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Abstract: N-hydroxyimides are widely known as organocatalysts for aerobic oxidation and oxida-
tive coupling reactions, in which corresponding imide-N-oxyl radicals play the role of catalytically
active hydrogen atom abstracting species. The drawbacks of many N-hydroxyimides are poor
solubility in low polarity solvents and limited activity in the cleavage of unactivated C–H bonds.
To overcome these shortcomings, we have synthesized a new lipophilic N-hydroxyimide, 5,8-di-
tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione, with high solubility in low-polarity
solvents such as DCM. According to the EPR study, the stability of the corresponding imide-N-
oxyl radical is comparable to that of the non-tert-butylated analogue, naphthalimide-N-oxyl radical.
DFT calculations showed that the NO–H bond dissociation enthalpy (BDE) in the synthesized
tert-butylated-N-hydroxynaphthalimide is one of the highest in N-hydroxyimide series, which corre-
sponds to high hydrogen atom abstracting reactivity and may be useful in catalysis of strong C–H
bond oxidative cleavage. The synthesized compound can be considered as catalyst for liquid-phase
free-radical oxidation and oxidative coupling reactions in non-polar media where solubility was
previously the limiting factor.

Keywords: N-hydroxyimides; N-hydroxynaphthalimide; imide-N-oxyl radicals; free radical
oxidation; organocatalysis

1. Introduction

N-hydroxyimides are widely applied as redox organocatalysts [1–7] and reagents for
free-radical C–O coupling [8–15]. The well-known example is N-hydroxyphthalimide (NHPI):
it is synthetically available on an industrial scale, and it is one of the best organocatalysts
for the liquid phase aerobic free-radical oxidation of hydrocarbons [1–7]. N-hydroxyimides
are also widely used as organocatalysts or reagents in oxidative coupling reactions with
the formation of C–C [16] and C–heteroatom bonds [8–17], and as reagents for the oxida-
tive difunctionalization of alkenes [18–20]. One of the significant drawbacks of NHPI is
its low solubility in low-polarity solvents (DCE, PhH, alkanes), which limits its use in
some cases [21–23]. On the other hand, there is a long-standing goal to develop novel
N-hydroxycompounds as precursors of N-oxyl radicals with different levels of hydrogen
atom abstracting ability [24] in order to achieve optimal catalytic efficiency and selectivity
for various types of substrates for CH-functionalization [1,25]. As a rule, the stability
of a free radical to self-decay drops with the increase of its hydrogen atom abstracting
properties. Thus, it is an especially challenging task to find N-hydroxycompound with high
hydrogen atom abstracting activity (corresponding to high NO–H bond dissociation en-
thalpy, BDE), and relatively high stability to self-decay making effective catalytic turnover
possible. Several catalytically effective lipophilic NHPI derivatives were reported [21–23].
However, BDE values for these derivatives were very close to that of parent NHPI [23].
N-hydroxynaphthalimide (NHNI) is believed to have a significantly higher (ca. 6 kcal/mol)
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NO–H BDE compared to NHPI according to the DFT calculations [26]. This implies the
higher reactivity of the naphthalimide-N-oxyl radical towards H-atom abstraction from
the inert C–H bonds. However, NHNI has even lower solubility in non-polar solvents
compared to NHPI, which significantly limits its use. Therefore, the synthesis of a lipophilic
analogue based on NHNI is of great interest for the catalytic oxidation of strong C–H bonds
in such substrates as alkanes. NHNI presents the only known N-oxyl radical precursor
with naphthalimide moiety and its catalytic properties were poorly studied [3,17,26–28].
There are a few examples showing that NHNI can act as a coupling partner in oxidative
C–O coupling reactions [8,13], although the yields are generally low and may suffer from
the low solubility of NHNI. Thus, the aim of this work was to synthesize a lipophilic NHNI
derivative and study its ability to be a precursor of N-oxyl radicals—important catalytically
active intermediates in N-hydroxyimide-catalyzed oxidative processes.

2. Results
2.1. Synthesis of 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione

To enhance the lipophilicity of the molecule and its solubility in organic medium it is
desirable to introduce lipophilic functional groups, such as long alkyl or tert-butyl. Consid-
ering the application of N-hydroxyimides in free-radical oxidative processes catalysis it
is also important to avoid fragments sensitive to oxidation (such as benzylic C–H bonds).
Thus, we modified the NHNI structure with tert-butyl groups to obtain the lipophilic
N-hydroxyimide 4, which is highly soluble in non-polar solvents (Scheme 1).
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Scheme 1. Synthetic strategy for the preparation of 5,8-di-tert-butyl-2-hydroxy-1H-benzo[de]
isoquinoline-1,3(2H)-dione 4.

