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Abstract: Despite the crucial role played by international and regional tuna fisheries in facilitat-
ing the successful implementation of the ecosystem approach to fisheries management, there exist
disparities in viewpoints among these stakeholders, resulting in gaps between regional fisheries
management and local communities. Nevertheless, the Tongan government, under the Ministry
of Fisheries, is dedicated to the efficient management of its tuna resources, aiming to establish it as the
preferred and optimal approach for ensuring the long-term sustainability of its tuna fisheries and
the ecosystem services they provide to the community. Recognizing that an appropriate legal, policy
and institutional framework is in place for sustainable management of tuna, the first part of this
paper presents a review of current Tonga fisheries laws and policies for its tuna fisheries. This review
reflects the implementation of an information-based management framework, namely the Tonga
National Tuna Fishery Management and Development Plan. The tuna fisheries in Tonga mainly catch
albacore (Thunnus alalunga), bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin
(Thunnus albacares) tuna. These tuna species are caught within Tonga’s exclusive economic zones and
play a crucial role in the country’s economy; hence, it is crucial to examine the spatio-temporal distri-
butions of their catch in relation to their environmental conditions. In pursuit of this goal, the tasks
of mapping (i) the spatio-temporal distribution of catch landed at ports and (ii) the spatio-temporal
of environmental conditions were performed. The study utilizes longline catch per unit effort data
spanning from 2002 to 2018 for albacore, bigeye, skipjack, and yellowfin tuna. It also incorporates data
on environmental conditions, including sea surface temperature, sea surface chlorophyll, sea surface
current, and sea surface salinity. Additionally, the El Nino Southern Oscillation Index is mapped
in relation to catch data to examine the potential effects of climate change on the tuna catch. Results
show that bigeye, skipjack, and yellowfin CPUE show a central–northernmost distribution and are
primarily caught between latitudes 14◦ S–22◦ S, while albacore, shows a central–southern distribution.
The highest CPUE for all species are in latitudes 15.5◦ S–22.5◦ S and longitudes 172.5◦ W–176.5◦ W.
The data indicate that sea surface current velocities range from −0.03 to 0.04 ms−1, sea surface salinity
ranges from 34.8 to 35.6 PSU, sea surface chlorophyll concentration varies from 0.03 to 0.1 mg m−3,
and sea surface temperature fluctuates seasonally, ranging from 18 ◦C to 30 ◦C. Mapping also reveals
that times of reduced catches in Tonga coincide with periods of moderate to strong El Nino events
from 2002 to 2018.

Keywords: economically important species; exclusive economic zone; fisheries research;
national obligations; tuna fishery management

1. Introduction

Tonga and many other Pacific Island Countries (PICs) in the Western and Central
Pacific Ocean (WCPO) depend on tuna fisheries for food security, revenue, and social
livelihoods [1–4]. Tongan fisheries largely targeted reef and lagoon species up to the
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early 1960s, but due to a local population rise this resulted in overfishing of many inshore
marine species. As a result, open water fishes, such as tuna, became the targeted species
and soon attracted international fleets to Tongan waters [5]. International longline fleets
from countries, like Taiwan, Korea, and the US mainly dominated the fishing of tuna until
the early 1980s. By 2001, the number of registered, locally based foreign vessels increased
to 25, and then to 33 by 2003 [6]. However, a moratorium upon foreign fishing fleets
(2004–2011) caused the decline in tuna longline vessels to 3 by 2011 [6]. The moratorium
was lifted in 2011 as part of the Tonga’s long-term plan to expand its tuna fishery industry,
which resulted in the licensing of 19 foreign longline vessels to fish in Tongan waters in 2012
and 2013 (Table 1) [6]. This expansion was based on the following economically important
tuna species: albacore, bigeye, yellowfin, and skipjack [6].

Table 1. Historical landings of catch, CPUE, total number of hooks used, number of longline vessels
operated, and total allowable catch for the main tuna species from 2002 to 2018 within the EEZ,
longitude 171.31◦ W–179.10◦ W, of Tonga.

No. of Longline Vessels Catch Size (Metric Tons) CPUE (No. of Fish/100 Hooks/Year)

Year Total No.
of Hooks Domestic Foreign Albacore Bigeye Skipjack Yellowfin Albacore Bigeye Skipjack Yellowfin

2002 38,526 17 - 740 124 4 170 30,890 5097 209 6918
2003 46,622 23 - 489 76 15 240 19,164 2702 754 8686
2004 26,348 20 - 237 47 3 208 10,607 2120 166 9215
2005 28,521 13 - 235 78 3 123 10,290 3609 163 5653
2006 33,818 11 - 383 83 2 176 15,835 3859 101 7439
2007 31,347 12 - 336 109 1 278 14,518 4967 43 12,314
2008 22,432 9 - 227 72 0 248 10,355 3441 19 11,118
2009 11,112 6 - 146 33 1 97 7444 1776 49 5308
2010 6927 6 - 105 19 1 40 4348 1064 35 2513
2011 8703 3 - 88 14 2 142 3170 824 72 6960
2012 48,766 4 - 829 126 4 379 19,846 2976 121 11,488
2013 109,494 3 19 1583 230 9 640 36,947 5477 210 17,078
2014 31,357 4 19 284 40 8 378 8742 1484 305 14,785
2015 45,302 4 14 724 129 13 755 19,822 4104 364 23,191
2016 58,498 4 4 1265 159 31 895 32,618 4457 943 28,260
2017 55,438 6 8 874 129 41 871 23,328 3740 1290 29,104
2018 30,186 6 4 677 63 12 336 21,489 2486 485 13,895

Total allowable catches for each species (metric tons) 2500 2000 Unlimited 2000 Manage through WCPFC harvest strategic plan
and TMDP

Note. No domestic and foreign vessels were licensed to fish in the Tonga EEZ in 2002–2003 and 2002–2012,
respectively, as indicated with dash marks.

