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Abstract: Extinction forecasting is one of the most important and challenging areas of 

conservation biology. Overestimates of extinction rates or the extinction risk of a particular 

species instigate accusations of hype and overblown conservation rhetoric. Conversely, 

underestimates may result in limited resources being allocated to other species/habitats 

perceived as being at greater risk. In this paper I review extinction models and identify the 

key sources of uncertainty for each. All reviewed methods which claim to estimate 

extinction probabilities have severe limitations, independent of if they are based on 

ecological theory or on rather subjective expert judgments. 
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1. Introduction 

 

―Prediction is very difficult, especially about the future‖ 

Nils Bohr, Nobel Prize winning physicist 

 

Preventing the extinction of species is probably the most emblematic objective of the global 

conservation movement. To fulfill this aim effectively requires that decision makers and environmental 

managers are provided with accurate information on: (1) the identities of specific species/populations 

with a high probability of going extinct without further interventions; (2) the predicted rates of 

extinction among a range of taxa in different geographic areas and biomes under various ecological 

scenarios. Armed with this information rational decisions can then be made on the allocation of 
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resources to habitat or species protection measures with the aim of reducing the likelihood of a species 

going extinct or a reduction in the general rate of extinctions over a wider area.  

Although the rationale for accurate assessment of extinction risk for a species or a geographic area 

is clear, the best techniques for achieving these objectives have not been resolved. Indeed, extinction 

forecasting is one of the most problematic and controversial areas of conservation science where crude 

estimates (e.g., [1]) have been the subject of high profile criticism by environmental skeptics [2] or 

have become the subject of misleading newspaper headlines [3]. The uncertainty surrounding 

extinction forecasting is understandable given the diversity of available methods, each of which is 

based on various assumptions and all of which use a wide variety of data or varying quality and 

completeness. In this short review article I create a simple typology for defining different classes of 

extinction forecasting models and to identify the key assumptions and sources of uncertainty for each 

category of model. I will conclude with a discussion on the role of human agency in avoiding 

extinction and argue that, ultimately, it is the reaction of the global conservation movement to 

information on extinction risk that determines the probability of extinction for many taxa and that this 

should be factored into future extinction models. This review is aimed at conservation scientists, 

researchers and especially the growing numbers of interdisciplinary academics who are in the process 

of incorporating ideas from social science and practice into the standard natural science framework 

used in conservation. 

Before presenting the typology of extinction models it is important to consider what is meant by 

extinction. Extinction has traditionally been viewed by conservation scientists as logical end point of 

the process of population decline—the point on the graph where the population size curve meets the  

x-axis and terminates abruptly and finally [4]. The IUCN defines a species as extinct if ―there is no 

reasonable doubt that the last individual has died‖ [5], a definition that reveals one of the main 

stumbling blocks for measuring extinction: the difficulty of ascertaining the continued existence of a 

species that is certainly exceedingly rare, and which may also inhabit an isolated habitat that is difficult 

to effectively survey. Indeed, IUCN guidelines require that a species can be declared extinct only after 

exhaustive surveys fail to produce any observations over an appropriate time period and geographical 

range appropriate to its life cycle and life-form—an unfeasible task for most species [6]. Butchart and 

his colleagues have recently introduced a new category of ‗possibly extinct‘ to apply to those species 

that are, ―on the balance of evidence, likely to be extinct, but for which there is a small chance that they 

may be extant and thus should not be listed as ‗Extinct‘ until adequate surveys have failed to find the 

species and local or unconfirmed reports have been discounted‖ [7]. 

The above definitions are concerned with situations where a species is known to science and has 

been collected (on at least one occasion). However, if science was to restrict extinction forecasts only 

to those species that have been formally identified there would be a danger of considerable 

underestimations in magnitude. Extinctions of undiscovered species inferred from estimates of species 

diversity for a given ecosystem or region and the species-area relationship have been termed Linnean 

extinctions [4] (after the Linnean shortfall in biogeography) or Centinelan extinctions [8] and probably 

outnumber documented extinctions many times over. Such unseen extinctions are highly dependent of 

estimates of species richness and are the source of most of the headline grabbing figures that 
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periodically appear in the global press. Moreover, the majority of such extinctions are in poorly 

described taxa and biomes such as arthropods in tropical forests.  

