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Abstract: The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense
against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate
species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss
of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in
vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic
gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies
in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and
TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5–10% of the sites
were under positive selection (PS) (omega 1.5–2.5) with radical amino-acid changes likely affecting
TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP > 0.99) likely
increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral
TLR7, 23 PS sites (PP > 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid
evolution of the TLR supergene family reflects the host–pathogen arms race and the coevolution
of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic
pathogens and reservoirs for viruses.
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1. Introduction

The toll-like receptor (TLRs) supergene family members are type-I transmembrane glycoproteins
belonging to the pathogen recognition receptor (PRRs) class of proteins expressed in the cell
membrane and intracellular vesicles, including the endoplasmic reticulum, endosomes, lysosomes,
and endolysosomes [1,2]. TLRs constitute one of the first lines of the immune defense system and
recognize a variety of pathogen-associated-molecular patterns (PAMPs) during pathogen invasion,
triggering the cascade of signaling pathways leading to the adaptive immune response [3–5]. The
vertebrate TLRs studied to date are involved solely in immune response, in contrast with invertebrate
TLR–like proteins, which are also associated with developmental functions [6].

The diversity of TLRs has facilitated the detection of a diverse group of pathogenic ligands [7].
The diverse mechanisms used by TLRs paralogs for TLR-ligand recognition and the formation of a
m-shaped homo or heterodimeric complex, lead to activation of downstream signaling cascades by
Toll/interleukin-1 receptor (TIR) domains [1,8–15]. The TIR dimer is recognized by the TIR domain
present in different signaling adaptor proteins—including MyD88, MAL, TRIF, and TRAM [16]—and
resulting in the activation of NFkB, the expression of various inflammatory and anti-pathogenic
proteins [17], the initiation of the adaptive immune response, and the elimination of the invading
pathogens [5,18–20].

Each TLR gene consists of a highly conserved intracellular (cytoplasmic) TIR domain, which
is responsible for signal transduction [21], a conserved single transmembrane region and a variable
extracellular domain (ECD), involved in the ligand recognition and dimerization. ECD consists of
variable numbers (~16 to 28) of leucine-rich repeats (LRRs) motifs [22].

TLRs identified to date are grouped phylogenetically into six major families (TLR1, TLR3, TLR4,
TLR5, TLR7, and TLR11) [23]. Gene gain and loss have been prominent features in the evolution of this
supergene family. The large and variable number of TLR genes facilitate recognition of a wide variety
of ligands from diverse pathogens (bacterial, fungal, protozoan, and virus). For example, recent studies
have revealed important compensatory mechanisms of the TLR supergene family in both adaptive
and innate response in the absence of major histocompatibility complex (MHC) II, CD4 and invariant
chain (Ii) in cod fish [24], where TLRs act as an alternative to MHCII, a well-known conserved feature
of the adaptive immune system of jawed vertebrates [24–26]. The innate immune receptors of the
coelacanth are a mixture of mammalian- and teleost-specific TLRs, affirming the transitional position
of coelacanth [27], evolutionarily connecting fish and tetrapods, along with its unique immune system
lacking IgM [28].

We performed comparative evolutionary genomic analyses of vertebrate TLRs using whole genome
sequencing data from 79 species (mammals, birds, reptiles, amphibians, and fishes) to understand the
dynamics of gene gain and loss in shaping the TLR gene family repertoire in vertebrate genomes. The
most important immunological function of TLRs comprehends protection from pathogens that requires
the genes to evolve rapidly in response to selective pressure exerted by constantly evolving pathogens.
Because avian species are often important vectors of zoonotic pathogens and reservoirs for viruses
we analyzed avian TLRs (viral and non-viral TLRs) to determine how positive diversifying selection
affecting the functional and structural variation of TLRs has improved pathogen recognition in birds.
We discuss our findings in the context of host–pathogen interactions and the adaptive evolution of
avian TLRs to diverse ecological conditions and adaptive requirements.
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2. Materials and Methods

2.1. Genome Scan and Synteny Analysis of TLR Supergene Family

We used representative sequences of the vertebrate TLR1-27 as the query to exhaustively perform
blast [29] searches to retrieve all available TLRs from 79 species, including the genomes of 48 birds [30,31]
plus 31 other vertebrates which included 11 reptiles, a frog, and 11 fish genomes (Supplementary
File 1), providing updated TLR information across vertebrate. TLRs, coding sequences retrieved from
the Avian genome consortium [30,31] were used in subsequent adaptive evolution analysis. For the
synteny analysis of TLRs we scanned vertebrate genomes (Supplementary File 2) for each TLR gene
using extensive Blast searches [29] complemented with the Genomicus tool [32,33]. Gene loss can be
hard to ascertain due to constraints imposed by levels of genome coverage [34]. Here we define gene
loss as genes that are not found in a given assembly after extensive blast searches.

2.2. Phylogenetic Analysis

For the vertebrate TLR supergene family tree, sequences were aligned using ClustalW as
implemented in MEGA5 [35] and were corrected manually. The tree was estimated with MEGA5 [35]
software using the neighbor joining method with 1000 bootstrap replications. For the phylogenetic
and adaptive analyses of the avian TLRs, one to one orthologs were aligned using Muscle [36],
implemented in Seaview [37], and manually corrected. We chose the best substitution model based on
the Akaike information criteria (AIC) in jModelTest 2 [38]. The sequences were used for maximum
likelihood tree construction using PhyML [39] with 500 bootstrap replicates to check the robustness
and reliability of the tree [40]. Sequences were tested for nucleotide substitution saturation using
DAMBE 5 [41] by plotting the number of transition-transversion against the genetic distance using the
F84 model [42], which allows for different equilibrium base frequency and transition-transversion rate
bias for nucleotide substitution. The Xia test [43] implemented in DAMBE5 [41] was used to compare
the index score (ISS) with critical score (ISS.C) at third and other codon positions to obtain estimates
of saturation.

2.3. Gene Conversion and Recombination

The sequence alignments were tested for recombination using the online version of GARD
(Genetic Algorithm for Recombination Detection) [44] available at http://www.datamonkey.org. The
GENE-CONV [45] software was used for the detection of gene conversion events with 1000 permutation
and Bonferroni corrected p-value cutoff of p < 0.01 and mismatch allowed (/g1 = 1).

2.4. Positive Selection in Avian TLRs

The important immunological function of TLRs, i.e., providing protection of host from pathogens,
requires them to evolve rapidly in response to selective pressure exerted by rapidly and constantly
evolving pathogens. In proteins, different functional sites experience distinct selection pressures with
advantageous changes being positively selected due to adaptive benefits. The Avian TLRs are assumed
to have similar ligands as those reported in mammalian TLRs [46,47]. In this study, we used multiple
approaches to find signals of positive selection (i.e.,ω > 1, assessed by comparing the dN-number of
non-synonymous substitutions per non-synonymous sites with that of dS-synonymous substitutions
per synonymous sites) in avian TLRs (TLR1A, TLR1B, TLR2A, TLR2B, TLR3, TLR4, TLR5, TLR7,
TLR15). We excluded TLR21 from positive selection analysis as insufficient sequences were found.
The avian TLR7 is reported to have been duplicated in a few passerine birds [48–50] while TLR5 is
pseudogenized in others [46]. Therefore, the TLR5 pseudogene and duplicated TLR7 sequences were
excluded from the positive selection analysis.

We employed codon models implemented in PAML [51–53] and Datamonkey [54] together with
amino acid models in TreeSAAP [55]. CODEML in PAML [51] implements likelihood ratio tests
(LRT) for comparisons of sophisticated nested site-specific models calculated as twice the difference

http://www.datamonkey.org
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of the log likelihood between the two models following Chi square distribution with the degrees
of freedom corresponding to the difference in the number of parameters between the nested model,
i.e., null model and alternate model (positive selection). A significant LRT implies that the null
model is rejected and sites are under positive selection. We compared M1a (nearly neutral) vs. M2a
(positive selection), and M7 (beta: assumes a beta distribution for 0 ≤ ω ≤ 1; therefore this model
does not allow for positively selected sites) vs. M8 (beta&ω: same as the M7 plus an extra class of
ω > 1, allowing positive selection) to find sites under positive selection. Bayes empirical Bayes (BEB)
inferred the posterior probabilities of positive selected sites where higher PP mean high confidence.
We also used the Hyphy package (http://www.hyphy.org) [56] (http://www.datamonkey.org/) [54,57],
which provides several approaches for detection of positive selected sites, including single-likelihood
ancestral counting (SLAC), fixed effects likelihood (FEL), random effects likelihood (REL) [58], mixed
effects model of evolution (MEME) [59], fast unconstrained Bayesian approximation (FUBAR) [60],
and an integrative approach. The SLAC model uses ancestral sequences reconstruction, FEL calculates
site-by-site dN/dS without assuming a prior distribution. REL assumes a prior distribution across site,
FUBAR ensures robustness against model misspecification, and MEME is most appropriate to detect
episodic diversifying selection affecting individual codon sites. In addition, the integrative approach
incorporates all sites detected by SLAC, FEL, REL, FUBAR, and MEME. Sites detected by two different
methods are interpreted as having more support of positive selection [61–63].