Regionally, management of tuna fisheries in the PICs is at a critical stage [3,4]. Coun-
tries in the WCPO continue to struggle with conflicting interests and issues pertaining
to tuna management [7]. These issues include differences in access fees by distant wa-
ter fishing nations (DWFNs) [8] and transshipment measures and harvest control rules
for catch limits [8,9]. These complicate attempts to regulate management efforts within
PIC’s exclusive economic zones (EEZs) [10,11]. Additionally, the regional fisheries man-
agement organizations (RFMOs), such the Western and Central Pacific Fisheries Commis-
sion (WCPFC) [12–14], have established comprehensive management regimes for high
seas stocks. However, these management actions have met with very little success due
to the failures of PICs to adequately implement management measures and sustainability
improvement processes [15]. In addition, the rise in population growth poses a threat
in the form of further overfishing of tuna [16].

Tuna, a valuable marine resource, holds immense significance for both global fisheries
and local communities. Managing tuna stocks effectively demands a holistic approach
that bridges the gap between regional fisheries management and the perspectives of local
stakeholders. This link is especially vital in the WCPO context, where the WCPFC acts as the
primary authority overseeing tuna management within the region encompassing Tonga [17].
Moreover, the presence of two sub-regional groups—the Parties to the Nauru Agreement
(PNA) and the Smaller Pacific Island States and Territories (SPG)—adds complexity to the
management landscape, as their differing interests often result in divergent views [18].
From a broader regional fishery perspective, the involvement of the WCPFC is essential
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due to the transboundary nature of tuna stocks. Tuna species, such as skipjack, yellowfin,
and bigeye, traverse vast distances within the WCPO, requiring collaborative management
efforts [19,20]. The WCPFC serves as a platform where PICs and DWFNs deliberate
on strategies to ensure the conservation and sustainable use of these stocks [19].

However, successful tuna management is not confined solely to international discus-
sions; it must be woven into the fabric of local communities that directly rely on these
resources [21]. The importance of linking regional management to local perspectives be-
comes evident when considering the ecological, economic, and cultural significance of tuna
to the Pacific Island communities. Therefore, decisions made at the regional level through
the WCPFC directly impact the lives of local fishermen, processors, and communities.
An effective management approach acknowledges the need to balance conservation goals
with the socio-economic wellbeing of these communities [22]. Within the WCPO, the exis-
tence of the PNA and SPG introduces additional layers of complexity to tuna management.
These sub-regional groups represent the diverse interests of the PICs [23]. This divergence
arises from their distinct geographical, economic, and cultural contexts. Such diversity
enriches discussions but can also lead to complexities when trying to reach consensus
on management measures. It underscores the importance of diplomacy, negotiation, and
compromise in the pursuit of effective policies that safeguard tuna stocks and support local
communities [23,24].

The most pressing management question is, therefore, whether each nation should
individually manage the fish within its EEZ, or whether a regional agency should manage
the species at a broader scale. Either way, Tonga is committed to supporting the growth
of this important resource at both national and regional levels. This is demonstrated
through Tonga’s commitment to: (i) implementing and monitoring catch regulations and
(ii) limiting the number of locally-based foreign and foreign-licensed longlining vessels
allowed to fish in the EEZ of Tonga. These are executed through the implementation
of an information-based management plan, namely the Tonga National Tuna Fishery
Management and Development Plan (TMDP) that is revised every five years.

However, Tonga, akin to numerous other small island nations, encounters formidable
obstacles when it comes to proficiently overseeing highly migratory species, such as tuna.
These are attributed to the following reasons. Given Tonga’s constrained financial and
technical resources, effectively overseeing highly migratory species poses difficulties.
This encompasses expenses related to vessel operations, research endeavors, and reg-
ulatory enforcement, all of which can place a significant burden on the country’s budget,
thus, impeding substantial investments in comprehensive management [25]. Tonga’s geo-
graphic location in the central Pacific means that tuna stocks passing through its waters
are part of larger, shared populations that migrate across multiple countries’ exclusive
economic zones. Managing these species effectively requires cooperation with neigh-
boring nations, which can be complex due to differing interests and capacities [26,27].
Furthermore, Tonga’s small domestic market and limited processing capabilities make
it heavily reliant on exporting tuna to international markets. Meeting global demand
while maintaining sustainable practices can be challenging, particularly with competition
from larger, more resource-rich nations [28,29]

Figure 1 illustrates the structural layout of the Tonga tuna fisheries management.
This presentation shows that laws and policies serve as the primary framework for oversee-
ing tuna fisheries, while the sustainable management of tuna relies on the enactment of these
policies by local tuna stakeholders. It is anticipated that by means of this framework, tuna
fisheries will make a significant contribution to the nation’s economy and the wellbeing
of the entire community. Tonga also believes that adopting an ecosystem-based approach
to fisheries management is the most favorable and optimal strategy for ensuring the long-
term sustainability of fisheries and the valuable ecosystem services they provide to society.
This is why the country incorporates scientific studies to bolster fisheries management and
sustainability efforts.
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2. Tonga’s Tuna Fisheries and Management Strategies

