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Abstract: Despite a rich taxonomic literature on the symbionts of ascidians, the nature of these
symbioses remains poorly understood. In the Egyptian Red Sea, the solitary ascidian Phallusia nigra
hosted a symbiotic amphipod and four copepod species, with densities as high as 68 mixed symbionts
per host. Correlation analyses suggested no competition or antagonism between symbionts. Ascidian
mass, ash-free dry mass per wet mass (AFDM/WM), and both symbiont density and diversity
per host, differed significantly among three reefs from El Gouna, Egypt. However, there was
no correlation between amphipod, total copepod, or total symbiont densities and host mass or
AFDM/WM. A host condition index based on body to tunic mass ratio was significantly related to
symbiont density overall, but this positive pattern was only strong at a single site studied. Despite
assumptions based on the habit of some of the symbiont groups, our analyses detected little effect of
symbionts on host health, suggesting a commensal relationship.

Keywords: ascidian; Bonnierilla; Doropygus; Janstockia; Leucothoe; Styelicola; Notodelphyidae; Phallusia
nigra; Red Sea

1. Introduction

Many marine symbioses are poorly understood and have been often classified based
on the taxonomy of the animals involved rather than on quantification of costs and ben-
efits [1–3]. While taxon-based inferences have been informative and often correct, they
can obscure fundamental differences in the nature of interactions within a clade and the
context dependence of symbioses within a parasitism to mutualism continuum [4–8]. For
example, apicomplexan protozoa, which have been largely treated as parasites/pathogens,
have been increasingly reported as commensals and mutualists of marine invertebrates and
vertebrates [9–12]. A recent article on the purported symbiont diversity of the snail Littorina
littorea (Linnaeus, 1758) also highlights the perils of assuming symbiont roles without
considering alternative hypotheses and the complexity of natural interactions [13]. In that
study, a more rigorous sampling within a community context elucidated that previously
classified snail endosymbionts were, in fact, transient associates trapped in the mucus
matrix secreted by the snail.

A cost–benefit analysis of a pairwise interaction within a community context can
elucidate the outcome (and ecological classification) of the association between symbiont
and host. A manipulative approach in which hosts and symbionts are grown independently
from one another, and together, could offer an ideal method to quantify fitness effects for
each interacting species. However, this is not feasible in most cases of obligate symbioses
and is difficult to achieve when life cycles require multiple hosts or when endosymbiont
presence cannot be confirmed without sacrificing the host.
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An alternative approach is to take advantage of a natural experiment: sampling of
host populations, and comparing fitness of hosts that harbor differing numbers and kinds
of symbionts. While such a method only provides information on the host, it can reveal
important density-dependent effects as symbiont loads can change in time and space and
the nature of the symbiosis can change along a gradient [7,8,14,15]. Sampling natural
symbiont populations can also help unravel interactions between multiple symbionts that
inhabit the same host [16]. An important consideration in applying this framework is
determining what components of host health or fitness can be measured. Techniques such
as calculating gonadosomatic or condition indices have been fundamental in assessing how
environmental variables affect allometric relations, life history, structural traits, basic health,
and fitness components in aquatic and terrestrial animals [17–26]. In shellfish aquaculture,
for example, body to shell mass ratios are widely used proxies of animal health [18,19].
Similar approaches have been applied to more ecological studies of echinoderms [21,22],
gastropods [27], bivalves [28], and tube-dwelling polychaetes [29], among others.

Here we use two body condition proxies to evaluate the effects of symbiotic crustaceans
on the sea squirt Phallusia nigra Savingny, 1816 (Tunicata: Ascidiacea). While believed
to be a Red Sea endemic by some, this solitary ascidian has a worldwide distribution
and serves as host to several invertebrate symbionts [30,31]. It is a shallow-water species
found on hard natural and artificial bottoms at depths of up to 14 m [32–34]. Adults
are 4–12 cm long and reproduce throughout the year [32,35]. This ascidian is a common
member of fouling communities around the world and recruits year-round, although it is
more common at early successional community stages [32,36,37]. Population densities can
fluctuate seasonally by an order of magnitude [32,38] and surpass 100/m2 within native
and invaded ranges, with the highest recruitment densities recorded reaching > 500/m2 in
the Red Sea [38–40].