Further support for our results was gained by the complementary protein level approach
implemented in TreeSAAP [55]. It uses ancestral sequence reconstruction to detect the physiochemical
properties changes of the amino acid replacements considering 31 amino acid properties. The amino
acid replacement can lead to conservative or radical change in physiochemical properties. The positive
radical changes can modify the protein structure and/or function and the number of radical changes at
a site can be used as an indicator of the positive selection strength. To facilitate interpretation of the
level of changes at a site we compared sites having six or more radical changes (defined as type I) with
sites with less than six properties (defined as type II).

2.5. Comparison of Domain Architecture, Homology Modeling, and Structure Analysis across Vertebrate TLRs

The LRRfinder was used to predict the domain architecture and define locations of specific
amino acid residues in the TLR protein domain. This was also verified, whenever possible using the
Uniprot protein database (http://www.uniprot.org). The structure of each TLR was predicted using
the CPHmodels 3.2 protein homology modeling server, which resulted in significant model structure
for the complete regions of TLR5 and the ECD region of TLR1A, TLR2A, TLR2B, TLR3, TLR4, and
TLR7. No significant structure was predicted for TLR1B and TLR15. All the highly significant positive
selected sites were displayed on the respective predicted structures to show the potential functional or
structural significance of specific amino acid residues. The residues were mapped onto the predicted
structure using PyMOL (http://www.pymol.org).

3. Results

3.1. Dynamic Gene Gain and Loss Shapes Vertebrate TLR Supergene Family Repertoire

The dynamics of gene gain and loss have an important role in the evolution and diversification
of gene families [64–71]. These lineage and species-specific changes are important evolutionary
mechanisms of adaptation [72–74]. Comprehensive TLR data from varied vertebrate species/lineages is
crucial for assessing the major evolutionary events influencing the diversification of the vertebrate TLR
supergene family. To describe and interpret TLR gene family evolution across vertebrates, we assessed
representatives from major vertebrate groups by comparing closely and distantly related species
(e.g., in mammals we covered monotremes-egg laying platypus, marsupial-short-tailed opossum, to
placental mammals). TLR data was collected from diverse vertebrates. These included birds [30,31] and
eight divergent reptiles from diverse environments (aquatic, semi-aquatic, and terrestrial) and under

http://www.hyphy.org
http://www.datamonkey.org/
http://www.uniprot.org
http://www.pymol.org


Diversity 2019, 11, 131 5 of 25

unique adaptive pressures (pathogens), including three lizards (Anolis carolinensis, Pogona vitticeps,
and Gekko Japonicus), two snakes (Python molurus bivittatus and Protobothrops mucrosquamatus), three
turtles (Pelodiscus sinensis, Chrysemys picta bellii, and Chelonia mydas), and three crocodilians (Alligator
mississippiensis, Gavialis gangeticus, and Crocodylus porosus). Together with mammals, amphibian,
and fishes (see Table 1), our analyses revealed a comprehensive picture of the TLR supergene family
evolution (Figures 1 and 2).

The fishes had the highest number of TLR subfamilies (20 subfamilies) with only six subfamilies
(TLR6, TLR10-TLR12, TLR15, and TLR16) missing in fishes. This showed that most of the TLR
subfamilies originated early in the fish lineage. Fishes also had the highest number of genes derived
from duplication events (Table 1 and Figure 2), with cod having 41 TLR gene copies. These patterns
highlight the importance of differential gene gain, and its prominence among fish lineages (Table 1 and
Figure 2).

The comparative genomics of the TLR supergene family showed lineage and species-specific
distribution—e.g., TLR16 is frog-specific, TLR24 lamprey-specific, TLR26 catfish-specific, and TLR27
coelacanth-specific—whereas TLR11-12 are present only in mammals and TLR19-20 and TLR26 are
only found in teleost fishes. The TLR18 and TLR22 were lost in both the avian and mammalian
lineages, suggesting similar adaptive pressure (Table 1 and Figure 2). Loss of TLR15 and TLR21 in the
mammalian lineage possibly occurred after the divergence of sauropsida from the synapsida lineage
(Table 1 and Figure 2). Likewise, the finding of TLR13, TLR18, and TLR22, together with TLR15 and
TLR21 in reptiles (Table 1) suggests that these TLRs are not limited to particular vertebrate species
and lineages, as previously suggested [23,45]. Our study reveals that dynamic gene gain and loss
of TLRs in vertebrate genomes facilitated vertebrate TLR supergene family evolution under diverse
ecological requirements.
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Table 1. The TLR supergene family repertoire, showing gene gain and loss in different vertebrate species.

Class Species
Number

Species Scientific Name TLR1 TLR3TLR4TLR5 TLR7 TLR11
Total F/P
(Copies

F/P)

1 6 10 2 14 15 18 24 25 27 3 4 5 7 8 9 11 12 13 16 19 20 21 22 23 26

Mammalia

1 Homo sapiens 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0(1) 0 0 0 0 0 0 0 0 10/1(10/1)

2 Mus musculus 1 1 0
(1) 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 12/1(12/1)

3 Monodelphis domestica 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 11/0(11/0)
4 Ornithorhynchus anatinus 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 11/0(11/0)
5 Myotis lucifugus 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 12/0(12/0)
6 Equus caballus 1 1 1 1 0 0 0 0 0 0 1 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 13/0(14/0)
7 Canis familiaris 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10/0(10/0)
8 Bos taurus 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0(1) 1 0 0 0 0 0 0 0 0 0 0 10/1(10/1)

Aves
9 Gallus gallus 2 0 0 2 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 8/0(10/0)
10 Meleagris gallopavo 2 0 0 2 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 8/0(10/0)
11 Taeniopygia guttata 2 0 0 2 0 1 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 1 0 0 0 8/0(11/0)

Reptilia

12 Crocodylus porosus 2 0 0 2 0 1 1 0 0 0 1 1 1 1 2 0 0 0 1 0 0 0 1 1 0 0 12/0(15/0)
13 Gavialis gangeticus 2 0 0 2 0 1 1 0 0 0 1 1 1 1 2 0 0 0 1 0 0 0 1 1 0 0 12/0(15/0)
14 Alligator mississippiensis 2 0 0 2 0 1 1 0 0 0 1 1 2 1 2 0 0 0 2 0 0 0 1 1 0 0 12/0(17/0)
15 Pelodiscus sinensis 2 0 0 2(1) 0 0 1 0 0 0 1 1 2 1 3 1 0 0 0 0 0 0 1 2 0 0 11/0(18/1)
16 Chelonia mydas 1 0 0 2(2) 0 0 1 0 0 0 1 1 2 1 2(1) 1 0 0 0 0 0 0 1 1 0 0 11/0(17/2)
17 Chrysemys picta 2 0 0 2(1) 0 0 1 0 0 0 1 1 2 1 3 1 0 0 1 0 0 0 1 1 0 0 12/0(18/1)
18 Anolis carolinensis 2 0 0 2 0 1 1 0 0 0 1 1 2 1 0 0 0 0 1 0 0 0 1 1 0 0 11/0(14/0)
19 Python molurus 1 0 0 2 0 1 1 0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 1 1 0 0 10/0(12/0)

20 Protobothrops
mucrosquamatus 1 0 0 3 0 1 0 0 0 0 1 1 2 1 0 0 0 0 1 0 0 0 1 0 0 0 9/0(12/0)

21 Pogona vitticeps 2 0 0 2 0 0 1 0 0 0 1 1 4 1 0 0 0 0 1 0 0 0 1 1 0 0 10/0(15/0)
22 Gekko japonicus 2 0 0 1 0 1 1 0 0 0 1 1 2 1 0 0 0 0 1 0 0 0 1 1 0 0 11/0(13/0)

Amphibia 23 Xenopus tropicalis 2 0 0 2 4 0 0 0 0 0 1 0 2 1 2 1 0 0 1 1 0 0 1 1 0 0 12/0(20/0)
Sarcopterygii

(lobe-finned fishes) 24 Latimeria chalumnae 1 0 0 2 0 0 1 0 0 1 1 0 1(1) 2 1 1 0 0 1 0 0 0 3 0 0 0 11/0(16/1)

Actinopterygii
(ray-finned fishes)

