 4 h at 110 ◦C, then evaporated to dryness. The residue was dissolved
in DCM (20 mL), washed with saturated aqueous NaHCO3 (5 mL) and water (5 mL). The organic
layer was dried over anhyd. Na2SO4, evaporated under reduced pressure and purified by silica gel
column chromatography (DCM/MeCN, gradient 0–2%). Yield: 300 mg, 52%. Yellow powder, Rf = 0.55
(DCM/MeCN = 9:1). HPLC: tR = 8.83 min, purity 91%. IR (KBr) ν (cm−1): 2929, 2850, 1743, 1596, 1563,
1480, 1443, 1314, 1208, 1142, 1022. 1H-NMR (300 MHz, CDCl3) δ (ppm): 7.79 (s, 1H, H-C(furyl)), 7.49
(s, 1H, H-C(furyl)), 7.34–7.11 (m, 15H, H-C(Ph)), 6.84 (s, 1H, H-C(furyl)), 4.29–4.02 (m, 8H, 4 × (-CH2-)),
3.82–3.65 (m, 4H, 2 × (-CH2-)), 3.63 (s, 2H, (-CH2-)), 1.80–1.52 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5
MHz, CDCl3) δ (ppm): 170.7, 158.7, 154.8, 153.6, 146.3, 143.3, 141.1, 139.1, 129.2, 127.9, 126.3, 117.2,
113.7, 110.7, 61.7, 55.9, 46.2, 46.1, 45.6, 41.3, 26.2, 25.9, 25.2, 25.1. HRMS (ESI): calcd for [C42H44N6O3 +
H]+ 681.3548, found 681.3545.
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2-[8-(Furan-3-yl)-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6a); To a solution 

of compound 5 (500 mg, 0.72 mmol) in anhydrous toluene (10 mL) 3-furanylboronic acid (161 mg, 

1.40 mmol), K2CO3 (200 mg, 1.40 mmol), and Pd(PPh3)4 (41 mg, 0.08 mmol) were added. The 

resulting reaction mixture was stirred for 4 h at 110 °C, then evaporated to dryness. The residue was 

dissolved in DCM (20 mL), washed with saturated aqueous NaHCO3 (5 mL) and water (5 mL). The 

organic layer was dried over anhyd. Na2SO4, evaporated under reduced pressure and purified by 

silica gel column chromatography (DCM/MeCN, gradient 0–2%). Yield: 300 mg, 52%. Yellow 

powder, Rf = 0.55 (DCM/MeCN = 9:1). HPLC: tR = 8.83 min, purity 91%. IR (KBr) ν (cm−1): 2929, 2850, 
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calcd for [C42H44N6O3 + H]+ 681.3548, found 681.3545. 

 
2-[2,6-Di(piperidin-1-yl)-8-(3-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6b); Product 6b was 

obtained by the general synthetic procedure for the Suzuki–Miyaura reaction: compound 5 (500 mg, 

0.96 mmol), 3-thienylboronic acid (113 mg, 1.00 mmol), K2CO3 (200 mg, 1.40 mmol) and Pd(PPh3)4 (55 

mg, 0.05 mmol). The reaction mixture was stirred for 4 h at 110 °C and the crude product was 

purified by silica gel column chromatography (DCM/MeCN, gradient 0–3%). Yield: 320 mg, 63%. 

Colorless powder, Rf = 0.62 (DCM/MeCN = 20:1). HPLC: tR = 9.14 min, purity 95%. IR (KBr) ν (cm−1): 

2930, 2850, 1743, 1595, 1580, 1548, 1480, 1443, 1313, 1209, 1142, 1087. 1H-NMR (300 MHz, CDCl3) δ 

(ppm): 7.59 (d, 1H, 4J = 2.8 Hz, H-C(thienyl)), 7.53 (d, 1H, 3J = 4.6 Hz, H-C(thienyl)), 7.39 (dd, 1H, 4J = 

2.8 Hz, 3J = 4.6 Hz H-C(thienyl)), 7.30‒7.13 (m, 15H, 15 × H-C(Ph)), 4.30‒4.09 (m, 8H, 4 × (-CH2-)), 

3.83‒3.71 (m, 4H, 2 × (-CH2-)), 3.59 (s, 2H, (-CH2-)), 1.79‒1.56 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 

MHz, CDCl3) δ (ppm): 170.7, 158.7, 154.8, 153.8, 146.4, 141.8, 131.7, 129.2, 128.5, 127.9, 126.4, 126.0, 

124.5, 113.6, 61.9, 55.9, 46.1, 46.1, 45.7, 41.6, 26.3, 25.9, 25.2, 25.1. HRMS (ESI): calcd for [C42H44N6O2S + 

H]+ 697.3319, found 697.3332. 