 

2. A Typology of Extinction Forecasting 

 

Extinction forecasting models are defined here as any model/method that indicates: (i) the 

likelihood that a species is already extinct, or will go extinct at some defined point in the future; (ii) the 

number of species that are likely to go extinct within a given geographic area within a given timeframe. 

In this respect extinction forecasting can answer 4 key questions for conservationists (Table 1):  

i. How many species are likely to go extinct in area x over time t? 

ii. What are the identities of the species with a high probability of extinction in area x over time t? 

iii. What is the probability of species y going extinct in habitat x over time t? 

iv. What is the probability that species y is already extinct in habitat x? 

Table 1. A use-based framework for classifying extinction forecasting models based on the 

four fundamental questions about extinction (see text for full explanation). Model choice is 

critically constrained by type of data available. Specificity refers to taxonomic level 

(individual species versus extinctions within a defined area) and geographical focus. 

Specificity Key Question Data available Models 

General 

How many species will go 

extinct in area x over time t? 

Estimates of species 

richness/endemism 

Estimates of habitat loss 

Species-area relationship 

Neutral theory 

 Environment-species 

richness correlations 

Extinction rate estimates 

Extrapolation 

Simple deterministic 

relationships 

What are the identities of 

the species with a high 

probability of extinction in 

area x over time t? 

Species inventory 

Biogeographic data 

(e.g., distribution, 

dispersal, etc.) 

Ecological data (e.g., 

demography, etc.) 

Threatened species lists 

Multispecies metapopulation 

models 

Expert judgement 

Ecosystem models 

Species distribution models 

Biocultural models 

What is the probability of 

species y going extinct in 

habitat x over time t? 

Species inventory 

Biogeographic data 

Ecological data 

Threatened species lists 

Metapopulation models 

Population viability analysis 

Expert judgement 

Ecosystem models 

Species distribution models 

Biocultural models 

Simple Extrapolation  

Deterministic models 

Specific 

What is the probability that 

species y is already extinct 

in habitat x? 

Historical 

records/sightings Extrapolation based on sightings 
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The type of extinction forecasting method chosen depends upon the type and quality of data 

available (Table 1). This constraint imposes a scale dependency on model choice because, necessarily, 

larger and more biodiverse areas such as tropical forests are far less likely to have accurate species 

inventories or detailed population and other ecological data available for species of conservation 

concern. Some models can be used to answer more than one of these questions. Indeed, it would 

always be theoretically possible to apply models that calculate the probability of extinction for a given 

species to all the other species within a geographic area thereby generating an extinction rate forecast 

but, due to the detailed ecological information required for the construction of individual models this is 

rarely a viable strategy. 

Extinction forecasting models can also be crudely grouped by the key extinction drivers whose 

dynamics they seek to capture (Table 2). It should be noted that both the use-based framework (Table 1) 

and the extinction-driver organized framework (Table 2) are intended as a vehicle for understanding the 

limitations and gaps of existing models and are designed primarily to have heuristic value rather than a 

practical guide to model choice—an important task that would require a more in-depth technical analysis 

of each model.  

Table 2. Key extinction drivers and assumptions underlying each of the identified 

extinction forecasting models. Note: Many of the models are sufficiently flexible to 

incorporate additional extinction drivers and such a classification is of mainly  

heuristic value.  

Category of 

Model 

Main Extinction 

Drivers 
Key assumptions 

Trend 

extrapolation 

 

N/A 

 

1. Trend of decline will continue into the future 

2. If trend is in sightings, observer efforts are temporally 

constant 

Parametric/non-

parametric models 

Various simple 

deterministic 

1. Key causes of population decline are known, ongoing 

and will continue into the future 

2. The model is correctly parameterized (e.g., the spatial 

distribution of the environmental variable/s is accurately 

modeled at an appropriate spatial resolution) 

MVP analysis 

PVA 
Small population size 

1. Demographic/population data is extensive and reliable 

2. Distribution of vital rates between individuals and years 

is stationary in the future, or any changes can be predicted 

3. Probability of catastrophes has been accurately assessed 

and incorporated 

Meta-population 

models 
Habitat fragmentation 

1. Accurate knowledge of existing sub-populations 

2. Sub-populations are temporally and spatially stable 

3. Dispersal potential accurately captured 

4. Relative competitive abilities accurately captured 
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Table 2. Cont. 