The tunic of P. nigra accumulates vanadium, acid, and other secondary metabolites,
which serve as chemical defenses against predators and fouling organisms and have been
proposed as mechanisms promoting the longevity of adults past the initial recruitment
stages [41–43]. A diverse symbiont community has evolved to utilize this defended ascidian
host around the world (Table 1). In the Red Sea alone, P. nigra hosts the amphipod Leucothoe
furina (Savigny, 1816), a polychaete worm, and at least seven species of copepods that live
within different parts of its body [44–48] (Table 1). Outside of this geographic area, five other
amphipod symbionts have been reported from P. nigra in Belize, Cuba, Florida, Panama,
Brazil and Venezuela (Table 1), although records of L. spinicarpa and L. wuriti from Brazil
have been questioned [49,50]. A pinnotherid crab also inhabits P. nigra in the Caribbean [51].
Historically, ascidian amphipod symbionts have been considered commensals [45,52,53],
whereas copepods have been classified as both commensals and parasites [54–56]. Rarely
have these classifications been related to any host traits [14]. Here, we relate amphipod
and copepod densities to three ascidian variables that can help elucidate the nature of the
symbioses by detecting potential costs for the host. We also assess possible interactions
between symbionts. By comparing animals from three reefs in the Red Sea, we evaluate the
role of spatial variation in symbiont–host interactions.

Table 1. Listing of all symbionts reported from the ascidian Phallusia nigra around the world.

Symbiont Geographic Location References

Crustacea
Amphipoda
Amphilochus ascidicola Ortiz and Atienza, 2001 Caribbean (Venezuela) [57]
Leucothoe angraensis Senna, Andrade, Ramos
& Skinner, 2021 South Atlantic (Brazil) [50]

L. flammosa Thomas and Klebba 2007 Caribbean (Cuba) [57]
L. furina (Savigny, 1816) Red Sea (Egypt) [46]
L. spinicarpa (Abildgaard, 1789) North Atlantic (USA) [58]
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Table 1. Cont.

Symbiont Geographic Location References

L. wuriti Thomas and Klebba 2007 North Atlantic (USA),
Caribbean (Belize, Panama) [49,52]

Brachiura
Tunicotheres moseri (Rathbun, 1918) Caribbean (Jamaica, Venezuela) [35,51]
Copepoda
Bonnierilla projecta Stock, 1967 Red Sea (Egypt, Erithrea) [44,46]
Doropygus humilis 1 Stock, 1967 Red Sea (Egypt, Erithrea) [44,46]
Janhius brevis 2 (Stock, 1967) Red Sea (Erithrea) [44]
Janstockia phallusiella Boxshall &
Marchenkov, 2005 Red Sea (Egypt) [46,59]

Lonchidiopsis tripes Stock, 1967 Red Sea (Erithrea) [44]
Notodelphys ciliata Schellenberg, 1922 Red Sea (Egypt) [60]
Notodelphys steinitzi Stock, 1967 Red Sea (Erithrea) [44]
Paranotodelphys phallusiae (Gurney, 1927) Red Sea (Egypt) [61]
Styelicola omphalus Kim I.H., Cruz-Rivera,
Sherif & El-Sahhar, 2016 Red Sea (Egypt) [46]

Annelida
Polychaeta
Proceraea exoryxae Martin, Nygren &
Cruz-Rivera, 2017 Red Sea (Egypt) [47]