2-[2,6-Di(piperidin-1-yl)-8-(3-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6b); Product 6b
was obtained by the general synthetic procedure for the Suzuki–Miyaura reaction: compound 5
(500 mg, 0.96 mmol), 3-thienylboronic acid (113 mg, 1.00 mmol), K2CO3 (200 mg, 1.40 mmol) and
Pd(PPh3)4 (55 mg, 0.05 mmol). The reaction mixture was stirred for 4 h at 110 ◦C and the crude product
was purified by silica gel column chromatography (DCM/MeCN, gradient 0–3%). Yield: 320 mg, 63%.
Colorless powder, Rf = 0.62 (DCM/MeCN = 20:1). HPLC: tR = 9.14 min, purity 95%. IR (KBr) ν (cm−1):
2930, 2850, 1743, 1595, 1580, 1548, 1480, 1443, 1313, 1209, 1142, 1087. 1H-NMR (300 MHz, CDCl3) δ

(ppm): 7.59 (d, 1H, 4J = 2.8 Hz, H-C(thienyl)), 7.53 (d, 1H, 3J = 4.6 Hz, H-C(thienyl)), 7.39 (dd, 1H, 4J =
2.8 Hz, 3J = 4.6 Hz H-C(thienyl)), 7.30–7.13 (m, 15H, 15 × H-C(Ph)), 4.30–4.09 (m, 8H, 4 × (-CH2-)),
3.83–3.71 (m, 4H, 2 × (-CH2-)), 3.59 (s, 2H, (-CH2-)), 1.79–1.56 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5
MHz, CDCl3) δ (ppm): 170.7, 158.7, 154.8, 153.8, 146.4, 141.8, 131.7, 129.2, 128.5, 127.9, 126.4, 126.0,
124.5, 113.6, 61.9, 55.9, 46.1, 46.1, 45.7, 41.6, 26.3, 25.9, 25.2, 25.1. HRMS (ESI): calcd for [C42H44N6O2S +
H]+ 697.3319, found 697.3332.
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2-[2,6-Di(piperidin-1-yl)-8-(2-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6c); Product 6c was 

obtained by the general synthetic procedure for the Suzuki–Miyaura reaction: compound 5 (600 mg, 

0.86 mmol), 2-thienylboronic acid (220 mg, 1.70 mmol), K2CO3 (238 mg, 1.70 mmol) and Pd(PPh3)4 (50 

mg, 0.08 mmol). The reaction mixture was stirred for 4 h at 110 °C and the crude product was 

purified by silica gel column chromatography (DCM/MeCN, gradient 0–1%). Yield: 300 mg, 50%. 

Colorless powder, Rf = 0.60 (DCM/MeCN = 9:1). HPLC: tR = 9.63 min, purity 94%. IR (KBr) ν (cm−1): 

2928, 2842, 1742, 1594, 1577, 1545, 1481, 1442, 1314, 1243, 1206, 1141, 1023. 1H-NMR (300 MHz, CDCl3) 

δ (ppm): 7.39‒7.32 (m, 2H, H-C(thienyl)), 7.30‒7.13 (m, 15H, 15 × H-C(Ph),), 7.41‒7.35 (m, 1H, 

H-C(thienyl)), 4.35‒4.10 (m, 8H, 4 × (-CH2-)), 3.82‒4.69 (m, 4H, 2 × (-CH2-)), 3.59 (s, 2H, (-CH2-)), 

1.79‒1.53 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.6, 158.7, 155.0, 153.6, 146.4, 

140.0, 133.3, 129.2, 127.8, 127.7, 127.1, 126.4, 126.3, 113.8, 61.8, 55.8, 46.2, 46.1, 45.6, 41.6, 26.2, 25.9, 

25.1, 25.1. HRMS (ESI): calcd for [C42H44N6O2S + H]+ 697.3319, found 697.3319. 

4. Conclusions 

A method for the synthesis of purine derivatives modified with furan and thiophene 

heterocycles at C(8) has been developed. The key step was a Suzuki–Miyaura reaction and the 

products were obtained in 50–63% yields. 