SARs 

Habitat loss 

1. z value is accurately estimated 

2. Habitat fragments act as true islands 

3. No ‗small island effect‘ 

4. Current or future habitat loss is accurately estimated 

5. System will eventually reach a phase that exhibits the 

same z-value as the past (this time period being difficult to 

predict) 

6. Fragments have all been defined in the same way 

Neutral Theory 

1. Correct species-distribution relationship identified 

2. Range sizes are known or can be accurately estimated 

from abundance data 

3. Ranges can be geographically located or realistically 

modelled  

4. Species react in predictable way to different degrees of 

habitat transformation 

5. Current or future habitat loss is accurately estimated 

6. Fragments have all been defined in the same way 

Species 

Distribution 

Models 

Climate change 

1. Minimal influence of evolution and phenotypic plasticity 

2. Realistic spatially explicit climate scenario(s) used 

3. Observed species distribution (if used) accurate and at 

equilibrium 

4. Dispersal potential accurately captured 

5. If SARs used see assumptions above 

Ecosystem models Trophic cascades 

1. Trophic relationships accurately mapped 

2. Causal relationships between trophic interactions well 

understood  

Threatened species 

lists 
Multiple interacting 

1. Extinction risk criteria appropriately applied 

2. Sub-criteria equally weighted 

3. Subjective biases of experts understood and controlled 

for 

Expert judgement 
1. Experts biases understood and controlled 

2. Interacting factors appropriately identified and weighted 

Institutional 

capacity and 

ecological 

assessment 

Biocultural 

1. Key institutions/actors identified 

2. Relative capacity of institutions/actors to mount 

conservation interventions understood and assessed 

3. Ecological extinction-risk assessment accurate 

In the following paragraphs I give a brief description of the main types of extinction forecasting 

model highlighting the key extinction drivers they seek to model and the uncertainties and assumptions 

that underpin them. It should be borne in mind that some of the models can be used in conjunction (e.g., 

species distribution models and species-area relationships) while others have a high degree of 

flexibility and can potentially incorporate a range of extinction drivers (e.g., multispecies 

metapopulation models). 

I also include models where the drivers are not identified (e.g., extending trajectories of population 

decline) and where multiple drivers have been considered (e.g., IUCN Red list Criteria). More 

generally, the classification has included ‗intrinsic‘ drivers where the fundamental characteristics of the 

population have changed (e.g., size, spatial structure) and ‗extrinsic‘ drivers where some aspect of the 

species‘ external environment has changed. Much of the uncertainty over extinction predictions in the 

mid-or long-term (decades to centuries) is the difficulty of accurately estimating how these intrinsic 

and extrinsic drivers will interact and change over time. 
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2.1. Simple Extrapolations  

 

Extinction forecasting models are critically constrained by the amount and quality of information 

available. At one extreme are models that infer the probability of extinction from extrapolating a 

downward population trend or, lacking this information, from a decreasing number of confirmed 

sightings. Solow (2005) reviews methods based on confirmed sightings and develops a general 

mathematical model based on the poisson distribution for estimating the probability of extinction at 

time T, normally taken to be the present [9]. Roberts [6] applied Solow‘s model to historical sightings 

of the ivory-billed woodpecker (Campephilus principalis) and concluded that at the time of its 

supposed rediscovery [10] the hypothesis that it was still extant should not have been rejected. The 

danger of using eyewitness accounts as scientific data is clearly illustrated by the many ‗sightings‘ of 

the mythical North American Bigfoot or Sasquatch. Lozier and his colleagues recently used the 

numerous claims of sightings or footprints create a bioclimatic envelope model (BEM) of the  

present-day distribution of Bigfoot [11]. Interestingly, when they ran a model for black bear calibrated 

from the same region from which the Bigfoot sightings were recorded, the two models for the 

contemporary distribution of the two species were almost identical. These examples clearly highlight 

the need for regular assessments to be carried out on closed populations with a consistent  

survey method. 

 

2.2. Simple Deterministic Relationships Models 

 

For certain taxa in specific environments it is sometimes possible to identify one or more 

environmental variables that are strongly correlated with species numbers and which can therefore be 

used to make simple forecasts about future extinctions. For example, Braithewaite and Muller (1997) 

identified a strong historical relationship between groundwater levels and mammal numbers in 

northern Australia [12]. Moreover, the two periods of extremely low groundwater in this area during 

the 20th Century coincided with the last records of several now-extinct mammals. When combined 

with an analysis of traits that may make species vulnerable to the ecological consequences of low 

groundwater they were able to identify several species that may have a high risk of extinction. 