Tonga is situated within the geographical confines of the WCPO, and its Ministry
of Fisheries manages its EEZ with the aim of sustaining the viability of its tuna fisheries.
This is achieved through the implementation of its management policies. The predomi-
nant tuna species of economic significance in Tonga include albacore, bigeye, skipjack, and
yellowfin, collectively contributing to over 95% of the total annual catch and economic value
of the tuna fisheries [6]. Commercial tuna fishing in Tonga primarily employs the longline
method, which was initiated in the 1970s, alongside the occasional use of pole and line tech-
niques [6]. In this section, we delve into Tonga’s approaches to promoting the sustainable
management of its tuna resources. The initial strategy involves the country’s commitment
to tuna management, evident in its utilization of information-centric policies that guide
and direct fishermen. Moreover, these guidelines delineate regulations aimed at enhancing
both profitability and sustainability through effective governance. This governance encom-
passes the implementation and oversight of catch regulations, economic and livelihood
contributions, fleet size control management, and fishing activities within its EEZ.

2.1. National Obligations: An Information-Based Management

Although marine resources are freely accessible in Tonga, the Ministry of Fisheries
stipulates the operational conditions for tuna fishing within its EEZ [6]. The conditions
for the effective management and development of Tonga’s tuna fishery are detailed in two
primary information-based resources: the TMDP 2018–2022 and the Implementation Sched-
ule [6]. These resources align with Tonga’s Fisheries Management Act 2002 and the Tonga
Strategic Development Framework II [6]. The creation of these resources involved thorough
consultation and engagement with stakeholders. Functioning as high-level policy docu-
ments, they offer guidance for the management and growth of the tuna fishery, necessitating
the full cooperation of Tonga’s tuna fishing industry. The TMDP outlines government goals,
strategies for enforcing vessel licensing and compliance, the current state of tuna, and catch
limit guidelines. In contrast, the Implementation Schedule establishes strategic directions
for executing management actions, focusing on information management, administration,
and legal standards within the fishery. Both the TMDP and the Implementation Schedule
provide clear directives for entities accessing tuna resources, ensuring that allocations
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for food security, livelihoods, and economic growth operate sustainably and efficiently,
as illustrated in the theoretical framework flow diagram (Figure 1). These national planners
draw from a number of necessary reports and policy documents developed by the Tonga
Ministry of Fisheries and regional fishing agencies, such as the WCPFC [6]. Incorporated
documents include regional and international arrangements and treaties designed to sus-
tain catches and share benefits within the context of an ecosystem approach to fisheries
management [30–32].

2.2. Improving Profitability and Sustainability through Governance

In addition to the above national obligations and laws, there are ministerial regulations
that govern fishing activities and marine resources management in Tonga. The regulations
were clustered in four themes, namely governance in implementing and monitoring catch
regulations, contribution to economy and livelihood, governance of fleet size control, and
fishing within the EEZ.

2.2.1. Governance in Implementing and Monitoring Catch Regulations

One of the ways Tonga cooperates with other PICs in managing tuna resources is its
comprehensive sampling of catch landings at designated authorized ports. This is pursuant
to the TMDP 2018–2022: “All licensed longline fishing vessels shall offload all catches
(100%) in the authorized ports of Tonga”. The policy guarantees Tonga’s commitment
towards the WCPFC’s management and conservation strategies for tuna in the PICs. In line
with this, Tonga specifically enacts two management steps: first, it rigorously tracks
the capture of identified vulnerable species and, second, it assesses the combined catch
amounts against yearly quotas for each species [3,4]. At the port, the state inspector verifies
that all vessels’ relevant identification documentation is true and correct, cross-references
authorization for fishing and related fishing activities, and confirms that all fishing gear
and devices on-board conform with catch regulations for the species being harvested [6].
In addition, through this comprehensive sampling, Tonga cooperates with the Secretariat
of the Pacific Community (SPC) and WCPFC’s Offshore Fisheries Program to facilitate
sustainable harvesting of tuna. For example, these regional organizations provide species
stock status that recommend allowing no catch of Pacific Bluefin based on its fully exploited
status in the WCPO [14] and encourage more catch of skipjack based on low current catch
rates and abundant stock status. Regardless, Tonga’s highest catches in 2013 of 2463 mt,
and in 2016 of 2350 mt, were insignificant [6] compared to other Pacific nations, as can be
seen in the catch records of recent years (Table 1).

A major challenge facing tuna fisheries amongst PICs is the declining fish stocks
due to juvenile bycatch by the purse seine fishery using floating objects and fish ag-
gregating devices [3,4]. Tonga is committed to comply with bycatch and non-target
species catch regulations, hence, the 100% check of catch landing at authorized ports [6].
Currently, Tonga has no access agreements with DWFN with the exception of the Multilat-
eral Treaty of Fisheries with the United States, which allows US purse seiners to fish within
Tongan waters. However, there have been very few US purse seine fishing operations
in Tongan waters, due to the low productivity of the EEZ zone as compared to the equato-
rial belt [28]. Total allowable catch (TAC) for the main commercial tuna species in Tonga’s
waters are 2500 mt for albacore, 2000 mt bigeye and yellowfin, and no limit for skipjack (Table 1)
due to its sustained high recruitment rate and abundance in the WCPO [28]. These man-
agement limits are set based on and proportionally consistent with TAC recommendations
by WCPFC [6].