1 As D. apicatus in [44]; 2 As Prophioseides brevis in [44].

2. Materials and Methods

Phallusia nigra were collected from each of three sites (n = 50) around El Gouna, on
the Red Sea coast of Egypt (27◦23′50.4′′ N, 33◦40′30.2′′ E; Figure 1). Using SCUBA, animals
were carefully detached from the substrate and placed individually in resealable plastic
bags for transport to the John D. Gerhart Field Station (American University in Cairo,
formerly). All organisms were collected with permission from the private administrators
of Abu Tig Marina, Mövenpick Hotel, and Zeytouna Beach, as well as the El Gouna local
authorities through the American University in Cairo. All specimens came from public
areas. Only animals that could be retrieved intact were used in the study. Ascidians
were collected randomly at 2–5 m depths along 30 m stretches from reefs around Abu Tig
Marina (27◦24′34.8′′ N 33◦40′55.1′′ E), Mövenpick Hotel (27◦23′41.6′′ N 33◦41′31.1′′ E), and
Zeytouna Beach (27◦24′06.4′′ N 33◦41′09.8′′ E). The areas of collection were approximately
850 m apart between reefs. All collections were performed over the same ten-day period
in October to minimize temporal effects on faunal abundances. El-Gouna is one of the
main beach tourism destinations in Egypt and the coastline has been modified by extensive
dredging and construction over several decades [62–65]. Nearshore communities have been
further affected by sewage and garden runoff and by activities from a local desalination
plant [66]. As a result, most local reefs have now low coral, and high algal, cover. Despite
being relatively close (ca. 850–900 m from one another), the three reefs sampled had
noticeable differences in environmental quality. The reef closest to the Abu Tig Marina lies
right off the mouth of the main channel where most charter and commercial boats transit
in and out EL Gouna. Suspended sediments were consistently higher, and visibility was
considerably lower, in this reef compared to Zeytouna and Mövenpick. Zeytouna had a
higher amount of live coral and invertebrate diversity. This is an area frequented by divers
and snorkelers and is managed by a private company that enforces fishing and collection
restrictions. Mövenpick is southeast of Zeytouna and has a very shallow broad lagoon.
Tourists are not discouraged from walking across the patch reefs and reef flat, where signs
of trampling are common. However, the slope of the reef breaks several meters deeper than
in the other two reefs and is less frequented by divers. While a few studies of environmental
impacts for this area are available (e.g., [65,66]), they treat EL Gouna as a single region and,
therefore, our description of single reefs is based on qualitative observations over three
years of collecting at these sites.
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In the lab, ascidians were dissected by making a peripheral incision and separating 
each P. nigra into two halves [46] (Figure 2). The body of ascidians is encased in a protec-
tive outer organic layer called the tunic. This is a carbohydrate-based pliable exoskeleton 
secreted by the epidermis and may incorporate sand, algae, or spicules produced by the 
animal, depending on the species [67]. Most of the internal cavity is covered by a large 
modified ciliated pharynx (the pharyngeal basket) that allows the animal to filter feed by 
inhaling water through a branchial siphon, trapping edible particles, and expelling the 
water out an atrial siphon. The rest of the organs occupy a visceral cavity, with the genital 
ducts and anus opening to the atrium. In P. nigra, the tunic is smooth, and it readily sep-
arates from the body. The visceral mass (digestive and reproductive systems) and phar-
yngeal basket were carefully inspected because the location of ascidian faunal associates 
varied within the host according to symbiont species [46,47] (Figure 2). Using the number 
of associated animals per ascidian, symbiont diversity was quantified by calculating the 
Shannon-Wiener and Simpson indices for each collected host containing at least one asso-
ciated species. The total wet mass of each P. nigra was used to approximate host size and 
was calculated by adding the wet masses of the visceral mass and pharyngeal basket with 
that of the tunic, after gently padding each with absorbent paper to reduce weighing er-
rors due to water content. 

Figure 1. Location of the three reefs in El Gouna, on the Egyptian Red Sea coast, where collections
took place. Maps adapted from d-maps.com (https://d-maps.com/carte.php?num_car=4338&lang=
en and https://d-maps.com/carte.php?num_car=916&lang=en) and Google Earth (https://earth.
google.com/web/).

In the lab, ascidians were dissected by making a peripheral incision and separating
each P. nigra into two halves [46] (Figure 2). The body of ascidians is encased in a protective
outer organic layer called the tunic. This is a carbohydrate-based pliable exoskeleton
secreted by the epidermis and may incorporate sand, algae, or spicules produced by the
animal, depending on the species [67]. Most of the internal cavity is covered by a large
modified ciliated pharynx (the pharyngeal basket) that allows the animal to filter feed
by inhaling water through a branchial siphon, trapping edible particles, and expelling
the water out an atrial siphon. The rest of the organs occupy a visceral cavity, with the
genital ducts and anus opening to the atrium. In P. nigra, the tunic is smooth, and it
readily separates from the body. The visceral mass (digestive and reproductive systems)
and pharyngeal basket were carefully inspected because the location of ascidian faunal
associates varied within the host according to symbiont species [46,47] (Figure 2). Using
the number of associated animals per ascidian, symbiont diversity was quantified by
calculating the Shannon-Wiener and Simpson indices for each collected host containing at
least one associated species. The total wet mass of each P. nigra was used to approximate
host size and was calculated by adding the wet masses of the visceral mass and pharyngeal
basket with that of the tunic, after gently padding each with absorbent paper to reduce
weighing errors due to water content.