Such correlations, if dealt with cautiously as in the above example, can undoubtedly provide useful 

information on species at risk but have little predictive power for at least three reasons: (1) the drivers 

of population decline are normally complex, multifaceted and interacting and causal relationships are 

often poorly understood [13]; (2) it is frequently difficult to get accurate measurements of key variables 

at appropriate spatial scales. If ‗refuges‘ are overlooked a species may persist for many generations and 

‗reappear‘ when conditions are more benign. (3) Although there are often strong relationships between 

population decline and key environmental variables the ultimate cause of extinction is typically 

stochastic and a consequence of a species existing in small, isolated populations (see Section 2.3). 

Moreover, as Graham Caughley presciently noted, although the causes of population decline and 

ecological consequences of small population size are generally well known there is little evidence of 

these paradigms intersecting to ―enlarge our idea of what is possible‖ in terms of a theory of  

extinction [14]. 
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2.3. Population Viability Analysis 

 

Where better data is available on the size, demographics and spatial structure of the population of a 

rare species, models of population viability (probability of surviving from time t1 to t2) can be 

constructed. Population viability analysis (PVA) has been defined by Akçakaya and  

Sjögren-Gulve (2000) as a ―collection of methods for evaluating the threats faced by populations of 

species, their risks of extinction or decline, and their chances for recovery, based on species-specific 

data and models‖ [15]. PVA models generally fall into three categories: simple occupancy 

metapopulation models (see section 2.4 for details of metapopulation models), structured population 

models and individual-based population models [15]. The latter two methods typically factor in a set of 

concepts revolving around the ecological consequences of small populations collectively known as the 

small population paradigm [14]. The basic idea is that when populations become small they are subject 

to a variety of stochastic processes (genetic, demographic, environmental, behavioural) that will, 

sooner or later, cause the extinction of the population. These processes are by no means mutually 

exclusive and reinforcement can occur between biotic and abiotic components leading to a so called 

‗extinction vortex‘ that inexorably pulls a species down into extinction [16,17]. The conceptual 

cohesion and the clearly interacting nature of these processes has led to the development of a range of 

sophisticated software packages that can model population viability. 

PVA is very flexible and provides a rigorous methodology that allows conservationists to capture 

many uncertainties and natural variability. Moreover, its products or predictions are typically directly 

relevant to conservation goals. However, PVA in its more sophisticated incarnations requires a large 

amount of high quality data which is often not available for the very rare species that are most at risk of 

impending extinction. PVAs are thus most useful when they address a specific question involving a 

well documented species, when abundant data is available, and when they focus on relative rather than 

absolute results, and risks of decline rather than extinction [15]. 

 

2.4. Metapopulation Models 

 

Of course, even rare species frequently occur in more than one population, often linked to some 

extent by migration. The structure and interaction between these sub-populations can also have 

profound influences on the probability of extinction for the metapopulation (the system of local 

populations) as a whole [18]. Thus, in fragmented landscapes the key conservation question shifts from 

minimum viable populations needed to avoid extinction to what is the minimum viable 

metapopulation? Recent metapopulation models of the Marsh Fritillary butterfly (Euphydryas aurinia) 

in the UK demonstrated that the area of land required exceeded the minimum viable metapopulation 

size in only 2 out of 6 extant networks of sub-populations and the remaining four networks were 

expected to undergo extinction within the following 15–126 years [19].  

Considerable advances have also been made in modelling the metapopulation dynamics of 

multispecies assemblages [20] as a way of quantifying extinction debt: the deterministic extinction of 

species inhabiting fragments following habitat destruction [21]. Such multispecies models have given 

great insights into the extinction process in fragmented habitats and have propelled the concept of 
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extinction debt into the forefront of conservation thinking [21]. However, the difficulties of 

parameterizing such models—especially with respect to variables such as dispersal and patch 

selection—to reflect real habitats means that moving beyond generalizations (e.g., poor competitors 

will go extinct before strong competitors) has proved challenging. 