The industrially available acenaphthene 1 was chosen as the starting compound, for
which the selective alkylation reaction at positions 4 and 7 is known [29]. Using two
equivalents of tert-butyl chloride under standard Friedel–Crafts alkylation conditions,
4,7-di-tert-butylcenaphthene 2 was selectively obtained. The oxidation of 2 gave the corre-
sponding naphthalic anhydride 3, the reaction of which with hydroxylamine leads to the
target 5,8-di-tert-butyl-N-hydroxynaphthalimide 4. The total yield of the desired product
for 3 stages was 48%.

2.2. Physical and Chemical Properties of 5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-
1,3(2H)-dione

The solubility of 5,8-di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione
4 was measured at room temperature (23–25 ◦C) in dichloromethane (DCM). It turned out
that the solubility of the synthesized compound is 50 mg/mL, exceeding that for NHPI (ca.
1 mg/mL under the same conditions) by 50 times. Thus, we achieved the goal of obtaining
N-hydroxyimide with high solubility in low-polarity medium.

At the next step, we studied the ability of 4 to generate a radical from N-oxyl radical
upon oxidation in comparison with unsubstituted NHNI 6 (Scheme 2). The determination
of absolute radical concentrations was carried out by quantitative EPR measurement using
(4-Benzoyl-2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (BzOTEMPO) as an external standard.
Imide-N-oxyl radicals 5 and 7 were generated from equivalent amounts of the correspond-
ing N-hydroxyimides (4 or 6, respectively) and lead tetraacetate Pb(OAc)4 in acetonitrile
(MeCN) at temperature 28 ± 1 ◦C and starting concentration of N-hydroxyimide 0.01 M.
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The obtained data showed that the synthesized di-tert-butyl-naphthalimide-N-oxyl radical
5 was slightly more stable than the unsubstituted naphthalimide-N-oxyl radical 7. Both
radicals have very similar g-factors (2.0068 for di-tert-butyl naphthalimide-N-oxyl radical
5 and 2.0069 for naphthalimide-N-oxyl radical 7) and hyperfine coupling constants aN
(0.43 mT for both 5 and 7).
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Scheme 2. Generation of imide-N-oxyl radicals 5 and 7 from N-hydroxyimides 4 or 6, EPR spectra of
radicals 5 and 7, and their decay curves according to quantitative EPR measurement.

In order to estimate the reactivity of di-tert-butyl-naphthalimide-N-oxyl radical 5 in hydro-
gen atom abstraction reactions, the NO-H BDE value for di-tert-butyl-N-hydroxynaphthalimide
4 was calculated onωB97M-D3BJ/def2-TZVPP level of theory and compared with NO-H
BDE values for unsubstituted NHNI 6 and most widely used N-hydroxyimide organocat-
alyst NHPI (Table 1). DFT methods are known to predict relative BDEs better than ab-
solute BDEs [30]. Therefore, the isodesmic work reactions scheme was used for BDE
calculations using the accurate experimental value of gas phase O–H BDE for H2O as
the reference (118.81 kcal/mol [31]). The calculated BDE values for NHPI and NHNI
6 are in good agreement with the literature data. It was found that NO–H BDE for
di-tert-butyl-N-hydroxynaphthalimide 4 is almost equal to that of NHNI 6 (92.5 and
92.8 kcal/mol, respectively) and one of the highest in series of N-hydroxyimides making
di-tert-butylnaphthalimide-N-oxyl 5 very strong hydrogen abstracting agent comparable to
naphthalimide-N-oxyl 7. For example, NHPI demonstrates significantly lower NO–H BDE
(by about 6 kcal/mol).
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Table 1. The calculated NO-H BDE values for di-tert-butyl-N-hydroxynaphthalimide 4, N-
hydroxynaphthalimide 6 and N-hydroxyphthalimide (NHPI).