To assess host state in relation to symbiont load, two measurements were used. First,
percent of ash-free dry mass per wet mass (AFDM/WM) was calculated by drying each
dissected P. nigra (tunic + body) at 65 ◦C for three days and then burning in a furnace at
450 ◦C for eight hours. This measurement of total organic content has been often used
as an indicator of nutritional value of plant and algal food to herbivores [68–70], but
can also approximate imbalances between the organic and inorganic components of an
animal [71,72]. Second, a condition index was calculated as the percent of body to tunic
(=[(WM of viscera + pharyngeal basket)/WM of tunic] × 100). The tunic is a thick external
protective and supportive organic layer secreted by the epidermis (mantle) of the ascidian
body wall. Despite being seldom calcified with spicules and containing some blood vessels,
the tunic has many parallels in function and origin with a molluscan shell (an organic
matrix as well, but with higher calcification). Thus, our approach is similar to the broadly
used meat-to-shell ratio that is applied to approximate health and quality of shellfish in
aquaculture and for human consumption [18,73,74].

https://d-maps.com/carte.php?num_car=4338&lang=en
https://d-maps.com/carte.php?num_car=4338&lang=en
https://d-maps.com/carte.php?num_car=916&lang=en
https://earth.google.com/web/
https://earth.google.com/web/
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photos by E. Cruz-Rivera, except D. humilis (by Kolbasov, G.A.). 
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found, Tukey’s HSD tests were used for post hoc comparisons. The non-parametric Krus-
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multiple transformations. When significant differences were found, Kruskal-Wallis were 
followed by Mann-Whitney U tests, adjusted with Bonferroni corrections, for pairwise 
comparisons. Data for individual symbionts (1) could not be assumed as independent be-
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Figure 2. Symbionts found in the ascidian Phallusia nigra from the Egyptian Red Sea coast. Lines
point the typical location of the symbiont inside the host. At the center, a dissected P. nigra (length
4.5 cm) is shown with part of the pharyngeal basket removed to expose the inside of the tunic:
OS = oral siphon, AS = atrial siphon, PB = pharyngeal basket, T = tunic, VM = visceral mass. Two
living specimens of the ascidian are shown in the insert. The scale bars for all symbionts are 0.5 mm.
All photos by E. Cruz-Rivera, except D. humilis (by Kolbasov, G.A.).

To analyze differences among reefs in host size, condition, and symbiont loads and
diversity, we used one-way ANOVA after testing for normality (Kolmogorov–Smirnov
tests) and variance homogeneity (Levene’s tests). In some instances, departures from
these requirements were corrected by log transformation. When significant differences
were found, Tukey’s HSD tests were used for post hoc comparisons. The non-parametric
Kruskal-Wallis test was applied when data did not conform to ANOVA assumptions despite
multiple transformations. When significant differences were found, Kruskal-Wallis were
followed by Mann-Whitney U tests, adjusted with Bonferroni corrections, for pairwise
comparisons. Data for individual symbionts (1) could not be assumed as independent
because multiple species could inhabit the same host replicate, (2) were not normally
distributed, and (3) included instances where a particular symbiont was absent from a
sampled site. These conditions constrained analyses using multifactorial tests (e.g., two-
way ANOVA, Scheirer-Ray-Hare test). Instead, we used the non-parametric Kruskal-Wallis
test to assess differences among reefs for each symbiont species quantified.

Pearson correlations were used to evaluate potential interactions between P. nigra
symbionts by comparing densities between species overall and within each sampled reef
separately. While understanding the mechanisms of competition between symbionts
requires a manipulative approach, correlations and regression analyses can provide useful
insights into interspecific relations between symbionts for a given host (e.g., [16]). Linear
regressions were used to determine the effects of host size (mass) on symbiont load and the
potential effects of symbiont densities on AFDM/WM and condition index, overall and per
reef. Log transformations of data were used in various of the analyses above to conform
with the assumptions of these parametric approaches. As different symbionts of P. nigra
inhabit different parts of the ascidian, regressions with AFDM/WM were conducted on
whole animals, ascidian tunic, and ascidian body separately, and against total amphipods
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(broadly considered commensals), total copepods (often considered parasites for the two
families encountered here), and total symbionts.

3. Results

One sample from Zeytouna Beach was lost during processing and all analyses herein
are based on a sample size of 49 for that site. The amphipod Leucothoe furina (Savigny, 1816),
the ascidicolid copepod Styelicola omphalus Kim I.H., Cruz-Rivera, Sherif & El-Sahhar, 2016,
and the notodelphyid copepods Bonnierilla projecta Stock, 1967, Doropygus humilis Stock,
1967, and Janstockia phallusiella Boxshall & Marchenkov, 2005, were all found in P. nigra from
our collections. However, there were spatial differences in distribution. For example, D.
humilis were never found in Mövenpick reef ascidians.

Data showed no indication of antagonism or tradeoff in the distributions of these
symbionts (Table 2). In contrast, a weak, but significant positive correlation between the
number of amphipods and the density of the copepod B. projecta was observed when all
reefs were analyzed together (p = 0.037, Pearson correlation coefficient = 0.171). When the
three sites were compared, this correlation was only detected for Mövenpick reef (p = 0.048,
Pearson correlation coefficient = 0.281). The only other significant correlation found was
between the presence of B. projecta and the copepod D. humilis at Zeytouna Beach (p < 0.001,
Pearson correlation coefficient = 0.836).