 

2.5. Species-Area Models 

 

Multispecies metapopulation models (see above) rightly sit within the category of geographic 

models of extinction forecasting (Table 2) since they can theoretically be used to estimate extinction 

debt within real habitats. By far the most widely used method to calculate extinctions within habitats 

that have been considerably reduced in size is through the species area-relationship (SAR), one of 

ecology‘s oldest and most general patterns [22]. This relationship can be concisely rendered using a 

variety of simple mathematical formulae [23], the most widely used variant being S = cA
z
, where S is 

the number of species, A is (island) area, and z is a constant. Using the logic that a reduction in habitat 

area will cause an eventual and corresponding reduction in species richness (relaxation), 

conservationists have used the SAR in forecasting future species extinctions as a function of habitat 

loss due to factors such as deforestation (e.g., [24]) or future climate change (e.g., [25]). Extinction 

estimates are commonly generated by the simple expedient of moving down the slope of a single log 

SAR for a given system. 

Despite the simplicity of the model and the generality of the SAR there are many potential 

uncertainties that make it difficult to assess the accuracy of extinction forecasts using this technique. 

Take, for example, the most widely known examples of predicting extinctions from studies of tropical 

deforestation. First, there is the problem of defining the area of a forest. This is frequently done using 

remote sensing algorithms that interpret the results of satellite images. Secondly, there is the problem 

of assessing the original species richness which, in the case of arthropods is frequently based on 

extrapolations from studies of host specificity and the rates of discovery of new species. Thirdly, there 

is the assumption that forest fragments act as virtual ‗islands‘ in a ‗sea‘ of uninhabitable development. 

This is frequently not the case and the ability of species to live and travel through the matrix of 

adjoining lands has a critical influence on the persistence of many species. Finally, and perhaps 

critically, extinction forecasts using the SAR also depends on the value chosen for the constant z, 

which determines the slope of the relationship. There is no strong theoretical or empirical background 

for the use of a single ―global‖ slope value (although 0.25 is often chosen for such a purpose). A  

z-value of 0.25 is a subjective ‗middle‘ value from a range of possibilities derived from analyses of true 

isolates and is thus unlikely to capture the slope for forest fragments and other habitat islands [26].  

The species-area relationship is not the only way to model the potential impacts of area reduction on 

species diversity. Hubbell et al. (2008) recently used a neutral theory framework to model tree species 

richness and extinction risk due to habitat loss in the Brazilian Amazon [27]. Neutral theory specifies 

how many species are expected to be present at steady-state between speciation and extinction in the 

metacommunity and the expected abundances of each species. In this study the relationship between 

relative abundance and range size was estimated from empirical studies of nearest neighbor distances 

to allow estimation of the consequences of different deforestation scenarios. Extinction risk calculation 
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was critically constrained by two major knowledge gaps. First, although tree ranges could be 

statistically estimated there was no way to know where these species were physically located in the 

Amazon. Second, as with island theory, neutral theory provides no way to estimate how different tree 

species would respond to different amounts of landscape transformation. Hubbell and his colleagues 

dealt with the first issue by randomly assigning locations to species throughout the metacommunity. 

The second, and more problematic, issue was dealt with by running simulations using a range of 

operational rules so that, under a conservative scenario, species only go extinct if their (simulated) 

range falls entirely within an area predicted to be heavily impacted. They study concluded that between 

20% and 33% of tree species in the Brazilian Amazon would go extinct under the optimistic and 

nonoptimistic scenarios, respectively [27].  

 

2.6. Species Distribution Models 

 

Species Distribution Models relate ―field observations [of presence/absence] to environmental 

predictor variables, based on statistically or theoretically derived response surfaces, for prediction and 

inference‖ [28]. The predictor variables are often climatic (see below) but could conceptually be any 

environmental variables. One of the fundamental issues in Species Distribution Models is the quality of 

the distributional data for the species of interest since accurate data is often missing, especially for rare 

and critically endangered species. Moreover, absence data is particularly problematic to obtain leading 

to the widespread use of pseudo-absence data (often chosen randomely from areas of presumed low 

suitability for the species in question [28]) for the purposes of model parameterization.  

In the case of SAR-based extrapolations of extinctions using changes in climate envelopes or other 

types of species distribution models (SDMs) the key assumption is that area loss due to climatic/ 

environmental unsuitability is equivalent to loss from habitat destruction [25]. While this may be true 

in the broadest possible sense it fails to account for the numerous uncertainties associated with both the 

construction of SDMs and forecasting future climate scenarios and the multiplication of uncertainties 

by combining these two types of models to generate extinction estimates probably renders any such 

forecast almost meaningless. Whittaker et al. used a schematic (Figure 1) to illustrate the large 

numbers of steps, assumptions and choices in such a approach to modelling extinction risk [29].  