2.2.2. Contribution to Economy and Livelihood

Tuna fisheries have been identified as one of Tonga’s most important natural re-
sources [6,15]. The tuna industry in the WCPO is the largest in the world, with annual
catches exceeding 2 million metric tons (mt), approximately 50% of the global tuna catch [15].
The largest portion of the catch is taken within the EEZ of the PICs [33,34]. In 2014, PICs
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generated approximately USD 820 million from total fishery exports and USD 349 million
from total foreign fishing access [35]. Similarly, tuna production is the largest commer-
cial fishery in Tonga, which is estimated at 2000 mt per year (approximately 17% of 30%
of Tonga marine resources-related benefits) [6]. Most catches are given by locally based
foreign vessels (mainly from Taiwan, the Republic of Korea, and China) that fish in Tonga
under a framework of national and regional agreements. These benefits come mainly
from foreign fishing vessels’ access fees (and related charges) and revenues from domestic
and international marketing. The tuna industry also brings other benefits, such as sport
fishing, good nutrition through fish protein, and subsistence and artisanal fisheries [2,6].
These benefits also culturally shape and exhibit socially positive effects on livelihood [36].
However, in recent years the tuna fisheries in Tonga have been challenged with rising fuel
prices, a decline in tuna prices in both local and international markets, low catch rates, and
general economic pressures [6]. Consequently, domestic operators struggle to remain viable
despite the technical and policy support provided by the government and international
donor agencies [6]. Documentations of national aspirations and strategies exist that attempt
to redress and maximize the social and economic benefits of tuna resources, and these
will be examined later in this review. In addition, this work reflects how Tonga wishes
to develop its tuna resources for the benefits of its people. This highlights the fact that
the government realizes that management of tuna resources is a national responsibility [37]
and aspires to cooperate undauntedly with other Pacific Island states to overcome economic,
social, and climatic challenges.

2.2.3. Governance of Fleet Size Control

Longline is the main commercial fishing method used in Tonga. Current mandates
limit the number of domestic, locally based foreign, and foreign-licensed longlining vessels
to 50, with no more than 10 foreign vessels allowed to fish in the EEZ of Tonga at any
given time [6]. Domestic and locally based foreign vessels have license preferences over
foreign vessels. The extent of priority is so great that foreign vessels shall be phased out
(fishing vessels > 50) when new local vessels apply for licenses. The 2004–2011 moratorium
resulted in the decline in longlining vessels from 20 in 2004 to only 3 in 2011. The lifting
of the moratorium in 2011 saw the increase in both the number of longline vessels and tuna
catch in the subsequent years (Table 1). The number of licensed vessels increased from 3
in 2011 to 23 in 2012, and catch estimates of primary species in 2013 totaled 2463 mt (Table 1),
which is over a 40% increase that of the previous year [5]. The purse seine fishery is limited
to 150–250 fishing days per fishing vessel per year, which is in line with the WCPFC Vessel
Day Scheme (VDS) regulation for purse seiners [3,4].

2.2.4. Fishing within the EEZ

Global recognition of a 200-nautical mile EEZ around coastal nations allows PICs
to claim vast amounts of maritime resources. As such, it is possible for a domestic fishery
to grow if it sustainably utilizes the portion of a regional population that persists within
its EEZ [15]. Moreover, on global scale, the PICs’ EEZs hold the largest tuna resources
and provide some 65–75% of the WCPO’s tuna catch [38]. On another note, to date,
Pacific Island states have been unable to effectively patrol their EEZs against distant
water illegal fishers due to the vast area that requires ongoing observation coupled with
a lack of financial, technical, and scientific expertise. Furthermore, regional and national
fishing management organizations have barely slowed the decline in key tuna species
due to exploitation, unreported fishing, and product distribution [26]. Even so, Tonga is
committed to protecting its EEZ by improving its own patrol capabilities and practicing
international tuna resource management regimes [6].

Figure 2 shows the geographical boundaries of the EEZ of Tonga which spreads across
14.15

◦
S–22.22

◦
S and 171.31

◦
W–179.10

◦
W, covering an area of about 596, 000 km2 [39].

This EEZ envelops the northern end of the Tonga Trench, Tonga Ridge, Tofua Arc Vol-
canic Front, northern end of the Tonga Kermadec Arc, and the westward region of the Lau
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Basin [40]. There are two geologically parallel chains of volcanic seamounts along the Tonga
Ridge and the famous seamount of Capricorn 193 km east of Vava’u island. These geo-
logically bathypelagic features are part of the island nation’s fishing ground. Albacore and
yellowfin dominated Tonga’s annual catch from 2002 to 2018 over bigeye and skipjack (Table 1).
In addition, bigeye (Figure S1), skipjack (Figure S2), and yellowfin (Figure S3) catches were
primarily higher in the central and southern quadrants of the EEZ, while albacore (Figure 3)
catches were relatively higher in the northern portion of Tonga’s EEZ. Overall, catch value
(as indicated by number of metric tons) is higher in the area bounded by 15.5

◦
S–22.5

◦
S

and 172.5
◦

W–176.5
◦

W, i.e., central to the northern part of the EEZ.
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Figure 3. Histograms of the spread of CPUE of tuna ((A) albacore, (B) bigeye, (C) yellowfin, (D), and
skipjack) and environmental data (E) SSS, (F) Chl-a, (G) SST, and (H) SSC) for the period 2002–2018,
of the Tonga tuna fisheries and the NASA ECCO-2 Global Circulation Model and AVHRR [41],
respectively, taken within the EEZ of Tonga. SSC = sea surface current, SSS = sea surface salinity, and
SST = sea surface temperature and chlorophyll concentration.