25 Xiphophorus maculatus 1 0 0 2 0 0 1 0 0 0 1 0 2 1 1 1 0 0 0 0 0 0 1 3 6 0 11/0(20/0)
26 Oryzias latipes 1 0 0 1 0 0 1 0 1 0 1 0 2 1 1 1 0 0 0 0 0 0 1 1 0 0 11/0(12/0)
27 Oreochromis niloticus 1 0 0 5 0 0 1 0 1 0 1 0 2 1 2 1 0 0 0 0 0 0 3 3 3 0 12/0(24/0)
28 Gasterosteus aculeatus 1 0 0 1 0 0 1 0 0 0 1 0 3 1 1 1 0 0 0 0 0 0 2 1 0 0 10/0(13/0)
29 Takifugu rubripes 1 0 0 1 0 0 1 0 0 0 1 0 2 1 1 1 0 0 0 0 0 0 1 1 1 0 11/0(12/0)
30 Tetraodon nigroviridis 1 0 0 1 0 0 1 0 0 0 1 0 2 1 1 1 0 0 0 0 0 0 1 1 1 0 11/0(12/0)
31 Gadus morhua 0 0 0 0 0 0 1 0 7 0 1 0 0 1 12 5 0 0 0 0 0 0 1 12 1 0 9/0(41/0)
32 Danio rerio 1 0 0 1 0 0 1 0 0 0 1 3 2 1(2) 3 1 0 0 0 0 2 6 1 1 0 0 13/0(26/2)
33 Ictalurus punctatus 1 0 0 1 0 0 1 0 1 0 1 2 3 1 2 1 0 0 0 0 1 2 1 1 0 1 15/0(20/0)

Cephalaspidomorphi
(lampreys) 34 Petromyzon marinus 0 0 0 0 4 0 0 2 0 0 1 0 0 7/8 7/8 0 0 0 0 0 0 0 3 1 0 0 6/0(13/0)

The color indicates gene numbers. The absence is shown in yellow with “0”. Presence without duplicates in red with “1” and number of duplicates copies in blue. The “F/P” indicates
functional/pseudogene TLRs.
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Figure 2. Molecular evolution of vertebrate TLR gene family with events of TLR subfamily gains and
losses shown on the consensus phylogeny made based on published literature. The dates were inferred
using http://www.timetree.org/. The gains are represented by a star and the triangle shows loss of
TLR subfamily.

3.2. Synteny of TLR Supergene Family in Vertebrates

Synteny analysis has been fundamental in identifying conserved genomic arrangements and
orthologous relationships. Synteny analyses highlighted the genomic organization of TLRs (Figure 3,
Supplementary File 2 A-P) which helped evaluate and interpret TLR gene family evolution and
levels of homology of TLR genes in different genomes. Lineage-specific TLRs, e.g., fish-specific and
tetrapod-specific TLRs, showed highly conserved synteny. In contrast, the coelacanth showed shared
features with both fish and tetrapods. Only TLR3, TLR5M, TLR7, and TLR8 genes showed conserved
synteny across vertebrates (from fishes to mammals) (Figure 3).

http://www.timetree.org/
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Figure 3. Genomic organization of TLRs clusters present in two or more classes of vertebrates. (a)
Syntenic organization of TLR6, TLR1, and TLR10 genes whereas only TLR1 is widespread across all
vertebrates; (b) Syntenic organization of TLR2 genes; (c) Syntenic organization of TLR3; (d) Syntenic
organization of TLR4 only present in mammals, avians, and reptiles; (e) Syntenic organization of TLR5;
(f) Syntenic organization of TLR7 and TLR8; (g) Syntenic organization of TLR9 which is absent in avian
and reptilian; (h) Syntenic organization of TLR13 present in tetrapods (with exception of avian); (i)
Syntenic organization of TLR15 exclusive of reptiles and avian; (j) Syntenic organization of TLR21.

3.3. Phylogenetic Analysis of Vertebrate TLR Supergene Family

The TLR data from diverse vertebrates (Figure 1 and Table 1) used for the phylogenetic
reconstruction of the TLR supergene family strongly supports the classification of TLRs into six
families [23], along with new subfamilies that shape the dynamic distribution of the TLR supergene
family (Table 1 and Figure 1). Most of the new subfamilies belong to TLR family 1 and 11, as 10
subfamilies TLR1, TLR2, TLR6, TLR10, TLR14, TLR15, TLR18, TLR24, TLR25, and TLR27 grouped
in TLR1, and 10 subfamilies TLR11-TLR13, TLR16, TLR19–TLR23, and TLR26 grouped in TLR11. In
contrast, no new subfamilies gain in the remaining TLR families TLR3, TLR4, TLR5, and family TLR7
were recognized (subfamilies TLR7, TLR8, and TLR9).

We found that the TLR13 clade consists of two diverse groups, one with coelacanth and mammals
(labeled as 13M) and another with amphibian and reptiles (labeled as 13X) (Figure 1), which were
supported by high bootstrap values and our synteny analysis (Supplementary File 2 H1-H2). We
clarified the dubious naming of TLR14, TLR18, and TLR25 and address this ambiguity by assessing
synteny (genomic arrangement of gene and flanking genes) and relative phylogenetic relationships.
Our phylogeny and syntenic analyses suggest that TLR14 [75], which was first described in Fugu,
should also be placed within TLR18 with zebrafish and catfish and be renamed TLR18 (Supplementary
File 2-I2). The genes that have been previously referred to as TLR18 in medaka, tilapia, and cod are
syntenic and form a monophyletic clade with TLR25 from catfish [76] and should thus be classified as
TLR25 (Figure 1 and Supplementary File 2P).

Since the frog TLR12 is more similar to the zebrafish TLR19 than the mammalian TLR12, and
does not retain a conserved syntenic relationship with either TLR12 and TLR19, we retained it as
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TLR16 [23]. Overall, this TLR dataset, derived from an extended evaluation of additional newly
sequenced genomes, provided an improved evolutionary assessment and a more accurate classification
of the TLR supergene family phylogeny across vertebrates (Table 1, Figure 2).

Gene Conversion and Recombination

Gene conversion is common in tandem-duplicated gene paralogs located in close proximity. Gene
conversion and recombination can bias phylogenetic inference and therefore care should be taken to
identify signals of those events. The duplicated avian TLR gene paralogs of TLR1 and TLR2 are closely
related to their orthologous counterpart from other species (i.e., within species paralogs TLR1A is
closely related to TLR1B and TLR2A with TLR2B). This is caused by concerted evolution, possibly
through gene conversion, leading to homogenization of the paralogs and reduced phylogenetic signals.
Gene conversions have been reported in avian TLR1 and TLR2 [77]. TLR1 and TLR2 are closely located
and are separated by a short physical distance (~12 kb and ~5 Kb between TLR1 and TLR2 duplicates,
respectively) [46,64]. The C terminal of TLR1A/B ranging from LRR14 to the TIR domain is under
gene conversion, whereas in TLR2A/B, the N terminal region (N terminal to LRR8) and C terminal
region (LRR15 till TIR) are homogenized [46,64,77]. These homogenized regions may have important
conserved functions [77].

3.4. Vertebrate TLRs Domain Architecture

TLRs consist of three major characteristic domains (extracellular domain (ECD), transmembrane
domain (TM), and toll/interleukin-I receptor domain (TIR)). The one exception is TLR5S, which lacks
the characteristic TIR domain. The TM domain connects the ECD with the cytoplasmic domain. The
ECD is a solenoid shaped structure involved in interaction with PAMPs present in varied pathogens
and is also involved in the formation of a M shaped homo and/or hetero dimer, which leads to signaling
cascade by TIR activation [78].

The comparison of predicted architecture of ECD from various lineages of vertebrates: stickleback,
coelacanth, Chinese soft-shell turtle, lizard, chicken (Figure 4, Supplementary File 3) [78] showed
variable numbers of leucine rich repeats (LRRs). We also compared the domain architecture of TLRs
from stickleback, coelacanth, Chinese soft shell turtle, Anolis lizard, and chicken and found a single
domain in TLR 3, 5, 7, 8, 9, 13, 15, 18, 21, 22, and 27, whereas three domains were present in TLR 1, 2,
and 4 (except in the coelacanth TLR1 exhibiting just a single domain) (Figure 4, Supplementary File 3).

Each LRR was around 20–30 amino acids long and had a conserved LxxLxLxxN leucine rich motif
and a remaining variable region. The hydrophobic leucine residues constitute the conserved concave
surface of the parallel beta strands forming the hydrophobic core, where asparagine is involved in the
hydrogen bonding providing structural integrity [79]. Leucine can be replaced with other hydrophobic
amino acids, whereas asparagine can also be replaced with other hydrogen donor’s like threonine,
serine, and cysteine. The variable ‘x’ residues are responsible for the TLR function.

The exposed and convex surface of ECD is formed by the variable part of LRR repeat and this
region is involved in PAMPs recognition. The cysteine clusters capping present in the terminal LRRs
(LRR-NT and LRR-CT) protect the terminal hydrophobic residues. The human TLR1, 2, 4, 6, and 10
have all three domains, whereas TLR 3, 5, 7, 8, and 9 have a single domain [79]. This categorization is
due to the interrupted asparagine in LRRs of the central domain, which results in structural flexibility,
whereas uniform LRRs repeats with continuous asparagine results in single domain architecture [78].
The comparison of the domain architecture of representative TLRs from stickleback, coelacanth,
Chinese soft shell turtle, Anolis lizard, and chicken was consistent with the human TLRs (Figure 4,
Supplementary File 3).
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3.5. Rapid Adaptive Evolution of Avian TLRs

We found variable numbers of positive selection sites among different TLR genes. The positive
selection model M2a and M8 implemented in PAML4.7 [51] detected significant signals of positive
selection in all genes (Table 2). The reliability of sites was well supported by the fact that most positive
selected sites with PP > 0.99 under M8 also had PP > 0.90 in M2a. The M8 model found higher number
of sites compared to the more conservative model M2a (Table 2). We found significant evidence of
positive selection in all avian TLRs studied with different percentage of positively selected sites for
different genes ranging from 11% in TLR15 to 5% in TLR7. The highest omega values were found in the
TLR4, TLR2A, and TLR7 with 2.6, 2.6, and 2.5, respectively, while TLR15 had the lowest value of 1.5.