Species distribution models based on the bioclimatic envelope (also termed ‗climate space‘) of the 

modelled species have been criticized because they fail to incorporate the many other biotic and abiotic 

factors that are important drivers of species distributions and the dynamics of distribution  

changes [29,30]. Such factors include biotic interactions, evolutionary change and dispersal ability. It is 

also important to note the fundamental importance of the spatial scale at which these models are 

applied. Pearson and Dawson argue that bioclimatic models are best applied at macro-scales, where 

climatic influences on species distributions dominate and where biotic interactions are much less 

significant [30]. 
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Figure 1. Some of the steps, choices and assumptions involved in modelling species losses 

resulting from future climate change using the species distribution modelling approach. Not 

all studies involve all elements, e.g., land-use data, or dispersal models, but these 

components are important for increased realism (re-drawn from [29]). 

 

 

2.7. Ecosystem Models 

 

Ecosystem or trophic cascade models of extinction are defined here as any model that predicts 

extinction on the basis of direct or indirect impacts of removing one or more species from a food-web. 

The loss of one species is most likely to cause the extinction of other species that depend on it 

(coextinction) in the case of mutualisms and parasitism, although the effects can cascade throughout 

the ecosystem. Paradoxically, although this is likely to be among the most common and most 

predictable type of extinctions there have been very few documented examples [reviewed in 31]. 

Perhaps the simplest and best known example was described by Temple, who hypothesized that a 

coevolved obligate mutualism between the extinct dodo (Raphus cucullatus) and the very rare 

tambalacoque tree (Sideroxylon grandiflorum) had doomed the tree to extinction [32]. The supposed 

mutualism was based on the notion that seeds of the tree needed to pass through the dodo‘s gut before 

they could germinate and supported by the fact that no seeds had germinated since the dodo‘s demise 

more than three hundred years ago. Sadly, neither line of evidence turned out to be correct. 

Tambalacoque seeds germinate in low numbers without abrasion and there are several of these rare 

trees of less than 300 years old [33].  

This type of extinction model is not restricted to simple pair-wise species interactions but also 

encompasses the hypothesized loss of entire functional groups. For example, da Silva and Tabarelli 



Diversity 2009, 1              

 

 

143 

describe how the loss of large-gap birds and frugivorous mammals in the remaining fragments of 

Brazil‘s Atlantic forest are predicted to cause the regional extinction of about 33.9% of trees that need 

these species to disperse their seeds [34]. Such simple deterministic models are arguably unable to 

sufficiently capture the complexities of multispecies interactions to provide precise estimates of future 

extinctions although they clearly have considerable heuristic value. More recently, sophisticated 

simulations have suggested that increased robustness and decreased levels of food web collapse are 

associated with higher diversity systems that have high levels of complexity, as measured by 

connectivity [35]. However, the development of truly predictive and robust food web models that can 

accurately predict the number and identity of ‗knock-on‘ extinctions after the loss of one of more 

species remains a significant challenge.  

 

2.8. Changes in Extinction Risk Categorization 

 

The IUCN Red List of Threatened Species [36] is regarded as the most authoritative list of globally 

threatened species. At the heart of this system are a set of simple quantitative criteria based on 

population sizes and population decline rates, and range areas and range declines which are used to 

allocate species to one of several categories of extinction risk (e.g., endangered, critically endangered, 

extinct in the wild, etc.). It should be noted that the list employs different methods of assessing 

extinction risk depending on the available data and that the criteria used to assess species status are in 

themselves methods (e.g., PVA). In this sense it may be better to consider Red Lists as a framework for 

standardising and communicating extinction risk. Nevertheless, transitions between categories, on 

whatever basis they may have been allocated, have been used as an indicator of increasing extinction 

probability at a variety of spatial scales.  

The key transition for extinction forecasting is between ‗endangered‘ where a population has a ―very 

high risk of extinction in the wild‖ to ‗critically endangered‘ where the species is considered as having 

an ―extremely high risk of extinction in the wild‖ [36]. The criteria for inclusion in the latter category 

include very small populations and geographic ranges and a strong trend of population decline. The 

final category (as do all categories) includes the potential for integration of results from population 

viability analysis: ―Quantitative analysis showing the probability of extinction in the wild is at least 

50% within 10 years or three generations, whichever is the longer (up to a maximum of  

100 years)‖ [36].  

Critically endangered can thus be cautiously used as a surrogate for imminent extinction.  