Structure O–H BDE, kcal/mol 1 Lit. O–H BDE Values
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3. Materials and Methods
3.1. General

In all experiments RT stands for 23–25 ◦C. Acenaphthene (99%), AlCl3 anhydrous
(99%), tert-butyl chloride (99%), sodium dichromate (99.5%), NaHCO3 (99%), NH2OH×HCl
(99%), 4-Benzoyloxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (BzOTEMPO, 97%) from com-
mercial sources were used as is. MeCN was distilled over P2O5, CH2Cl2 was distilled
over CaH2. AcOH, EtOH were used as is from commercial sources. 1H and 13C NMR
spectra were recorded on a Bruker AVANCE II 300 and Bruker Fourier 300HD (300.13 and
75.47 MHz, respectively) spectrometers in CDCl3. The residual signal of CHCl3 in CDCl3
(7.26 ppm) was used as a chemical shift reference in 1H NMR spectra. The central line
of CDCl3 signal (77.16 ppm) was used as a chemical shift reference in 13C NMR spectra.
FT-IR spectra were recorded on Bruker Alpha instrument. IR spectra were registered in
KBr pellets for solid compounds, and liquid compounds were placed between two KBr
windows to make a thin layer. High resolution mass spectra (HR-MS) were measured
on a Bruker maXis instrument using electrospray ionization (ESI). The measurements
were performed in a positive ion mode (interface capillary voltage—4500 V); mass range
from m/z 50 to m/z 3000 Da; external calibration with Electrospray Calibrant Solution
(Fluka Analytical/Sigma Aldrich, Buchs, Switzerland). A syringe injection was used for all
acetonitrile solutions (flow rate 3 µL/min). Nitrogen was applied as a dry gas; interface
temperature was set at 180 ◦C. EPR spectra were recorded on X-band spectrometer Adani
Spinscan X. General conditions of EPR measurements: center field—336.12 mT, sweep
width—15 mT, sweep time—60 s, modulation amplitude—100 µT, temperature—28 ± 1 ◦C.
Quantitative results were obtained using 4-Benzoyloxy-2,2,6,6-tetramethyl-piperidine-1-
oxyl (BzOTEMPO) as an external standard: three EPR spectra were recorded from the
solution 0.01 M BzOTEMPO in MeCN and results were averaged and then used for further
calculations. Concentrations of imide-N-oxyl radicals were calculated from equation:

Cradical = CBzOTEMPO
Iradical

IBzOTEMPO
(1)

where Cradical—concentration of radical 5 or 7, M, Iradical—double integrals of correspond-
ing EPR signals of radical 5 or 7, IBzOTEMPO—double integral of EPR signal of reference
BzOTEMPO solution in MeCN with BzOTEMPO concentration = CBzOTEMPO.
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3.2. Experimental Details for the Scheme 1

The 5,8-di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione 4 was syn-
thesized according to the modified methods described previously [29,33–35]. Anhydrous
aluminum chloride (0.41 mmol, 56 mg) was added during 1 h to a stirred solution of
acenaphthene 1 (20.00 mmol, 3.084 g) and tert-butyl chloride (44.12 mmol, 4.085 g) in dry
CH2Cl2 (10 mL). The mixture was refluxed for 2 h then left to stir for a further 24 h at room
temperature. The reaction mixture was quenched with water (20 mL). The water layer was
extracted with CH2Cl2 (3 × 20 mL). All organic extracts were combined, and the solvent
was removed under reduced pressure. The crude product was recrystallized from EtOH to
obtain 2 as orange needles (4.16 g, 15.6 mmol, 78%). 1H NMR (300 MHz, Chloroform-d) δ
7.62–7.55 (m, 2H), 7.42–7.38 (m, 2H), 3.43 (s, 4H), 1.47 (s, 18H). 13C{1H}NMR (75.48 MHz,
CDCl3) δ 151.4, 145.2, 136.4, 130.9, 117.6, 117.5, 35.5, 31.8, 30.7.

To a solution of 2 (4.16 g, 15.6 mmol) in acetic acid (60 mL), sodium dichromate (11.17 g,
40.0 mmol) was added with stirring at room temperature. The suspension was heated at
75 ◦C for 8 h. After the completion of the reaction, cold water was added to the reaction
mixture to get solid, which was filtered and washed with water. Slightly yellow anhydride
3 (3.05 g, 9.8 mmol, 63%) was obtained. 1H NMR (300 MHz, Chloroform-d) δ 8.64 (d,
J = 1.7 Hz, 2H), 8.23 (d, J = 1.7 Hz, 2H), 1.48 (s, 18H). 13C{1H}NMR (75.48 MHz, CDCl3) δ
161.2, 151.1, 132.3, 131.5, 130.8, 127.2, 118.4, 35.4, 31.2. The spectral data of 3 are consistent
with previously reported [36].