The number of positive selected sites with the highest (BEB) posterior probabilities (PP) also varied
and the maximum number of sites with high PP were found in TLR7 (viral) and TLR4 (non-viral),
which shows for the first time that both viral and non-viral TLR genes follow a positive selective
regime (Table 2). In TLR7, Model M8 detected high numbers of positive selected (PS) sites (4.5% sites,
total of 42 positively selected sites, 30 sites PP > 0.90, 25 sites PP > 0.95 and 23 sites PP > 0.99) and a
somewhat similar scenario was found in TLR4 (5.5% sites, total of 45 sites, 29 sites PP > 0.90, 27 sites
PP > 0.95 and 20 sites PP > 0.99). TLR3 had fewer sites with high PP (e.g., of 5% positive selected sites
in TLR3 only five sites had PP > 0.90). Overall these results show that the number and strength of
positive selection sites varies in the TLR supergene family and that both viral (TLR7) and non-viral
(TLR4) TLRs evolved under strong positive selection.

The avian TLR1/TLR2 forms heterodimers that are activated by both diacyl (Malp-2) and triacyl
(Pam3) lipopeptides [13,79,80], with the exception of TLR2a/ TLR1b, which are activated by Pam3
but not by Malp-2. In addition, TLR2a/TLRL1b is activated by peptidoglycan [77]. We found 12
positively-selected (PS) sites in TLR1A, 26 PS sites in TLR1B, 34 PS sites in TLR2A, and 25 PS sites in
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TLR2B. The previously reported PS site 304 in TLR2A [46,77] and PS sites 293, 295, and 296 found in
TLR2B [46], corresponding to the chicken sequence, were also found in our study (Table 3).

Overall, of 12 sites in TLR1A (Tables 2–4, Figure 4, Supplementary File 4), 10 PS sites were present
in LRRs, of which five were in the variable region and possibly involved in the PAMP binding. Only
one site each was present in LRR-CT and TM. All 26 sites in TLR1B (Tables 2–4, Figure 4, Supplementary
File 4) were located in ECD with 7 and 13 sites in conserved and variable regions, respectively, and 4
sites in LRR-NT and 2 in LRR-CT. In TLR2A, 2 of 34 sites (Tables 2–4, Supplementary File 4) were in the
signal peptide, 4 in LRR-NT, and 17 of the remaining 28 sites present in LRRwere in the variable region.
All of the 34 sites found in TLR2A were present in ECD with 2 sites in the signal peptide region, 4 sites
in LRR-NT, and the other 28 in LRRs (21 in variable regions and remaining 7 in conserved regions).
We found 25 sites in TLR2B (Tables 2–4, Figure 4, Supplementary File 4), all of them in LRRs with
14 in the variable region and 11 in the conserved region. The PS sites found in our study could be
related with the a wide range of ligands as TLR2 recognizes a variety of compounds other than triacyl
lipoproteins, including lipoteichoic acids, lipoarabinomannan, and zymosan [18]. Also, the formation
of combinatorial binding sites by selection of TLR1 or TLR6 as the dimerization partner can explain, at
least in part, the broad ligand specificity. A similar mechanism might explain the extent that PS sites
found in TLR1 and TLR2 are shared with their counterparts in birds. The comparison of the chicken
TLR2A and TLR2B genes with respect to the human TLR2s reveals that PS sites 280, 292, 304, 308,
309, 311, 312, 315, 335, 344, 356, 372, 392, 393, and 413 of TLR2A and PS sites 260, 274, 295, 297, 298,
299, 302, 317, 328, 329, 343, 390, and 401 of TLR2B map at or near to the ligand-binding domain and
the dimerization surface, as identified from the crystal structure of the complex TLR2–TLR1 with the
tri-acylated Pam3CSK4 lipoprotein in humans and mice [13,81].

TLR3 recognizes dsRNA and prevents the spread of most viruses. TLR3-ECD binds with dsRNA
at two sites located at opposite ends of the TLR3 horseshoe structure. The first dsRNA:TLR3 interaction
site is located close to the C-terminus, on LRR19-LRR21 and the second dsRNA:TLR3 interaction site
is located on the N-terminal end (LRR-NT-LRR3) [82]. The intermolecular contact between the two
C-terminal domain regions of TLR3 coordinates and stabilizes the dimer by a series of protein–protein
interactions. Of 22 PS sites in TLR3 (Tables 2–4, Figure 4, Supplementary File 4), 2 are in signal peptides,
2 in LRR-NT, 2 in TM domains, 3 in the TIR domain, and 13 in LRRs. Of 13 sites in LRRs, 9 were in the
variable region. The PS sites found in TLR3 likely favor the recognition and protection against rapidly
evolving viral RNA [82].

TLR4 forms a heterodimer with myeloid differentiation factor 2 (MD-2) and recognizes diverse
LPS molecules [83,84] along with components of yeast, trypanosoma, and even viruses [20,81,85].
The ECD of TLR4 consists of three subdomains. N subdomain consists of LRR-NT and LRR 1-6, the
central subdomain ranges from LRR7-12 and the C subdomain consists of LRR 13-22 and LRR-CT. LPS
causes dimerization of the TLR4-MD-2 complex at the central and/or the C-terminal, and interaction
between TLR4 and LPS-MD-2 complex takes place at the concave surface between N and central
sub-domain [84]. We found 41 PS sites in TLR4 (Tables 2–4, Figure 4, Supplementary File 4), three
which were present in TM domain and one in TIR domain. The remaining 37 sites are present in ECD,
with 3 in LRR-CT and the others 34 in LRRs with 23 of these in the variable region and the 11 others in
the conserved region. The majority of the PS sites are present in regions involved in ligand binding
and dimerization.

The TLR4 has a 330-amino-acid-long variable region in ECD which is also known as the middle
region. Within the middle region there are 82 amino acids that are hyper-variable across species with
numerous species-specific changes [86]. The majority of the PS sites found in TLR4 were concentrated
near to the hyper-variable region. The primary contact interface between TLR4 and MD-2 involves two
chemically distinct regions, the A and B patches provided by the N-terminal and the central domains of
TLR4 and main dimerization interface of TLR4 located in the central C-terminal domain. The presence
of positive selected sites in TLR4–MD-2–LPS complex may support the remarkable versatility of the
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ligand recognition mechanisms employed by the TLR family, which is essential for defense against
diverse microbial infections [84,86].

The bacterial flagellin is a virulence factor recognized by TLR5 [87]. The residues 174–401 in
ECD of TLR5 are responsible for species-specific flagellin recognition [88]. The alpha and epsilon
Proteobacteria are able to evade TLR5 recognition by mutating key residues in the TLR5 recognition
site [89] and it is suggested that positive selection in primate TLR5 may be related with coevolution
between PRRs and their microbial ligands [81]. Twenty-six PS sites were found in TLR5 (Tables 2–4,
Figure 4, Supplementary File 4), with two sites each in signal peptide, LRR-NT, TM and TIR domains,
one site in LRR-CT and the remaining 17 sites in LRRs, of which seven were in the variable region and
10 in the conserved region. Seven of these PS sites were located in 228 amino acid region identified
previously [88] and thus could play an important role in the species-specific flagellin recognition
and defense.

TLR7 recognize single-stranded RNAs [90]. In TLR7, we found 4, 1 and 4 PS sites in LRR-NT, TM,
and TIR domain, respectively, and 39 PS sites were present in LRRs of which 33 sites were in the variable
region (Tables 2–4, Figure 4, Supplementary File 4). This variable region directly interacts with the
ssRNA. Thus, the high proportion of PS sites in viral TLR7 is probably related with the host pathogen
arms race. TLR7 is also known to be evolving under strong selection pressure in mammals [79,85].
Recent studies found TLR7 to be under positive selection in bats, which are natural reservoirs and
carriers of numerous deadly viruses [91]. The long-term coexistence of bats and viruses imposed strong
selective pressures on the bat genome, with strong positive selection occurring in genes like TLR7
involved in the innate immune system, the first line of anti-viral defense [92]. The rapid evolution of
viral TLR and its associated role in maintaining and disseminating viruses (e.g., in bats), suggest that it
might have a similar role in the rapid evolution of viral TLR7 in birds. The avian TLR7 is a candidate
for the detection of influenza [93] and has evolved to recognize ssRNA (with very high mutation rates
due to lack of mismatch repair), pointing towards the long coexistence of viruses and birds. This may
help understand the role of birds as natural reservoirs and vectors of zoonotic pathogens [93].