Brooke et al. tested this proposition by comparing the historical transition of bird species into the 

critically endangered with verified extinctions at both a global level and within Australia [37]. They 

concluded that species were actually going extinct at a rate 2 (Australia) to 10 (globally) times lower 

than predicted. The potential cause of this discrepancy was identified as the effectiveness of the global 

conservation community at rescuing bird species on the brink of extinction (see Section 2.9 below). 

A potentially more serious issue with the IUCN Red Lists is whether the extinction risk criteria have 

been correctly applied. In 1997, the eminent Canadian zoologist and sea turtle expert, Nicholas 

Mrosovsky, accused the IUCN‘s Marine Turtle Specialist Group of upgrading the listing of the 

Hawksbill sea turtle (Eretmochelys imbricata) without making available the scientific evidence for this 
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change in status, and then using this to influence proposals for sustainable use of the species [38]. 

Thus, it is possible that unconscious or conscious biases in the information accepted and used by 

specialist groups might influence the categorization of species and, hence, provide an unduly 

pessimistic prognosis of their future survival.  

Recently, the Red Lists have been used in combination with the results of bioclimatic envelope 

models (shifts and reductions in species‘ ranges) to estimate extinction rates. A good example is the 

study of Bomhard et al., who computed the current and future Red List status of endemic Proteaceae in 

the Cape region of South Africa assuming a number of different land-use and climate change scenarios 

for the year 2020 [39]. The impacts of climate change were estimated using standard niche-based 

species distribution models (see above). They concluded that up to a third of species become more 

threatened (are ‗upgraded‘ to a higher Red List category) under future scenarios and that under the 

most severe scenario the proportion of Critically Endangered taxa increases from approximately 1%  

to 7% and almost 2% of the 227 species will become globally Extinct. This general approach has been 

heavily criticised by Akçakaya et al., who argue that where such combined approaches have been 

adopted the Red List criteria were frequently misapplied due to arbitrary changes to spatial and 

temporal scales, confusion surrounding the use of spatial variables, and a widespread assumption of a 

linear relationship between abundance and range area [40]. 

 

2.9. Expert Judgement 

 

Extinction predictions that incorporate multiple environmental drivers may also be derived from the 

reasoned judgement of experts. These sorts of forecasts have undoubtedly been the most problematic 

for conservation science because of a clear tendency on the part of many senior scientists to make 

pronouncements that appear to over-exaggerate the extinction crisis. Possibly the most famous of these 

pronouncements, and one that subsequently appeared in numerous intergovernmental reports, was 

Norman Myers ‗prediction‘ in 1979 that 1 million species would be extinct by the year 2000 at a rate of 

40,000 a year [1]. A year after the publication of Myers‘ book Thomas Lovejoy forecast that fifteen to 

twenty percent of the world‘s species would be extinct by the turn of the century (cited in [41]).  

Such misplaced predictions of imminent demise have also been attached to a number of rare taxa. 

For example, Johns and Ayres proposed that an Amazonian primate, the southern bearded saki 

(Chiropotes satanas satanas) was already ‗beyond the brink‘ in eastern Amazonia due to deforestation, 

hunting, its sensitivity to habitat disturbance and a dependence on many tree species valued for their 

timber, and would be extinct by the end of the Century [42]. Subsequent studies in the late 1990s 

demonstrated that the monkeys were still relatively abundant in some forest fragments where hunting 

was absent [43]. Of course, dire forecasts of mass extinction or of the disappearance of a specific 

species may influence the allocation of resources reducing the likelihood of the prediction being 

realized—and this is clearly often the aim.  

It is this blurring between science and advocacy that makes expert predictions about extinction so 

difficult to assess, and possibly why so few genuine experts can be drawn into a public 

pronouncements. One possible solution that might reduce uncertainty and personal biases is forecasts 

based on the opinions of several experts filtered through a standard protocol such as the Delphi 



Diversity 2009, 1              

 

 

145 

technique which uses a series of iterative questionnaires and controlled feedback from experts [44]. 

Such forecasts might be able to better ‗factor-in‘ cultural elements such as future funding flows and the 

potential impacts of interventions (see 2.10 below) into the results of standard extinction models.  