Target compounds exhibited strong fluorescence in solution with emission maxima at 380–480 

nm. The fluorescence quantum yields in DCM solution reached up to 88% and in the thin layer films 

up to 5%. 

Supplementary Materials: The following are available online. 1H- and 13C-NMR spectra of 

2-(2,6-dichloro-9H-purin-9-yl)ethyl 3,3,3-triphenylpropanoate (3), 2-[2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 

3,3,3-triphenylpropanoate (4), 2-[8-bromo-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate 

(5), 2-[8-(furan-3-yl)-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6a), 

2-[2,6-di(piperidin-1-yl)-8-(3-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6b) and 

2-[2,6-di(piperidin-1-yl)-8-(2-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6c); IR spectra of 

compounds 3, 4, 5, 6a, 6b, and 6c; results tables of absorption and emission spectra of compounds 6a, 6b, and 6c 

in DCM solution and in thin film. 
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2-[2,6-Di(piperidin-1-yl)-8-(2-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6c); Product 6c
was obtained by the general synthetic procedure for the Suzuki–Miyaura reaction: compound 5
(600 mg, 0.86 mmol), 2-thienylboronic acid (220 mg, 1.70 mmol), K2CO3 (238 mg, 1.70 mmol) and
Pd(PPh3)4 (50 mg, 0.08 mmol). The reaction mixture was stirred for 4 h at 110 ◦C and the crude product
was purified by silica gel column chromatography (DCM/MeCN, gradient 0–1%). Yield: 300 mg,
50%. Colorless powder, Rf = 0.60 (DCM/MeCN = 9:1). HPLC: tR = 9.63 min, purity 94%. IR (KBr) ν

(cm−1): 2928, 2842, 1742, 1594, 1577, 1545, 1481, 1442, 1314, 1243, 1206, 1141, 1023. 1H-NMR (300 MHz,
CDCl3) δ (ppm): 7.39–7.32 (m, 2H, H-C(thienyl)), 7.30–7.13 (m, 15H, 15 × H-C(Ph),), 7.41–7.35 (m, 1H,
H-C(thienyl)), 4.35–4.10 (m, 8H, 4 × (-CH2-)), 3.82–4.69 (m, 4H, 2 × (-CH2-)), 3.59 (s, 2H, (-CH2-)),
1.79–1.53 (m, 12H, 6 × (-CH2-)). 13C-NMR (75.5 MHz, CDCl3) δ (ppm): 170.6, 158.7, 155.0, 153.6, 146.4,
140.0, 133.3, 129.2, 127.8, 127.7, 127.1, 126.4, 126.3, 113.8, 61.8, 55.8, 46.2, 46.1, 45.6, 41.6, 26.2, 25.9, 25.1,
25.1. HRMS (ESI): calcd for [C42H44N6O2S + H]+ 697.3319, found 697.3319.

4. Conclusions

A method for the synthesis of purine derivatives modified with furan and thiophene heterocycles
at C(8) has been developed. The key step was a Suzuki–Miyaura reaction and the products were
obtained in 50–63% yields.

Target compounds exhibited strong fluorescence in solution with emission maxima at 380–480 nm.
The fluorescence quantum yields in DCM solution reached up to 88% and in the thin layer films up
to 5%.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-8599/2018/4/
M1024/s1. 1H- and 13C-NMR spectra of 2-(2,6-dichloro-9H-purin-9-yl)ethyl 3,3,3-triphenylpropanoate (3),
2-[2,6- di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (4), 2-[8-bromo-2,6-di(piperidin-1-yl)-9H-
purin-9-yl]ethyl 3,3,3-triphenylpropanoate (5), 2-[8-(furan-3-yl)-2,6-di(piperidin-1-yl)-9H-purin-9-yl]ethyl 3,3,3-
triphenylpropanoate (6a), 2-[2,6-di(piperidin-1-yl)-8-(3-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate
(6b) and 2-[2,6-di(piperidin-1-yl)-8-(2-thienyl)-9H-purin-9-yl]ethyl 3,3,3-triphenylpropanoate (6c); IR spectra of
compounds 3, 4, 5, 6a, 6b, and 6c; results tables of absorption and emission spectra of compounds 6a, 6b, and 6c
in DCM solution and in thin film.
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