TLR15s recognize yeast-derived agonists [94]. We found 41 PS sites (Table 3 and Supplementary
File 4) with 1, 3, 4, 2, and 1 PS sites in the signal peptide, LRR-NT, LRR-CT, TM, and TIR domains,
respectively, and 30 sites in LRRs, of which 14 were present in the variable region. None of the PS sites
were located in the highly conserved three box regions of the TIR domain [95,96]. The exact mechanism
of action of TLR15 is unknown but the presence of PS sites is in consistent with other TLRs involved in
immune defense.

Evidence of positive-selected sites was further assessed using by multiple complementary
approaches (SLAC, FEL, REL, MEME, and FUBAR) implemented in the HyPhy package (Table 3)
(http://www.hyphy.org) [56] (http://www.datamonkey.org/) [54,57] in viral and non-viral avian TLRs
(Table 3). Sites detected by more than one method (concordant of two or more methods) were thus
considered to be robust candidates for positive selection (Table 3) [79]. We further implemented
TreeSAAP [55] to detect positive radical changes in physiochemical properties of amino acids, which
in turn can affect the structure and function of proteins. The TreeSAAP results also complemented our
findings of positive selection (Table 4 and Figure 4), with most sites under selection belonging to type
I (sites with six or more positive radical changes) or type II radical changes (sites with less than six
positive radical changes).

Finally, homology modeling elucidated the role of the highly significant positive selected sites
(Table 4) on the structural and functional diversification of TLRs (Figure 4). Since the majority of
positive selected sites restricted to the variable extracellular domain (ECD) are involved in the ligand
recognition and dimerization, this highlights their importance in the structure and function of these
proteins (Figure 4). This strongly supports the hypothesis that the host–pathogen arms race drives the
rapid evolution of TLRs.

http://www.hyphy.org
http://www.datamonkey.org/
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Table 2. PAML results for nested site model comparisons for test of positive selection.

Gene Model Likelihood
(lnL) Parameters 2∆lnL (LRT) Significance

(P-Value)
No. of PS

Sites

TL
R

1A

M1A −8578.3621 p:0.65788 0.34212
w:0.07820 1.00000

M2A −8568.3574 p:0.65059 0.30720 0.04221 20.0096 4.52 × 10−5 9, 1 *, 0 **
w:0.08172 1.00000 2.43025

M7 −8574.9757 p = 0.24899 q = 0.48700

M8 −8557.0925 p0 = 0.93283 p = 0.32098 q = 0.81643 35.7664 1.71 × 10−8 9, 5 *, 1 **
(p1 = 0.06717) w = 1.97137

TL
R

1B

M1A −15,198.7487 p:0.64884 0.35116
w:0.09042 1.00000

M2A −15,173.1918 p:0.63406 0.31995 0.04599 51.1138 7.96 × 10−12 12, 7 *, 2 **
w:0.09272 1.00000 2.46912

M7 −15,185.5024 p = 0.25368 q = 0.45987

M8 −15,147.3293 p0 = 0.91288 p = 0.34184 q = 0.83943 76.3463 2.64 × 10−17 20, 14 *, 4 **
(p1 = 0.08712) w = 1.88577

TL
R

2A

M1A −14,595.1078 p:0.58122 0.41878
w:0.14194 1.00000

M2A −14,510.3897 p:0.53089 0.40739 0.06172 169.4363 1.61 × 10−37 18, 13 *, 11 **
w:0.13788 1.00000 3.10556

M7 −14,590.6910 p = 0.34904 q = 0.40071

M8 −14,500.5430 p0 = 0.91485 p = 0.40926 q = 0.52204 180.2960 7.07 × 10−40 20, 16 *, 11 **
(p1 = 0.08515) w = 2.56498

TL
R

2B

M1A −17,453.3413 p:0.70636 0.29364
w:0.08820 1.00000

M2A −17,429.5429 p:0.69833 0.27518 0.02650 47.5967 4.62 × 10−11 10, 6 *, 0 **
w:0.09079 1.00000 2.72661

M7 −17,439.5787 p = 0.24244 q = 0.52859

M8 −17,403.8206 p0 = 0.94556 p = 0.29832 q = 0.80619 71.5161 2.95 × 10−16 12, 10 *, 5 **
(p1 = 0.05444) w = 1.98273

TL
R

3

M1A −17,682.7154 p:0.70932 0.29068
w:0.10081 1.00000

M2A −17,667.5931 p:0.70389 0.28584 0.01027 30.2446 2.71 × 10−7 2, 2 *, 2 **
w:0.10207 1.00000 3.25211

M7 −17,680.6455 p = 0.29425 q = 0.62674

M8 −17,654.9577 p0 = 0.94774 p = 0.38756 q = 1.03153 51.3755 6.98 × 10−12 5, 2 *, 2 **
(p1 = 0.05226) w = 1.87953

TL
R

4

M1A −27,142.6224 p:0.65430 0.34570
w:0.08873 1.00000

M2A −26,989.6674 p:0.63053 0.32499 0.04449 305.9101 3.74 × 10−67 24, 19 *, 16 **
w:0.08946 1.00000 3.12384

M7 −27,104.3280 p = 0.24737 q = 0.45214

M8 −26,948.5913 p0 = 0.94429 p = 0.28421 q = 0.58752 311.4734 2.31 × 10−68 29, 27 *, 20 **
(p1 = 0.05571) w = 2.60768
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Table 2. Cont.

Gene Model Likelihood
(lnL) Parameters 2∆lnL (LRT) Significance

(P-Value)
No. of PS

Sites

TL
R

5

M1A −10,761.5148 p:0.64778 0.35222
w:0.07521 1.00000

M2A −10,754.4425 p:0.65397 0.29395 0.05208 14.1446 8.48 × 10−4 0, 0 *, 0 **
w:0.08616 1.00000 2.27090

M7 −10,767.1968 p = 0.16412 q = 0.25713

M8 −10,751.9386 p0 = 0.88630 p = 0.31653 q = 0.82154 30.5162 2.36 × 10−7 11, 2 *, 0 **
(p1 = 0.11370) w = 1.85950

TL
R

7

M1A −31,101.4634 p:0.72733 0.27267
w:0.06793 1.00000

M2A −30,961.2534 p:0.71077 0.25222 0.03700 280.4200 1.28 × 10−61 25, 24 *, 19 **
w:0.06917 1.00000 3.03247

M7 −31,044.1197 p = 0.18953 q = 0.48287

M8 −30,894.4389 p0 = 0.95423 p = 0.22385 q = 0.67658 299.3616 9.87 × 10−66 30, 25 *, 23 **
(p1 = 0.04577) w = 2.52048

TL
R

15

M1A −38,867.7085 p:0.66864 0.33136
w:0.09826 1.00000

M2A −38,835.1856 p:0.65901 0.31957 0.02142 65.0457 7.51 × 10−15 8, 8 *, 5 **
w:0.09812 1.00000 2.29015

M7 −38,651.1989 p = 0.32880 q = 0.73980

M8 −38,608.5273 p0 = 0.94189 p = 0.39709 q = 1.16306 85.3434 2.94 × 10−19 9, 8 *, 3 **
(p1 = 0.05811) w = 1.50749

The number of positively selected sites are shown in increasing order of posterior probability with PP > 0.90%,
PP > 0.95% and PP > 0.99%. The number of positively selected sites are shown in increasing order of posterior
probability. Sites with PP > 0.90%, (*) PP > 0.95% and (**) PP > 0.99%. The numbering of positive selected sites in as
per sequences given in Supplementary File 4 Tables S2–S10.
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Table 3. Positive selected sites identified by various methods (PAML-M8, SLAC, FEL, REL, MEME, FUBAR, and Integrated).

Gene M8 a SLAC FEL REL MEME FUBAR Integrated b Total Common
Sites c (X/Y)

TLR1A
258, 400, 408,
423, 450, 460,
483, 502, 591

388, 429, 566 294, 342, 384, 388, 429,
460, 535, 566, 611

297, 301, 384, 388, 400,
429, 438, 460, 463, 470,

550, 566, 611

266, 284, 294, 346, 384,
388, 400, 411, 429, 460,
461, 463, 518, 535, 550,
559, 566, 571, 599, 608,

611

388, 429, 460,
566

266, 284, 294, 297, 301, 342, 346,
384, 388, 400, 408, 411, 429, 438,
460, 461, 463, 470, 518, 535, 550,

559, 566, 571, 599, 608, 611

11/12

TLR1B

41, 59, 88, 122,
148, 149, 168,
175, 248, 256,
277, 286, 298,
308, 318, 350,
357, 439, 486,

488

38, 41, 119, 120,
122, 123, 148,
168, 175, 216,
232, 277, 398,

414

11, 38, 41, 49, 62, 67,
119, 120, 122, 123, 128,
148, 156, 167, 168, 175,
216, 232, 266, 277, 308,
371, 398, 408, 414, 627

38, 41, 59, 119, 120, 122,
123, 148, 150, 168, 175,
181, 207, 216, 232, 248,
277, 286, 308, 311, 398,