Table 2. Correlations between symbiont abundances as proxies for pairwise interactions within
ascidian hosts. Analyses were conducted for all studied reefs together and individually. Numbers are
p-values from two-tailed Pearson correlations. No Doropygus humilis were found at Mövenpick reef.
Numbers in bold indicate significant correlations. Only positive correlations were detected.

All Field Sites Bonnierilla Doropygus Janstockia Styelicola

Leucothoe 0.037 0.251 0.502 0.773
Bonnierilla 0.092 0.474 0.817
Doropygus

0.579
0.078

Janstockia 0.761

Individual sites

Abu Tig

Leucothoe 0.593 0.526 0.863 0.360
Bonnierilla 0.861 0.418 0.548
Doropygus 0.641 0.774
Janstockia 0.553

Mövenpick

Leucothoe 0.048 - 0.553 0.832
Bonnierilla - 0.985 0.847
Doropygus - -
Janstockia 0.731

Zeytouna Beach

Leucothoe 0.645 0.421 0.81 0.657
Bonnierilla <0.001 0.950 0.741
Doropygus 0.656 0.839
Janstockia 0.755

Phallusia nigra mean wet mass, a proxy for size, was significantly different among reefs
(p = 0.004, one-way ANOVA [log-transformed data]; Figure 3). Ascidians were significantly
larger at Abu Tig than at Zeytouna Beach. Mövenpick ascidians were intermediate in mass
and statistically similar to those in the other two reefs. In contrast, total AFDM/WM of the
ascidian hosts was significantly lower at Abu Tig than at Zeytouna Beach, although this
difference was <7% (p = 0.003, Kruskal-Wallis; Figure 3). AFDM/WM of ascidians from
Mövenpick reef was statistically equivalent to that of the other sites. Despite differences
in other parameters, condition indices were very similar across reefs (p = 0.767, one-way
ANOVA; Figure 3).
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indices) are presented on the bottom row. Bars represent means ± 1 SE. P values are from one-way 
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Approximately twice as many symbionts per ascidian were found in Mövenpick reef 
as in either of the two other sites (p < 0.001, one-way ANOVA [log-transformed data]; 
Figure 3). This pattern was largely related to the significantly higher abundances of the 
amphipod L. furina and the copepod B. projecta at that site (p = 0.023 and p < 0.001, respec-
tively, Kruskal-Wallis; Figure 4). Interestingly, different measurements of symbiont diver-
sity yielded different results. There was a significant difference in species diversity (p = 
0.041, Kruskal-Wallis; Figure 3), with ascidians from Mövenpick reef having a more di-
verse symbiont community than those from Zeytouna Beach, and Abu Tig hosts having 
intermediate and equivalent diversity to the other two populations. In contrast, applying 
the Simpson Index, a dominance index in essence, did not detect differences among sites 

Figure 3. Wet mass, ash-free dry mass per wet mass (AFDM/WM), and condition of the ascidian
Phallusia nigra collected at three reefs from El Gouna, Egypt (top row). Associated fauna (total ascidian
symbionts) and two indices of species diversity of symbionts (Shannon-Wiener and Simpson indices)
are presented on the bottom row. Bars represent means± 1 SE. P values are from one-way ANOVA or
Kruskal-Wallis tests, followed by appropriate pairwise comparisons as needed (see Methods). Same
letters above bars indicate statistically equivalent means. Fill colors of bars are maintained between
some figures to facilitate comparisons.

Approximately twice as many symbionts per ascidian were found in Mövenpick
reef as in either of the two other sites (p < 0.001, one-way ANOVA [log-transformed
data]; Figure 3). This pattern was largely related to the significantly higher abundances
of the amphipod L. furina and the copepod B. projecta at that site (p = 0.023 and p < 0.001,
respectively, Kruskal-Wallis; Figure 4). Interestingly, different measurements of symbiont
diversity yielded different results. There was a significant difference in species diversity
(p = 0.041, Kruskal-Wallis; Figure 3), with ascidians from Mövenpick reef having a more
diverse symbiont community than those from Zeytouna Beach, and Abu Tig hosts having
intermediate and equivalent diversity to the other two populations. In contrast, applying
the Simpson Index, a dominance index in essence, did not detect differences among sites
(p = 0.112, Kruskal-Wallis; Figure 3). As highlighted previously, there were significant
differences among sites in the densities of amphipods (L. furina) and B. projecta, but overall,
these two species comprised over 92% of all symbionts found regardless of reef (Figure 4,
right panel). The largest number of L. furina in a single host was 31 (Mövenpick reef) and
for B. projecta it was 50, most of which were males (Abu Tig reef).
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Figure 4. Numbers per host and relative abundances of Phallusia nigra symbionts collected at three
reefs from El Gouna, Egypt. Left graph: Bars represent means ± 1 SE and p values are from Kruskal-
Wallis tests on individual species. Same letters above bars indicate statistically equivalent means.
Right graph: The same data are presented as percentages of total symbiont fauna for reference. These
data are not analyzed. Fill colors of bars are as in the left figure.