3. Methods
3.1. Fishery Data

Data collected between January 2002 and December 2018 for albacore, bigeye, skipjack,
and yellowfin tuna catches were utilized to create distribution maps of the tuna species
within Tonga’s EEZ. The catch and effort information was gathered by Tonga’s longline
fishery and generously provided by the Tonga Ministry of Fishery and the South Pacific
Community (SPC) Office located in New Caledonia. Rigorous checks were conducted
on the entirety of the fish catch by a minimum of two fisheries offices to ensure com-
pliance [6]. This fishery data was organized into a spatial grid with 1◦ resolution and
included details, such as daily fishing positions (latitude and longitude), fishing effort
(expressed metric tons per number of hooks, mt/no.hks), fishing date (recorded by day,
month, and year), and catch (reported in numbers).

3.2. Environmental Data

Four environmental factors were used to demonstrate the distribution of the four
tuna species. The environmental factors included were sea surface current (SSC), sea
surface salinity (SSS), sea surface temperature (SST), and chlorophyll-a concentration
(Chl-a). The SSC and SSS are the monthly/0.25 degree2 of the NASA ECCO-2 Global
Circulation Model (ec-co2.jpl.nasa.gov, accessed on 14 May 2022) and SST and Chl-a are
the daily/0.25 degree2 of the Advanced Very High Resolution Radiometer (AVHRR) sensor

ec-co2.jpl.nasa.gov
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on board the National Oceanic and Atmospheric Administration (NOAA) satellites [41].
We used the ggplot2 package [42] in the R-software [43] to generate our visualization and
the dplyr and tidyverse packages [44] for data manipulation and analysis. The utilities,
geom_raster and geom_point of ggplot2, were used for the overlaying of the environmental
and fishery data monthly composites.

3.3. Index for Spatio-Temporal Distribution Mapping

For our study, we used catch per unit effort (CPUE), which is calculated as the weight
of the catch in metric tons divided by the number of hooks deployed per fishing record,
providing a standardized measure of fishing efficiency and effort in capturing the tar-
get species [39,40]. The CPUE data were aggregated into monthly and annual resolved
datasets to match the temporal scales of the predictor variables in Microsoft Excel [45].
The distributions of the CPUEs of albacore, bigeye, yellowfin, and skipjack are shown in
Figure 3A–D, respectively. Among the four tuna species, the CPUE values ranged from 0
to approximately 150 mt/no.hks, with the majority of catch encounters falling within the 0
to 75 mt/no.hks range. The distributions of the selected environmental variables are shown
in Figure 3E–H, respectively. The SSS values fall within the range of 34.8 to 35.6 PSU, SST
values range from 18 to 30 ◦C, SSC values vary between −0.03 to 0.04 ms−1, and Chl-a val-
ues are within the range of 0.03 to 0.1 mg m−3. We employed these indices to superimpose
the monthly patterns of CPUE for the four tuna species spanning from 2002 to 2018, along
with the selected environmental factors during the same timeframe.

4. Results
4.1. Spatio-Temporal Distribution of Four Main Tuna Species 2002–2018

Figure 4 shows the monthly catch (in CPUE) distribution of albacore (top left), bigeye
(top right), skipjack (bottom left), and yellowfin (bottom right) tuna spanning the period
from 2002 to 2018. The monthly trend indicates that albacore had its peak catch between
May and August, bigeye between April and July, skipjack from June to August, and yel-
lowfin from December through February. These periods coincide with the summer season
in Tonga, which spans from November to March, and the winter season, from April to Oc-
tober. The figure displays the median, represented by the mark inside the quartiles, and
the relative density, indicated by the dimensions (width and height) of the plot, for the data
points of each species. Albacore and yellowfin demonstrate the most catches, followed
by bigeye and skipjack in terms of catch volume.
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Figure 5 shows an overview of the spatio-temporal distribution of the CPUE of albacore,
bigeye (Figure S1), skipjack (Figure S2), and yellowfin (Figure S3) across the EEZ of Tonga
over the time period of 2002–2018. The figures show the catch in CPUE (1◦ spatial grid)
plotted against latitudes and longitudes. Generally, the highest CPUE values are in latitude
range 15.5

◦
S–22.5

◦
S and longitude range 172.5

◦
W–176.5

◦
W of the EEZ for all species.

The distribution of CPUE suggests that most of the fishing effort of the tuna longliners was
concentrated in these geographical ranges. These are evidently the areas most occupied
by fishing fleets.