414, 485

26, 38, 41, 43, 44, 62, 92,
119, 120, 122, 123, 127,

144, 146,
148, 156, 167, 168, 175,
194, 206, 214, 216, 232,
266, 277, 308, 309, 311,
353, 366, 371, 398, 407,
408, 414, 432, 447, 639

38, 41, 119,
120, 122, 123,
148, 168, 175,
216, 232, 277,
308, 398, 414

11, 26, 38, 41, 43, 44, 49, 59, 62, 67,
92, 119, 120, 122, 123, 127, 128, 144,

146, 148, 150, 156, 167, 168, 175,
181, 194, 206, 207, 214,

216, 232, 248, 266, 277, 286, 298,
308, 309, 311, 353, 366, 371, 398,

407, 408, 414, 432, 447, 485, 627, 639

25/26

TLR2A

7, 16, 59, 67,
108, 129, 171,
206, 220, 270,

304, 307,
308, 311, 312,

338, 363,
372, 393, 413

16, 63, 108,
292, 304, 308,
311, 315, 335,
393, 418, 419

16, 28, 44, 45, 63, 74,
77, 108, 171, 209, 217,

235, 257, 292, 304, 308,
309, 311, 315, 335, 344,
356, 372, 393, 418, 419

7, 16, 67, 108, 129, 171,
217, 235, 276, 280, 292,
306, 308, 311, 312, 335,

356, 372, 387,
392, 393, 413, 416, 418,

419

16, 19, 28, 44, 63, 67, 77,
96, 108, 122, 125, 138,
171, 174, 187, 195, 209,
247, 250, 257, 264, 277,

280, 292, 294,
304, 308, 309, 311, 315,
322, 335, 344, 347, 349,
367, 372, 393, 418, 419,

425

16, 108, 171,
292, 308, 311,

372, 392, 413, 418

7, 16, 19, 28, 44, 45, 59, 63, 67, 74,
77, 96, 108, 122, 125, 129, 138, 171,
174, 187, 195, 206, 209, 217, 235,
247, 250, 257, 264, 276, 277, 280,

292, 294, 304, 306, 308,
309, 311, 312, 315, 322, 335, 338,
344, 347, 349, 356, 367, 372, 387,
392, 393, 413, 416, 418, 419, 425

31/34

TLR2B

50, 58, 99, 162,
175, 211, 260,
295, 297, 298,

329, 456

89, 99, 137,
162, 176, 297,
328, 329, 390

42, 48,
89, 99, 137, 149, 162, 176,

199, 200, 219, 257,
274, 295, 297, 298, 299,

300, 302, 317, 329,
343, 390, 401, 412,

415,553, 600, 614, 625,
734

89, 99, 162, 208,
295, 297, 298, 328, 329,

331, 343, 625

25, 58, 68, 75,
89, 99, 137,

149, 162, 176, 189, 211,
226, 234, 239,

260, 274, 295, 297,
299, 302, 317, 329, 335,
343, 383, 390, 401, 415,
467, 496, 499, 500, 542,

550, 597, 625, 679

89, 99, 162,
295, 297, 298,
328, 343, 625

25, 42, 48, 58, 68, 75,
89, 99, 137, 149, 162, 175, 176, 189,

199, 200, 208, 211, 219, 226, 234, 239,
257, 260, 274, 295, 297, 298, 299,
300, 302, 317, 328, 329, 331, 335,
343, 383, 390, 401, 412, 415, 456,
467, 496, 499, 500, 542, 550, 553,
597, 600, 603, 614, 625, 679, 734

23/25
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Table 3. Cont.

Gene M8 a SLAC FEL REL MEME FUBAR Integrated b Total Common
Sites c (X/Y)

TLR3
52, 166,

214, 237, 703
25, 237, 307,
334, 703, 746

9, 11, 19, 25, 30, 66,
68, 74, 214, 237, 263,

307, 334, 346, 370, 447,
468, 557, 698, 703,

744, 746, 815

25, 30, 52, 74, 113, 137,
158, 166, 179, 180,

214, 237, 288, 307, 312,
326, 334, 343, 346, 447,
461, 463, 497, 556, 557,

619, 703, 746, 815

9, 25, 30, 38, 48, 68, 74,
93, 108, 192, 214, 234,

237, 263, 307, 334, 346,
349, 382, 393, 439, 447,
451, 461, 473, 547, 557,

577, 605, 664, 677,
698, 703, 707, 715, 744,

746, 815

25, 52, 158,
214, 237, 334,

346, 703, 746, 815

9, 11, 19, 25, 30, 38, 48, 52, 66,
68, 74, 93, 108, 113, 137, 158, 166,

179, 180, 192, 214, 234, 237, 263,288,
307, 312, 326, 334, 343, 346, 349,
370, 382, 393, 439, 447, 451, 461,
463, 468, 473, 497, 547, 556, 557,
577, 605, 619, 664, 677, 698, 703,

707, 715, 744, 746, 815

22/22

TLR4

187, 245, 270,
271, 274, 299,
302, 323, 352,
370, 375, 379,
380, 387, 398,
403, 405, 406,
423, 465, 522,

595, 624,
627, 640, 645,
650, 655, 834

106, 124, 146,
187, 245, 271,
301, 302, 352,
379, 380, 423,
467, 640, 654

86, 95, 106, 119, 124,
127, 141, 146, 187, 204,

245, 270, 271, 277,
301, 302, 329, 352, 363,
379, 380, 403, 423, 467,
509, 596, 603, 606, 624,
639, 640, 654, 663, 732

62, 86, 106, 124, 146,
187, 245, 270, 271, 301,
302, 303, 323, 345, 352,
363, 370, 379, 380, 387,
403, 423, 430, 438, 444,
467, 522, 596, 603, 624,

627, 640, 654, 703

61, 63, 64, 85, 86, 95, 106,
115, 119, 124, 141, 146,

155, 180, 187, 223,
245, 270, 271, 273, 282,
297, 301, 302, 333, 345,
352, 363, 370, 379, 380,
397, 398, 403, 423, 435,
445, 467, 469, 474, 477,
493, 533, 548, 549, 562,
569, 570, 596, 597, 603,
606, 614, 624, 640, 654,

732, 780, 784, 827

187, 271, 301,
302, 352, 379,

380, 403, 423, 467,
522, 596, 603, 624

61, 62, 63, 64, 85, 86, 95,
106, 119, 124, 127, 141, 146, 155,
180, 187, 204, 223, 245, 270, 271,

273, 274, 277, 282, 297, 299,
301, 302, 303, 323, 329, 333,

345, 352, 363, 370, 375, 379, 380,
387, 397, 398, 403, 405, 406, 423,
430, 435, 438, 444, 445, 465, 467,
469, 474, 477, 493, 509, 522, 533,
548, 549, 562, 569, 570, 595, 596,
597, 603, 606, 614, 624, 627, 639,
640, 645, 650, 654, 655, 663, 703,

732, 780, 784, 827, 834

34/45

TLR5
20, 106, 130, 132,
147, 209, 237, 281,

468, 607, 848
848

22, 24, 35, 53, 101, 108,
118, 130, 147, 173, 201,
226, 231, 258, 261, 264,
422, 466, 468, 656, 659,

833, 848

20, 22, 33, 35, 106, 130,
132, 147, 237, 258, 261,
299, 468, 632, 646, 848

13, 22, 24, 87, 130, 173,
181, 183, 196, 199, 201,
205, 217, 226, 231, 258,
261, 264, 265, 288, 378,
422, 424, 466, 501, 525,
625, 626, 632, 648, 650,
656, 659, 679, 833, 848,

859

22, 35, 130,
261, 468, 848,

13, 20, 22, 24, 33, 35, 53, 87, 101,
106, 108, 118, 130, 132, 147, 173,

181, 183, 196, 199, 201, 205, 209, 217,
226, 231, 237, 258, 261, 264, 265,
281, 288, 299, 378, 422, 424, 466,
468, 501, 525, 625, 626, 632, 646,

648, 650, 656, 659, 679, 833, 848, 859

24/26
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Table 3. Cont.