 

2.10. Biocultural Models 

 

The direct role of humans in the extinction process through exploitation for food and/or trade has 

long been recognized as an important, if difficult to predict, component of extinction forecasting. The 

traditional view, derived from economic theory, was that a species would be exploited until its density 

fell to a level that was no longer economically viable to exploit. This view was recently challenged by 

Courchamp et al. who coined the term anthropogenic Allee effect to refer to the situation where the 

abstract value that people attach to global rarity means that the higher costs of exploiting a rare species 

are offset by the higher prices that ‗collectors‘ or connoisseurs are willing to pay [45]. However, 

although there is strong evidence that the general public values rarity [46], it is equally clear that not all 

rare species are equally collectable. Moreover, there have been few comparative studies of the attitudes 

and behaviors of bird-keepers or reptile enthusiasts that drive this trade (see [47] for a rare exception]. 

More generally, by the same argument placing a ‗collectable‘ endangered species on the IUCN Red 

List or on a CITES appendix could also increase the economic value of a rare species in addition to 

acting as a global advert alerting interested parties to this fact. 

Figure 2. Schematic of proposed protocol for a phased implementation of an applied 

biocultural theory of avoided extinction to improve prioritization procedures  

(redrawn from [4]). 

 

Ladle and Jepson recently took an alternative approach to assessing extinction risk by asking what 

factors prevent a species from becoming extinct [4]. In the modern world the safety net is provided by 
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the global conservation movement as represented by government bodies and various international and 

national non-governmental conservation organizations (NGOs). However, the capacity, resources and 

effectiveness of organized conservation varies immensely by country and region meaning that in 

geographic areas where conservation capacity is low: (1) species are more likely to go extinct with 

appropriate interventions; (2) critically endangered species may not be effectively monitored 

decreasing the possibilities for emergency actions; (3) technological interventions such as captive 

breeding are less likely to be implemented or successful. As institutional conservation capacity is 

potentially measurable, Ladle and Jepson argue that a dual system of biological and institutional 

assessment is required to identify species with the highest risk of going extinct [4, Figure 2]. 

 

3. Conclusions  

 

Several general conclusions can be drawn from the above brief review of contemporary extinction 

forecasting methods: 

i. There is a great range of models available to conservationists that vary in their scope and 

precision. The models use different types of data, have a wide range of uncertainties and assumptions 

and generate predictions that can be used for different purposes. Choice of model should thus critically 

depend on end purpose. What will this information be used for and what level of uncertainty is 

acceptable? There has been a strong tendency among conservation organizations to widely disseminate 

extinction rate predictions made over large geographic areas based on species-area or species 

distribution models. Unfortunately, these models also have very high levels of uncertainty associated 

with their predictions leading to widespread media misrepresentation [3].  

ii. There is no systematic application of different models or, more significantly, combinations of 

models. There is great scope for developing consensus modelling approaches which area being 

successfully developed in other areas of ecology [48] and may reduce some of the uncertainties. 

Moreover, advances are also being made in combining models. For example, Keith et al. recently 

successfully integrated a species distribution (habitat suitability) model with a stochastic (meta-) 

population model to explore the vulnerability to extinction of plants in the South African fynbos [49]. 

iii. The importance of the global conservation movement in avoiding extinction is acknowledged to 

reduce the precision of extinction forecasts [37], but there have been few attempts to incorporate this 

into extinction forecasting frameworks [4]. Moreover, it is clear that different types of extinction have 

different amounts of ‗agency‘ within conservation. Thus, even though the processes leading to local 

extinction are identical to those that cause the global extinction of a species, the reaction of the 

conservation community will likely be very different. Whereas an imminent local extinction may 

promote some local action, an imminent global extinction may result in considerable investment of 

conservation resources and an emergency response from the global conservation movement. Equally, 

the degradation of a species rich habitat with no endemics will be far less likely to be the focus of 

conservation action than an equivalent area rich in endemics. Social values will thus have a significant 

influence of the future geography and intensity of extinction events [4].  

iv. There is a strong qualitative signal from all the models—species are currently going extinct in 

unusual numbers [50]. Predicting their identities and focusing attention on geographic areas that are 
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expected to suffer very high rates of extinction remains the key challenge for the global  

conservation movement. 

v. Finally, it is important to note that although all the described methods have their limitations, they 

still provide important information upon which rational decisions can be made about the protection of 

species and environment. Indeed, while a species that is predicted to become extinct still persists (an 

extinction debt), there is still time for conservation to intervene and possibly reverse the situation [51]. 

Scientists should therefore be encouraged to continue refining and developing extinction forecasting 

methods [51], even with the associated risks of being overly optimistic or pessimistic.  
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