Bigeye, skipjack, and yellowfin CPUE show central–northernmost distribution, and
they were primarily caught between latitudes 14 S and 22 S. Albacore, on the other hand,
thrives in temperate to subtropical regions and displays its highest catch rates in the central
and southern parts of the EEZ. The high CPUE for all these species occurred during two
periods: from 2002 to 2008 and from 2012 to 2018. Conversely, the lowest CPUE was
recorded between 2009 and 2011. It can also be seen that high tuna CPUE values were
observed during winter (April–October) and relatively low encounters were observed
during summer (November–March). Additionally, the figures illustrate noticeable seasonal
variations in the CPUE of the four tuna species on a broad scale, with a notable increase
in their CPUE, particularly in recent years.
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Figure 5. Spatio-temporal pattern in the distribution of albacore tuna within the EEZ,
longitude 14.5

◦
S–20.22

◦
S, longitude 171.31

◦
W–179.10

◦
W, of Tonga over the time period 2002–2018.

4.2. Tuna Habitats in Relation to Biological and Physical Oceanic Conditions

Figure 6 shows an overview of the monthly distributions of SSC (zonal current, uvel
in ms−1, Figure 6A), SSS (in PSU, Figure 6B), SSS (in ◦C, Figure 6C), and chlorophyll
(Chl-a in mg m−3, Figure 6D) from 2002 to 2018. It can be seen that the distribution
of the zonal current and sea surface salinity are homogeneous throughout the year
(Figure 6A,B). Sea surface current is distributed in a range of −0.03 to 0.04 ms−1, and
sea surface salinity is distributed in a range of 34.8 to 35.6 PSU, respectively. However,
a relatively high sea surface current is shown at high latitudes between 22◦ S–25◦ S. For sea
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surface temperature and Chl-a, their distribution is not homogeneous in the EEZ of Tonga.
SST has a pronounced seasonal variability with the value ranges from 18

◦
C to 30

◦
C

(Figure 6C). From December to August, the temperature is relatively cooler, between 20
◦
C

and 28
◦
C. From September to November the temperature increases to a range between

22
◦
C and 30

◦
C. The distribution of Chl-a concentration also suggests seasonal varia-

tions (Figure 6D). The value of Chl-a concentration is at a range of 0.03 to 0.1 mg m−3.
Generally, higher Chl-a concentrations occurred in the central–southern part of the EEZ
during winter (from June to September) and lower concentrations occurred in the central–
northern part of the EEZ during summer (from October to May).
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4.3. Tuna and Climate Variability

Figure 7 displays the annual catch patterns for the four tuna species and the SOI
from 2002 to 2018. Additionally, it includes linear forecasts for catch and SOI, as well
as a three-month moving average of catch. It can be seen that 2004/2005, 2009–2011,
and 2014 are periods with low catches. The shift is precipitated by positive anomalies
in the sea surface temperature, which show moderate to strong Eel Nino events in the time
period of 1997/98 (strong), 2003/04 (moderate) [46], 2009/10 (moderate to strong) [47], and
2014–2016 (moderate to strong) [48]. These correspond to periods of low catches in Tonga.
Our goal is to use this corresponding pattern in catch and El Nino events (indicated
by the SOI Index) as a basis for further research.
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5. Discussion

Considering the immense value of tuna on both the global and local scales, effective
tuna management plays a vital role in ensuring the sustainability and prosperity of tuna
resources in the future [49–51]. Achieving effective tuna management extends beyond
international discussions; it should be integrated into the everyday life of local communi-
ties [50–52] that have a direct dependence on these resources. Hence, effectively overseeing
tuna stocks necessitates a collaborative endeavor involving both regional fisheries man-
agement and local communities [52]. Tonga is dedicated to fostering the development
of this significant resource on both a national and regional scale [6]. This paper outlines
the structure through which Tonga observes and strengthens its dedication to its tuna
fisheries. This dedication is demonstrated by the administration of pertinent policies and
regulations. Tonga’s commitment to effective governance is showcased by the following:
(i) Execution and supervision of catch regulations and (ii) restriction of the count of foreign-
based and foreign-licensed longlining vessels permitted to operate within Tonga’s EEZ.
These commitments are put into action through the adoption of an information-driven
management strategy, specifically the TMDP, which undergoes revision every five years.
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This paper underscores Tonga’s capacity to promote tuna management on both a national
and regional scale, serving as a solid foundation for the sustainability of tuna species and
the attainment of maximum benefits.

The CPUE distributions, as depicted in Figures S1–S3 and Figure 5, indicate that in this
region, tuna longliners experienced significantly very low tuna encounters compared to the
central portion of Tonga’s EEZ. We ascribed this distribution of habitat suitability to two
primary factors: (i) productive waters in deeper areas are dispersed across larger vertical
spans, whereas in shallower areas, these productive waters are concentrated, making
them more and quickly accessible for tuna, resulting in higher tuna presence [53,54], and
(ii) bathymetry is associated with both fleet operations and fish habitats, serving as a rough
indicator of the distance from ports [55,56]. The distance from Nuku’alofa, the capital
of Tonga, to the regions with high tuna presence in the central part of the EEZ, falls within
the range of 50 to 100 km, while the distance to the deepest areas spans from 150 to 400 km.
As a result, it is possible that fishing vessels favored the central area because it offered
a shorter distance to ports, thereby reducing operational expenses.