Anhydride 3 (3.05 g, 9.8), NaHCO3 (1.26 g, 15 mmol), NH2OH×HCl (1.04 g, 15 mmol)
and EtOH (100 mL) were placed in a 250 mL round-bottomed flask. The mixture was
refluxed for 2.5 h, then the solvent was evaporated and the residue was diluted with
CH2Cl2 (50 mL) and water (50 mL). The layers were shaken, and organic phase was
separated. The water layer was extracted with CH2Cl2 (2 × 50 mL). All organic extracts
were combined, dried over MgSO4, and the solvent was rotary evaporated. The desired
product 4 was obtained as yellow needle crystals (3.08 g, 9.5 mmol, 97%). Mp = 198–199 ◦C
(lit. Mp = 180 ◦C [35]). 1H NMR (300 MHz, Chloroform-d) δ 8.68 (d, J = 1.8 Hz, 2H), 8.17 (d,
J = 1.8 Hz, 2H), 1.47 (s, 18H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 160.0, 150.8, 132.3, 130.6,
130.1, 123.3, 121.1, 35.5, 31.3. FTIR (KBr): νmax = 3510, 3158, 2964, 2906, 2871, 1707, 1681,
1652, 1629, 1601, 1476, 1429, 1395, 1366, 1320, 1230, 1207, 1057, 912, 892, 798, 730, 627 cm−1.
HR-MS (ESI): m/z = 326.1748, calcd. for C20H23NO3 + nH+: 326.1751. Copies of spectra are
presented in Supplementary Materials.

3.3. Experimental Method for the Solubility Measuring of NHPI and 4

An excess amount of N-hydroxyimide (NHPI or 4) was dissolved in 10 mL of DCM at
room temperature (23–25 ◦C) until a saturated solution was obtained. Then a 5 mL aliquot
was taken, evaporated and the residue was weighed. Solubility was determined as the
mass of the residue divided by the volume of solvent (5 mL).

3.4. Experimental Details for the Scheme 2

To a solution of 4 (0.1 mmol, 32.5 mg) in MeCN (10 mL) the Pb(OAc)4 (0.05 mmol,
23.3 mg) was added. The resulting solution was thoroughly mixed, and EPR spectrum
was recorded 2 min after the addition of oxidant. Subsequent spectra were recorded every
2 min.

3.5. Experimental Details for the Table 1 (Computational Details)

NO-H BDE values were calculated using isodesmic work reaction R2NOH + •OH =
R2NO• + H2O. Based on this isodesmic work reaction BDENO-H was calculated as H(R2NO•)
+ H(H2O) − H(R2NOH) − H(•OH) + BDEH2O, where H are enthalpy values from DFT
calculations and BDEH2O is the recommended precise experimental value of O–H BDE
in H2O (118.81 kcal/mol [31]). Geometry optimizations and thermochemical calculations
were realized in Orca 5.03 software package [37,38], LibXC [39] implemented version
of ωB97M-D3BJ exchange-correlation functional [40–43] with atom-pairwise dispersion
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correction with the Becke–Johnson damping scheme (D3BJ) [44,45], and def2-TZVPP basis
set [46]. Optimized structures were visualized using Avogadro 1.2.0 program [47]. All
calculations were performed for temperature 298.15 K and pressure 1 atm. Atomic XYZ
cartesian coordinates in optimized structures are presented in Supplementary Materials.

4. Conclusions

The 5,8-di-tert-butyl-N-hydroxynaphthalimide 4 was presented as a new lipophilic N-
hydroxyimide with high solubility in organic medium with potential application as N-oxyl
radical precursor for free-radical oxidative processes. Along with improved solubility in
low-polarity solvents it demonstrates chemical characteristics similar to those of unsub-
stituted NHNI: similar self-decay profile and high NO–H BDE value. The high NO–H
BDE (92.5 kcal/mol according toωB97M-D3BJ/def2-TZVPP calculation) in 4 and relatively
slow self-decay of the corresponding N-oxyl radical 5 make 4 perspective N-oxyl radical
precursor for CH-functionalization of unactivated substrates by hydrogen atom abstraction.

Supplementary Materials: 1H and 13C NMR Spectra, FT-IR spectrum, HR-MS spectrum of 5,8-Di-tert-
butyl-N-hydroxynaphthalimide 4, optimized geometries of 5,8-Di-tert-butyl-N-hydroxynaphthalimide
4, NHNI 6, NHPI and the corresponding N-oxyl radicals used for calculation of NO–H BDE values.
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