To evaluate the potential effects of symbionts on their ascidian host, linear regressions
were used (Figure 5, Table A1). No significant relations between amphipod, total copepods,
or total symbionts were found against host WM, AFDM/WM, tunic AFDM/WM, or
body AFDM/WM when data from all three reefs were pooled (Table A1). There was a
weak but significant positive relation between total copepods or total symbionts, and host
condition index; with a non-significant trend in the same direction for amphipods. When
spatial variation was explored by analyzing data from the three reefs separately, few but
stronger relations were observed. Data indicated that the total amount of symbionts was
positively related with host WM (p = 0.027, R2 = 0.100; Figure 5, Table A1) and that P. nigra
AFDM/WM was also positively related to totals symbiont load (also p = 0.027, R2 = 0.100;
Figure 5, Table A1), but that these patterns only occurred in Zeytouna Beach. Similarly,
P. nigra condition index was positively related to amphipod (p = 0.020, R2 = 0.110; Table A1),
total copepod (p < 0.001, R2 = 0.212; Table A1), and total symbionts (p < 0.001, R2 = 0.363;
Table A1, Figure 5), only at Zeytouna Beach.



Diversity 2022, 14, 197 9 of 15
Diversity 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

Host mass (Log [x] mg)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Sy

m
bi

on
ts

 p
er

 h
os

t (
Lo

g 
[1

+x
])

0.0

0.5

1.0

1.5

2.0

Symbionts per host (Log [1+x])
0.0 0.5 1.0 1.5 2.0

H
os

t A
FD

M
 (%

)

0

2

4

6

8

10

Symbionts per host (Log [1+x])
0.0 0.5 1.0 1.5 2.0

C
on

di
tio

n 
in

de
x 

(%
)

0

5

10

15

20

25

Abu Tig
Mövenpick
Zeytouna

 
Figure 5. Selected regression analyses between host and total symbionts showing the variation of 
these patterns among reefs. Colored regression lines indicate the reef for which a significant rela-
tionship was found. The dotted line on the bottom graph shows the only case in which a general 
relationship between the two variables considered was found when all data for the three reefs were 
pooled. See Table A1 for results of all other comparisons performed. 

4. Discussion 
In this study, no strong negative or positive impacts of symbionts on their ascidian 

host were observed, consistent with a commensalistic interaction. Although a few rela-
tionships between host traits and symbiont densities could be detected, the predictability 
of those patterns was low (Figure 5, Table A1). Analyses also did not detect any evidence 
of tradeoffs in abundances, competition, or antagonism between different symbionts (Ta-
ble 2). Inside the ascidian, the location of the symbionts is specific (Figure 2), which could 
result in decreased competition. For example S. omphalus attaches to the visceral mass of 
P. nigra, whereas J. phallusiella is found internally on the tunic, and B. projecta occurs in the 
pharyngeal basket [46]. However, the amphipod L. furina, and the copepods B. projecta 
and D. humilis, all share the pharyngeal basket of the host without apparent exclusion of 

Figure 5. Selected regression analyses between host and total symbionts showing the variation
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relationship between the two variables considered was found when all data for the three reefs were
pooled. See Table A1 for results of all other comparisons performed.