Gene M8 a SLAC FEL REL MEME FUBAR Integrated b Total Common
Sites c (X/Y)

TLR7

65, 73, 118, 121,
122, 123, 148,

152, 156, 284, 334,
360, 395, 422, 426,

503, 524, 528,
549, 577, 677,
696, 704, 706,
722, 726, 746,
747, 758, 920

38, 56, 73, 121,
123, 156, 176, 395,
503, 521, 549, 577,
664, 681, 704, 722,
726, 751, 919, 920,

1049

56, 73, 121, 123, 156,
169, 176, 229, 253,

279, 310, 395, 503, 521,
524, 528, 549, 577, 642,
664, 681, 701, 704, 706,
722, 726, 737, 751, 851,

857, 860, 919,
920, 951, 1049

38, 73, 89, 95, 97,
121, 122, 123, 148, 152,
156, 176, 205, 279, 284,
334, 360, 366, 395, 398,

402, 422, 426, 494,
503, 524, 528, 549, 550,

573, 577, 678, 701,
704, 706, 712, 722, 726,

746, 920

38, 56, 73, 86, 95, 111,
121, 123, 156, 167, 169,

174, 199, 229, 246,
279, 310, 313, 321, 361,
377, 395, 463, 465, 495,

503, 512, 521, 524,
528, 549, 577, 622, 624,

664, 681, 686, 698,
701, 704, 706, 708,

712, 722, 726, 737, 747, 751,
768, 792, 857, 895,

919, 920, 951, 1038, 1049

73, 121, 123,
156, 205, 395,
503, 524, 528,
549, 577, 704,
706, 722, 726,

919, 920

38, 56, 65, 73, 86, 89, 95, 97, 111,
118, 121, 122, 123, 148, 152, 156,
167, 169, 174, 176, 199, 205, 229,
246, 253, 279, 284, 310, 313, 321,
334, 360, 361, 366, 377, 395, 398,
402, 422, 426, 463, 465, 494, 495,
503, 512, 521, 524, 528, 549, 550,
573, 577, 622, 624, 642, 664, 677,

678, 681, 686, 696, 698,
701, 704, 706, 708,

712, 722, 726, 737, 746, 747, 751,
758, 768, 792, 851, 857, 860, 895,

919, 920, 951, 1038, 1049

44/49

TLR15
79, 119, 185, 253,

262, 326, 333,
353, 360

19, 26, 33, 65, 79,
89, 114, 136, 151,

169, 191, 203,
205, 268, 289, 292,
293, 339, 343, 359,
366, 413, 436, 458,

621, 623, 627

26, 33, 38, 65, 89,
102, 114, 136, 145,

151, 169, 191, 203, 259,
268, 289, 292, 293,

339, 343, 359, 366, 413,
436, 458, 621, 623,

627, 649, 656, 661, 725

11, 13, 16, 17, 19, 26, 31,
33, 38, 48, 65, 79,

89, 102, 114, 120, 127,
128, 132, 136, 145, 149,
151, 158, 160, 164, 169,
170, 181, 191, 193, 194,
196, 200, 203, 205, 226,

249, 259, 267, 268,
289, 292, 293, 296, 315,
339, 343, 359, 363, 366,
382, 392, 413, 416, 436,
439, 450, 458, 463, 494,
495, 521, 523, 528, 550,
621, 623, 627, 649, 656,
661, 671, 676, 705, 712,

725, 813

12, 26, 36, 54, 65, 89, 102,
105, 107, 114, 136, 143,
151, 159, 162, 169, 175,
186, 187, 191, 203, 225,
226, 229, 230, 232, 235,
259, 263, 268, 282, 285,
289, 292, 293, 329, 335,
339, 343, 359, 363, 366,

367, 383, 400,
413, 436, 458, 485, 530,
543, 550, 621, 623, 627,
634, 651, 661, 679, 815,
839, 862, 865, 872, 873

26, 89, 114, 136,
169, 191, 203, 259,
268, 289, 292, 293,
339, 343, 359, 366,
413, 436, 458, 621,

623, 661

11, 12, 13, 16, 17, 19, 26, 31, 33, 36,
38, 48, 54, 65, 79, 89, 102, 105, 107,
114, 120, 127, 128, 132, 136, 143,
145, 149, 151, 158, 159, 160, 162,

164, 169, 170, 175, 181, 185, 186, 187,
191, 193, 194, 196, 200, 203, 205,
225, 226, 229, 230, 232, 235, 249,

259, 263, 267, 268, 282, 285,
289, 292, 293, 296, 315, 326, 329,
335, 339, 343, 359, 360, 363, 366,
367, 382, 383, 392, 400, 413, 416,
436, 439, 450, 458, 463, 485, 494,
495, 521, 523, 528, 530, 543, 550,

621, 623, 627, 634, 649, 651,
656, 661, 671, 676, 679, 705, 712,

725, 813, 815, 839, 862, 865, 872, 873

38/41

The positively selected sites under SLAC, FEL, REL, MEME, and FUBAR were identified with default cutoff in Datamonkey online server. The sites detected as positively selected by more
than one method are underlined. (a) All sites having PP > 0.90 under M8 model are shown and sites with PP > 0.99 are in bold. (b) Integrative approach includes all the sites identified by
M8 (bold), SLAC, FEL, REL, MEME, and FUBAR. (c) Common sites X: Total number of sites detected by two or more methods (underlined) Y: Total number of sites detected by two or more
methods plus sites with PP > 99 in M8 site model (bold).
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Table 4. TreeSAAP results for positive selected sites detected with PP > 0.99 in M8 model which also
had PP > 0.90 in M2a. Type I radical changes detected by TreeSAAP are underlined.

Gene Codon Amino
Acid M2a M8 Total Chemical Structural Other

TLR1A 408 R 2.467 +- 0.293 * 2.200 +- 0.468 ** 1 1 RF 0 0

TLR1B

148 V 2.495 +- 0.123 ** 1.691 +- 0.398 ** 1 0 1 K0 0

175 S 2.484 +- 0.176 * 1.688 +- 0.401 ** 4 3 RF, Ra, Hp 1 Bl 0

298 A 2.476 +- 0.207 * 1.688 +- 0.400 **

308 N 2.491 +- 0.141 ** 1.691 +- 0.398 ** 2 1 H 1 K0 0

TLR2A

16 Q 3.393 +- 0.312 ** 2.819 +- 0.468 ** 2 2 pHi, H 0 0

59 P 3.374 +- 0.374 ** 2.808 +- 0.488 ** 2 2 Ra, Hp 0 0

67 V 3.393 +- 0.313 ** 2.819 +- 0.468 ** 8 3 pHi, µ, Ra 4 MV, V0, Bl, Hc 1 MW

108 G 3.393 +- 0.311 ** 2.819 +- 0.467 ** 7 5 H, RF, Hnc, Ht, Ra 2 Bl 0

171 Q 3.394 +- 0.309 ** 2.820 +- 0.466 ** 2 2 Ht, pHi 0 0

206 S 3.388 +- 0.330 ** 2.815 +- 0.475 ** 9 4 RF, µ, Ra, Ht 4 MV, V0, Bl, Hc 1 MW

304 A 3.394 +- 0.309 ** 2.820 +- 0.466 ** 9 7 RF, H, Ra, Hp, pHi, Pr, p 2 K0, Bl 0

308 T 3.391 +- 0.317 ** 2.818 +- 0.469 ** 5 5 RF, H, Ra, Hp, pHi, Pr 0 0

311 A 3.394 +- 0.309 ** 2.820 +- 0.466 ** 1 1 Pr 0 0

312 R 3.391 +- 0.317 ** 2.818 +- 0.469 ** 6 4 pHi, H, Hnc, Ra 2 V0, HC 0

338 E 3.371 +- 0.385 ** 2.807 +- 0.487 ** 2 2 pHi, RF 0 0

TLR2B

99 W 2.510 +- 0.292 * 2.407 +- 0.298 ** 6 5 H, Hnc, Ra, RF, Ht 1 Bl, 0

162 Q 2.524 +- 0.254 * 2.411 +- 0.289 ** 5 5 pHi, p, RF, Hnc, Ra 0 0

175 E 2.503 +- 0.309 * 2.405 +- 0.303 ** 6 5 RF, H, Ra, Hp, Pr 1 K0 0

295 Q 2.506 +- 0.302 * 2.406 +- 0.301 ** 2 2 pHi, H 0 0

456 Q 2.514 +- 0.281 * 2.409 +- 0.295 ** 5 3 Ra, Hp, pHi 2 K0, HC 0

TLR3
214 T 2.503 +- 0.087 ** 1.741 +- 0.430 ** 5 5 Ra, Hp, Pr, p, pHi 0 0

237 R 2.500 +- 0.109 ** 1.736 +- 0.435 ** 3 3 RF, H, Hnc 0 0

TLR4

187 S 3.497 +- 0.062 ** 2.500 +- 0.019 ** 3 2 pHi, p 1 K0 0

245 N 3.497 +- 0.059 ** 2.500 +- 0.017 ** 1 1 Pr 0 0

270 I 3.498 +- 0.044 ** 2.500 +- 0.001 ** 7 4 RF, Ra, Hp, pHi 3 V0, Bl, HC 0

274 T 3.495 +- 0.102 ** 2.499 +- 0.041 ** 10 5 pHi, µ, Ra, Pr, p 4 MV, V0, Bl, HC 1 MW

299 E 3.498 +- 0.044 ** 2.500 +- 0.001 ** 3 2 pHi, Pr 1 K0 0

302 N 3.429 +- 0.411 * 2.492 +- 0.111 ** 1 1 pHi 0 0

323 N 3.498 +- 0.044 ** 2.500 +- 0.004 ** 9 5 pHi, µ, RF, H, Hnc 3 MV, V0, HC 1 MW

352 E 3.486 +- 0.181 ** 2.498 +- 0.053 ** 2 2 Pr, p 0 0

370 D 3.496 +- 0.087 ** 2.500 +- 0.028 ** 3 1 pHi 2 V0, HC 0

375 E 3.498 +- 0.056 ** 2.500 +- 0.021 ** 4 4 RF, Hnc, Ra, H 0 0

379 G 3.498 +- 0.046 ** 2.500 +- 0.007 ** 6 5 RF, H, Ra, Hp, pHi 1 K0 0

380 S 3.464 +- 0.291 * 2.496 +- 0.080 ** 4 2 pHi, Pr 2 V0, HC 0

398 T 3.498 +- 0.044 ** 2.500 +- 0.001 ** 8 3 pHi, µ, RF 4 MV, Bl, V0, HC 1 MW

The ω values and Bayesian (BEB) analysis posterior probabilities are shown for sites with (**) PP > 0.99 in M8
that also have a (*) PP > 0.90 in M2a. TreeSAAP analysis results present the total number of radical changes
in amino acid properties and their assigned categories. Type I sites are underlined. Properties symbols are as
following: BI: bulkiness; H: hydropathy; Hnc: normal consensus hydrophobicity; Hp: surrounding hydrophobicity;
Ht: thermodynamic transfer hydrophobicity; K0: compressibility; µ: refractive index; Mv: molecular volume; Mw:
molecular weight; P: turn tendencies; p: polarity; pHi: isoelectric point; Pr: polar requirement; Ra: solvent accessible
reduction ratio; RF: chromatographic index; V0: partial specific volume; Hc: helical contact area.