The research conducted by Arrizabalaga et al. (2015) [57] regarding global tuna
catches revealed that albacore tuna has the highest CPUE and is predominantly caught
within the latitude range of 20◦ South to 40◦ North. A relatively high CPUE for bigeye tuna
is observed within the 0◦ to 40◦ latitude zone in both hemispheres. Yellowfin tuna tend to be
located around the equator, while skipjack tuna exhibits its highest CPUE in the vicinity of 0◦

to 20◦ in each hemisphere. Hu et al. (2018) [56] was discovered that bigeye tuna are more
frequently caught in equatorial waters that are situated farther away from the coastline and
where the hypoxic layer extends to greater depths, as compared to yellowfin, albacore, and
skipjack tuna.

By identifying high-density areas, tuna fisheries can concentrate their operations,
leading to more efficient and sustainable practices. Conversely, avoiding areas with low
CPUE can minimize incidental catch of non-target species, contributing to ecosystem
preservation [58,59]. Knowing the spatial distribution of tuna CPUE allows Tonga’s fisheries
to focus their efforts on areas with higher fish abundance, optimizing catch rates while
minimizing operational costs and environmental harm associated with extensive searching.
Furthermore, understanding the temporal distribution of tuna CPUE is vital in Tonga’s
case to ensure proper timing of fishing activities. By identifying seasonal patterns in tuna
movements and aggregations, fisheries can align their operations with peak abundance
periods, thus, maximizing catches without overexploiting the resource.

Comprehending the spatio-temporal distribution of tuna in relation to their environ-
mental conditions [59] is particularly crucial for Tonga’s tuna fisheries given the small
size of its EEZ. As a small island nation heavily dependent on tuna resources [6,26] sus-
tainable management of its fisheries is paramount for economic growth, food security,
and conservation of marine ecosystems. Our results show that the monthly distributions
of SSC and SSS (Figure 5A,B, respectively) are homogeneous throughout the year. The SSC
varies within a range of −0.03 to 0.04 ms−1, while the SSS ranges between 34.8 to 35.6 PSU.
Arrizabalaga et al. (2015) [57] found that albacore and skipjack showed clearly defined
preferred salinity ranges, at around 36–37 PSU, while bigeye and yellowfin tuna showed
a less clearly defined preference of lower salinity of between 34–35 PSU. Nevertheless, alba-
core, bigeye, skipjack, and yellowfin tuna continue to inhabit the waters of Tonga, likely due
to other factors influencing their migration, such as their preference for water temperatures.
Our distribution maps (Figure 6A) indicate elevated SSC values in high latitudes
(between 22◦ S–25◦ S), which can be attributed to the strong westerly winds that dominate
the high latitudes of the southern hemisphere. These prevailing westerly winds propel sur-
face waters eastward, leading to the enhancement of sea surface currents in those particular
areas [60,61]. The spatio-temporal pattern observed in SST and Chl-a data (as shown in
Figures 6C and 6D, respectively) indicates that their monthly fluctuations are not uniform
but exhibit signs of seasonal variations. The values range from 18 to 30

◦
C for SST and

from 0.03 to 0.1 mg m−3 for Chl-a. Between December and August, the temperature falls
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within the cooler range of 20 ◦C to 28 ◦C and, from September to November, the temperature
rises, ranging from 22 ◦C to 30 ◦C. This indicates seasonal variation in their distributions,
which possibly corresponds to seasonal displacement of the water temperature along
low–high latitudes [62].

Chl-a exhibits seasonal variability, with a higher Chl-a concentration occurring in the central–
southern part of the EEZ during winter (from June to September) and a lower concentration
in the central–northern part of the EEZ during summer (from October to May). Studies
have shown that regions with limited catch occurrences are located in the offshore waters
because of the low concentration of Chl-a in these areas [63,64]. The presence of Chl-a serves
as an indicator of regions where there is an aggregation of small pelagic fish for feeding
purposes [65]. Therefore, it is essential to maintain an adequate level of Chl-a concentration
to support the availability of food and, consequently, to increase the presence of fish in the area.
According to Atkinson et al. (2001) [66], to sustain a viable commercial fishery, a Chl-a concen-
tration of at least 0.2 mg m−3 is necessary. This is notably higher than the Chl-a concentration
within the EEZ of Tonga, which ranges from 0.03 to 0.1 mg m−3, which is only half of that
reported (0.2 mgm−3). This is likely because there is no direct nutrient input from land sources
and coastal upwellings [67], which typically promote increased primary productivity [56,68].

While there have been no scientific investigations specifically focusing on the habitat
preferences of tuna in Tonga, the presence of areas with relatively high CPUE of tuna
species may be linked to the oceanographic conditions associated with the bathypelagic
features found within Tonga’s EEZ. As illustrated by the spatio-temporal patterns in CPUE
(as shown in Figure 4), tuna longline vessels encountered regions with a high number
of tuna in the central sector of the EEZ. As mentioned earlier, this central area within the EEZ
encompasses a portion of the Tonga Ridge, the Tofua Arc Volcanic Front, the northern
segment of the Tonga Kermadec Arc, the western expanse of the Lau Basin, and the par-
allel chains of volcanic seamounts running from north to south along the Tonga Ridge.
These oceanic features can potentially affect environmental parameters, like surface water
temperature, nutrient levels, salinity, and dissolved oxygen concentration, all of which
constitute the habitat conditions for pelagic species, like tuna. This could also explain why
the four tuna species are consistently found in this area throughout the year, despite the fact
that Tonga’s EEZ is part of the Western and Central Pacific Ocean (WCPO) region, which is
typically described as oligotrophic [69] due to extensive vertical mixing of water masses.
Studies have demonstrated a strong correlation between tuna and shallow waters, partic-
ularly continental shelves and seamounts [70,71]. These locations are widely recognized
as prime habitats for large offshore fishes, primarily because of the substantial foraging
advantages they offer [71] and possibly for reproductive and navigational benefits [72–74].