4. Discussion

In this study, no strong negative or positive impacts of symbionts on their ascidian
host were observed, consistent with a commensalistic interaction. Although a few relation-
ships between host traits and symbiont densities could be detected, the predictability of
those patterns was low (Figure 5, Table A1). Analyses also did not detect any evidence of
tradeoffs in abundances, competition, or antagonism between different symbionts (Table 2).
Inside the ascidian, the location of the symbionts is specific (Figure 2), which could result
in decreased competition. For example S. omphalus attaches to the visceral mass of P. nigra,
whereas J. phallusiella is found internally on the tunic, and B. projecta occurs in the pha-
ryngeal basket [46]. However, the amphipod L. furina, and the copepods B. projecta and
D. humilis, all share the pharyngeal basket of the host without apparent exclusion of one
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another. In fact, among the very few significant correlations between symbionts, there was
a positive (albeit weak) correlation between the abundances of the two most abundant
symbionts, L. furina and B. projecta (pooled data and for Mövenpick reef), and also between
B. projecta and D. humilis at Zeytouna Beach. These results suggest that these symbionts
were not resource or space limited in the ascidians studied, and the environmental variables
favoring one species would also favor the others. Space limitation may still operate for
symbionts that specialize on organs or structures other than the relatively spacious host
pharynx. Gage [75] hypothesized that an ascidicolid copepod was found overwhelmingly
as single individuals inside their host because they associated with the ascidian food string,
whereas a notodelphyid from the same host was found in densities as high as 17 per
ascidian within the pharyngeal basket. Interestingly, the ascidicolid S. omphalus was always
found as single females attached to the visceral mass of P. nigra during our study. The lack
of negative correlation should not be interpreted as a complete rejection of antagonistic
interactions, however. Although there is very little information on the diet of leucothoid
amphipods, gut content analysis of a few species suggests those species feed on detritus and
crustaceans [76]. If L. furina preys on symbiotic copepods living in the ascidian pharynx, a
positive correlation can occur as long as the predator is not overexploiting its prey.

Host traits in general did not affect symbiont abundance or diversity. Despite prior
studies showing positive correlations between ascidian size and symbiont numbers [77–79],
that was not the case here. As seen in Figure 3, P. nigra from Abu Tig reef were significantly
larger than those from Zeytouna Beach and similar in size to those at Mövenpick reef.
However, the number of total symbionts was very similar at Abu Tig and Zeytouna, while
Mövenpick reef ascidians contained almost twice as many associated animals. None of
these patterns matched the observed anthropogenic influences on these reefs (see Methods).
Symbiont diversity (Shannon-Wiener Index) was also significantly higher at Mövenpick
than Zeytouna, but no dominance by any given symbiont was observed across reefs
(Simpson Index). Thiel [58] found no relation between ascidian mass and numbers of a
symbiotic amphipod, whereas Saito [80] found a negative non-linear relation between host
mass and density of the copepod Idomene purpurocincta [=Xouthous purpurocinctum (Norman
& Scott T., 1905)]. Both studies used dry mass as proxy for ascidian size, a less accurate
approximation of ascidian structure, considering the high water content of the hosts (e.g.,
about 90% of WM in the P. nigra studied here).

Ascidian AFDM/WM showed the opposite pattern to size, with Abu Tig animals
having a significantly lower organic content than those from Zeytouna Beach, but regression
analyses yielded no indication that these patterns were related to amphipod, copepod,
or total symbiont load. More importantly, we hypothesized that condition index of the
ascidians could serve as indicator of the relation between symbionts and host: an inverse
relation would indicate a negative effect of symbionts on host health (i.e., parasitism),
while no relation would be consistent with commensalism, where the symbionts benefit
at no expense from the host. Surprisingly, a positive overall relationship was observed
between total copepods (considered often as parasites) and host condition, and between
total symbionts and host condition when all three reefs were pooled (Figure 5, Table A1).
These patterns appeared mostly influenced by the data from Zeytouna Beach, where a much
stronger significant positive relationship between densities of amphipods, copepods and
total symbionts, and host condition was detected (Figure 5, Table A1). Despite these results,
to classify the relationship as a pairwise or diffuse mutualism is not supported. Firstly,
only two of the 149 hosts samples were totally free of symbionts, precluding a thorough
assessment of host health in the absence of any associated fauna. Second, the comparisons
among reefs emphasized the role of spatial variance in understanding patterns. Our data
would have suggested different interactions had we sampled only Zeytouna Beach (where
a positive correlation was consistent across all symbiont groups and host condition), in
comparison to the other two sites. Finally, while useful, condition indices such as the ones
calculated here cannot be used as proxies of host fitness without further refinement. In
fact, different indices are not equally accurate parallels for animal health and fitness for the
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same species, and the same index may not be equally applicable to different species, sexes,
or ages [24,25,81–83]. An estimation of gonad mass or reproductive output of P. nigra in
relation to our calculated body condition index (i.e., gonadosomatic index) would greatly
improve the application of this metric on ecological work as it would provide a more
appropriate description of fitness (e.g., [14,25]).