4. Discussion

The vertebrate toll-like receptors (TLRs) supergene family constitutes the first line of immune
defense against diverse pathogens and provides a fascinating example of the host–pathogen
evolutionary arms race. Here, employing state-of-the-art DNA and protein level analyses, we
provided a comprehensive comparative evolutionary genomics characterization of the vertebrate TLR
supergene family using whole genome sequencing data from 79 species (mammals, birds, reptiles,
amphibians, and fishes) together with strong positive selection of avian TLRs (viral and non-viral TLRs).
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Our results elucidated the dynamic evolution of TLR super gene family with different level of gene
gain and loss leading to variable species and lineages specific TLR repertoire across vertebrates and
positive selection analysis of avian TLRs showed extensive adaptive evolution shaping host pathogen
arms race in the avian TLRs.

Our results show that the TLR supergene family is broadly divided into six major families,
including TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, with each having different numbers of
subfamilies—e.g., 10 subfamilies in TLR1, 10 subfamilies in TLR11, 3 subfamilies in TLR7, and a single
subfamily in families TLR3, TLR4, and TLR5. We conclude that most of the TLRs originated early
during vertebrate evolution and that genome duplication together with differential rate of gene gain
and loss shaped the TLR gene family evolution in vertebrates, leading to species and lineage-specific
TLR variations. We found that gene loss was common in the avian lineage, resulting in only eight
extant subfamilies, the least observed among vertebrates. In contrast, 20 subfamilies were detected
in fishes, reflecting the strong impact of gene duplication. The genomic scan of diverse reptilian
genomes confirmed the presence of TLR13, TLR15, TLR18, TLR21, and TLR22 in reptiles (Table 1),
supporting other evidence that these TLRs are widely distributed and not limited to a particular
vertebrate species or group [23,45]. For example, TLR15 was not bird-specific and is also found in
most reptilian genomes. Similarly, TLR21 was also found in reptiles, as well as fishes, frogs, and
birds. The subfamilies TLR11-TLR12 are mammal-specific and subfamilies TLR19-20 and TLR23-27
are specific to fishes. More duplication events occurred in fishes (TLR2, TLR4, TLR5, TLR7, TLR8,
TLR9, TLR14, TLR24, and TLR19-TLR23) compared with tetrapods (TLR1, TLR2, TLR5, TLR8, TLR13,
and TLR14), clearly showing a reduction of the TLR supergene family repertoire of fishes relative to
other vertebrates (Table 1), e.g., maximum of 41 TLR copies in cod genome among fishes compared to
maximum 14 copies in mammals suggest the greater role of TLRs in fishes. The importance of TLRs in
fishes is also supported by the loss of the MHCII, CD4, and invariant chain (Ii) in cod [24] and IgM in
coelacanth [28], which suggests that TLRs have an important alternative and compensatory role in the
fish lineage.

The synteny of TLR supports fish- and tetrapod-specific genomic arrangements, with the exception
of subfamilies TLR3, TLR5M, TLR7, and TLR8 having conserved syntenic organization across all
vertebrates. The coelacanth was an exception to this trend as its TLRs had features shared with both
tetrapods (TLR1, TLR2, and TLR13) and fishes (TLR21), supporting its evolutionary proximity with
both groups. This pattern also probably reflects its unique immune system, which lacks IgM as part of
its adaptive immune system [27,28].

The important immunological function of TLRs—i.e., protection of host from pathogens—requires
them to evolve rapidly in response to selective pressure exerted by rapidly and constantly evolving
pathogens. Birds have been important vectors of zoonotic pathogens and reservoirs for viruses, thus
the availability of avian genomes allowed us to test the adaptive evolution of avian TLRs responsible
for both viral and non-viral pathogens.

Positive selection is one of the hallmarks of immune-defense-related genes [97,98] and especially
those encoding recognition proteins, evolve under positive selection [99]. There is growing evidence of
positive selected sites in TLR loci [46,50,65,76,86]. These positive-selected sites can provide increased
number of advantageous variations, which is important for pathogen recognition and the host–pathogen
arms-race that facilitate successful adaptation against changing environments and pathogens [99]. The
use of different codon and protein-level approaches revealed extensive positive selected sites in birds
TLRs and the homology modeling of these important changes in TLR proteins (Tables 2–4, Figure 4
and Supplementary File 4) confirms their possible effect on structural and functional diversification of
the respective TLRs, and is discussed below.

Our results were further supported by protein level approaches. Most PS sites found under
high PP > 0.99 (Table 4 and Figure 4), had the highest number of positive radical physiochemical
changes. Of the 71 sites with high PP > 0.99 (Table 4), 59 PS sites showed positive radical changes in
physiochemical properties (TreeSAAP categories 6, 7, and 8). We also found 15 PS sites with type-I
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radical changes (sites with six or more positive radical changes). TLR4 (non-viral) and TLR7 (viral)
had the most sites with PP > 0.99 (Table 4). In TLR4 we found 20 such sites (Table 4 and Figure 4),
among which 17 showed type II changes (sites with less than six positive radical changes) and 6 PS
sites showed type I changes. Most of the type I changes were restricted to TLR2A (5 sites) and TLR4 (6
sites) (Table 4 and Figure 4). In TLR7 we found 23 sites with PP > 0.99, among which 19 showed type II
changes and two PS sites showed type I changes (Table 4). The homology modeling showed that the
majority of sites having PP > 0.99 were found in the ECD with only few (4 sites) found outside the
ECD (Figure 4)—e.g., site 16 from TLR2A, sites 640 and 655 from TLR4, and site 920 from TLR7—were
found in the signal peptide, TM domain, and TIR domain of the respective gene.

Overall positive selection in the avian TLRs suggests that the host pathogen arms race has played
an important role in the rapid evolution of the avian TLRs immune genes to adapt against pathogens.
Our finding suggests rapid positive selection in both viral and non-viral TLRs (Table 3) with non-viral
TLR4 having the highest PS sites (20 sites with highest PP > 0.99) and among viral TLRs, TLR7 had the
highest number of PS sites (23 sites with PP > 0.99). The majority of PS sites with type I and II positive
radical changes were located in the LRRs of ECD, which is mainly involved in PAMPs recognition. The
finding of non-viral TLR4 and viral TLR7 genes with highest number of PS cites coincides with similar
finding for TLR7 [87] and non-viral TLR4 [92] in mammals. The role of non-viral TLR4 in recognizing
diverse ligands (e.g., LPS-lipopolysaccharide and LTA-lipoteichoic) and TLR7 in recognizing ssRNA
and possibly influenza [94] may be linked with the mechanism of how birds maintain and disseminate
numerous deadly viruses [95].

These findings support the premise that the host–pathogen arms race led to co-evolution and
possibly explains the strong selective pressure imposed by the long-term coexistence of viruses and
birds and is consistent with the proposed role of birds as natural reservoirs and vectors of zoonotic
pathogens [100]. The rapid evolution of the TLR supergene family that we have documented using
newly-available bird genomes fits well with other evidence that these immune genes experienced
strong adaptive selection due to the rapid evolution of pathogens [101] and that the host–pathogen
arms race increases the chance of developing novel protection against diverse species of pathogens.

5. Conclusions

This study revealed lineage and species-specific differences in the distribution of the TLR supergene
family among vertebrates (n = 79 species), with varied rates of gene gain/loss resulting in different
repertoires of TLRs that would have facilitated recognition and protection from diverse pathogens.
Our results provide strong support for the rapid evolution of both viral and non-viral avian TLRs and
strengthens the hypothesis that the long-term coexistence of birds and viruses contributed to the strong
selective pressure observed in the viral TLR immune genes. The patterns of gene gain, gene loss, and
positive selection in the TLR gene superfamily provides compelling support of the co-evolutionary
host–pathogen arms race.
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