The catch trends from 2002 to 2018 align with the patterns observed in the SOI dur-
ing the same timeframe (Figure 7). Studies have shown that ENSO events are known
to cause climate variability and are the major phenomena driving seasonal and inter-annual
ocean processes in the Western Pacific [75]. ENSO events affect tuna catchability through
the spatial shift of tuna’s preferred habitat away from normal fishing grounds [76–78].
Other studies [46,79,80] have used species distribution modelling to predict the current and
future distribution of tuna in relation to climate change. These studies have shown spatial
and temporal shifts in their tuna abundance due to biophysical changes in their habitats.
For example, Senina et al. (2018) [81] showed an eastern shift in the biomass of skipjack and
yellowfin tuna over time at the Pacific Basin scale and within the EEZs of PICTs using the ap-
plication of the model SEAPODYM applied for each tuna species. Considering the potential
impacts of climate change on tuna distribution [46,82], knowledge of how environmental
conditions influence CPUE becomes even more critical for Tonga. As changing ocean tem-
peratures and currents can shift tuna habitats [83–85], understanding these relationships
helps Tonga to anticipate and adapt to fluctuations in tuna availability, reducing economic
and food security risks.
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6. Conclusions

The significance of tuna species to the Pacific region, particularly to SIDs, like Tonga,
cannot be overstated. Tonga relies on tuna fisheries to help sustain nutritional needs,
provides opportunities for recreation, to contribute to government revenues, generate
employment opportunities, support the welfare of their populations, and enrich their
cultural heritage. Recognizing how critically important it is to safeguard these benefits,
Tonga has prioritized the management of its tuna fisheries as a central development goal.
This commitment is manifest through a dedicated effort to implement and uphold existing
tuna management policies. Tonga’s unwavering dedication is evident in its comprehen-
sive approach, encompassing the vigilant monitoring of catch regulations and stringent
oversight of foreign vessels operating within Tonga’s EEZ. Central to this endeavor is
the adoption of an information-driven management framework, exemplified by the TMDP,
a dynamic strategy revised every five years to adapt to evolving challenges and opportunities.

Furthermore, we spatio-temporally merged the CPUE of four tuna species by longline
fisheries in the EEZ of Tonga with environmental data from satellites and identified areas
of high catch encounters by longline vessels. In terms of spatial distribution, the CPUE dis-
tribution pattern indicates a tendency for tuna species to be more concentrated in the central
region of the EEZ. These habitat locations coincided with a period of high tuna encounters
by longline vessels from April to October and low encounters between November and
March. Regarding the distribution of environmental factors, it is evident from our monthly
maps that sea surface current, sea surface salinity, and chlorophyll concentration exhibit
consistent conditions throughout the year, without significant seasonal variations. For sea
surface temperature, the distribution is not homogeneous in the EEZ of Tonga. Sea surface
temperature displays noticeable seasonal fluctuations, with cooler temperatures occurring
during the winter months from April to October, and warmer temperatures in the summer
months from November to March, reaching around 30

◦
C. There was, generally, a higher

Chl-a concentration shown in the central part of the EEZ. Areas of moderate to strong El
Nino events during the time span 2002 to 2018 correspond to periods of low catches of tuna
in Tonga. We also show that periods of diminished catches in Tonga align with intervals
of moderate to strong El Nino occurrences between 2002 and 2018. The study exclusively
focuses on surface environmental factors to illustrate the significance of mapping these
variables in relation to tuna catches. In the future, incorporating additional surface and
subsurface environmental variables (such as sea surface height, mixed layer depth, dis-
solved oxygen levels, and water depth) will be helpful for detailed characterization of tuna
habitats in Tonga’s waters. Advancements, like employing species distribution modeling,
will enhance our ability to gain a more accurate comprehension of the elements that impact
the presence of tuna in Tonga, thereby contributing to the promotion of sustainable fisheries
management and conservation initiatives.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15101042/s1. PDF file of the Tonga National Tuna Fishery
Management and Development Plan 2018–2022 [6]. Figure S1. Spatio-temporal pattern in the distri-
bution of bigeye tuna in the EEZ, longitude 14.5

◦
S–20.22

◦
S, longitude 171.31

◦
W–179.10

◦
W, of Tonga

over the time period 2002–2018. Figure S2. Spatio-temporal pattern in the distribution of skipjack
tuna in the EEZ, longitude 14.5

◦
S–20.22

◦
S, longitude 171.31

◦
W–179.10

◦
W, of Tonga over the time

period 2002–2018. Figure S3. Spatio-temporal pattern in the distribution of yellowfin tuna in the EEZ,
longitude 14.5

◦
S–20.22

◦
S, longitude 171.31

◦
W–179.10

◦
W, of Tonga over the time period 2002–2018.
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