The wide range of symbiont loads inside the ascidians sampled here (0–68) also points
to a low per capita impact of the symbionts on the host. It is recognized that density-
dependent effects are important in changing the nature of symbiotic relations through a
parasite–mutualist continuum. Animals providing a net service to a host will fundamentally
operate as parasites if their density exceeds a certain threshold [6,8,84,85]. Here, while
some symbionts were consistently rare (e.g., D. humilis, S. omphalus), others varied at least
one order of magnitude without any of our analyses detecting negative impacts on the
ascidian host.

Our results support the historical treatment of leucothoid amphipods as commen-
sals [45,48,52,53]. For the much more diverse symbiotic copepods [54–56], the existence
of both commensal and parasitic species has been recognized [55,86]; yet, the tendency
to classify Ascidicolidae and Notodelphyidae as parasitic without further assessment is
widespread in the literature [86–90]. In some instances, conclusions about the nature of
the interaction were reached after examination of mouth parts, formation of galls or cysts,
and position of the symbiont in the host (e.g., [87,91–93]). Those are not unreasonable
approximations; the formation of such structures or the intake of host fluids could result
in reductions in host performance and fitness. However, feeding on host materials and
induction of abnormal tissue growth occurs also with mutualists, such as senita moths,
rhizobia, and gall-forming fig wasps [94–98]. A broader analysis of costs and benefits can
avoid overgeneralizations about species for which little information, inability for manipula-
tion, or historical treatment of certain related groups, have obscured our understanding of
ecological interactions. Other recent studies on invertebrates [13] and vertebrates [12] have
highlighted the need to reassess marine symbioses for groups that have been classified as
symbionts and parasites.

5. Conclusions

The use of condition indices could help elucidate the nature of symbiotic interactions
for instances in which symbiont loads cannot be manipulated in the host to quantify per-
formance. Nevertheless, the application of these indices to ecological questions requires
further refinement to include more directly related measurements of fitness, such as fecun-
dity or gonad development and mass. A promising additional tool is the measurement of
key stable isotopes in host and symbiont to establish the trophic status of the interacting
animals [99]. For the Red Sea species studied here, the effects of five different symbionts
on the host P. nigra appeared minimal, even for copepods with adaptations suggesting
that their nutrition comes directly from host fluids or tissues (e.g., J. phallusiella and S.
omphalus [46]) and despite the simultaneous presence of more than one symbiont in a single
ascidian. Similarly, symbiont density was not shown to affect hosts within the variance
sampled here. Data also suggested that local conditions could influence the trajectory of
interactions, as evidenced by some significant patterns observed in single reefs alone. To
avoid misclassification of host–symbiont interaction, geographically relevant sampling
should be considered.
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Appendix A

Table A1. p values from linear regression analyses between symbiont abundances and various mea-
surements of their ascidian hosts (Phallusia nigra). Note that host mass was treated as an independent
variable against total amphipods (Leucothoe furina), total copepods (all four species found together)
and log (1 + x) of all symbionts together. However, for ease to accommodate results in this table,
host wet mass is placed on the top row. For all other analyses, amphipods, total copepods, and log
(1 + x) of all symbionts were treated as the independent variable. Percent ash-free dry mass per wet
mass (AFDM/WM) of the ascidian tunic and body were added to obtain total AFDM/WM. Analyses
were conducted for all studied reefs together and individually. Numbers in bold indicate significant
relations between variables. For those cases, R2 is provided in parentheses. Only positive regressions
were detected. Note that p and R2 values were coincidentally similar in two separate analyses.

All Field Sites Host Wet Mass
(log x)

Host Total
AFDM/WM

Host Tunic
AFDM/WM

Host Body
AFDM/WM

Host Condition
Index

Amphipods 0.644 0.444 0.960 0.829 0.054
Copepods 0.944 0.219 0.666 0.871 0.016 (0.039)

All symbionts (log 1 + x) 0.088 0.137 0.976 0.928 0.001 (0.068)

Individual sites

Abu Tig Amphipods Copepods
All symbionts (log 1 + x)

0.596 0.639 0.471 0.904 0.635
0.777 0.914 0.838 0.555 0.351
0.359 0.602 0.588 0.128 0.173

Mövenpick Amphipods Copepods
All symbionts (log 1 + x)

0.407 0.854 0.796 0.748 0.282
0.442 0.493 0.317 0.620 0.221
0.756 0.692 0.519 0.799 0.617

Zeytouna Beach Amphipods Copepods
All symbionts (log 1 + x)

0.113 0.260 0.976 0.989 0.020 (0.110)
0.410 0.100 0.606 0.427 <0.001 (0.212)

0.027 (0.100) 0.027 (0.100) 0.653 0.780 <0.001 (0.363)
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