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Abstract: Considering Inner Mongolia as the study area, the ecological theory of climate change, and
human activities affecting a wide range of biodiversity patterns, MODIS multi-timeseries remote
sensing image data were used and the interannual variation index was obtained by the method of
fitting the curve to obtain the annual phenological and seasonal indicators. At the same time, the
Landsat 8 standard deviation image was calculated to obtain the spatial variation index and generate
spatial–temporal remote sensing indices to quantify the threat of climate change to biodiversity. In
addition, the impact of human activities on biodiversity was quantified by generating a map of the
human footprint in Inner Mongolia. The spatial–temporal remote sensing index and the human
footprint index were integrated to identify areas protected from climate change and human activities,
respectively. Eventually, the hotspot areas of biodiversity conservation in Inner Mongolia were
obtained and priority protected area planning was based on the hotspot identification results. In this
study, remote sensing technology was used to identify biodiversity conservation hotspots, which
can overcome the limitations of insufficient species data from the past, improve the reliability of
large-scale biodiversity conservation analyses, and be used for targeted management actions that
have practical significance for biodiversity conservation planning.

Keywords: climatic change; human activities; biodiversity; hotspot identification

1. Introduction

Biodiversity is declining at an unprecedented rate [1]. The establishment of protected
areas is one of the key conservation strategies to prevent biodiversity loss [2], minimize
habitat loss, and more effectively maintain threatened populations [3]. In response to
the global decline of biodiversity, there has been a significant increase in the number of
protected areas over the past two decades. Currently, there are more than 2 million areas of
land that have been designated as protected areas, accounting for 15% of the global land
area [4]. However, the existing coverage of protected areas is still insufficient to address the
current biodiversity crisis. Therefore, it is necessary to increase the number of protected
areas but, more importantly, establish the appropriate areas for protection [5]. Focusing on
the priority protection of important areas is a more realistic and efficient way to protect
biodiversity.

Large-scale patterns of biodiversity are strongly affected by climate change and hu-
man activity [6–10]. Rapid climate change poses a hazard to biodiversity by dramatically
increasing the vulnerability of various species [11–13]. Additionally, phenology and tem-
perature could also change seasonally due to climate change [14,15], which may result in
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a phenological mismatch between species, the resources they rely on to reproduce, and
their habitat characteristics [16]. Biodiversity is threatened when vegetation phenology
and temperature vary greatly across years, outpacing the rate at which organisms can
adapt [17–19]. In times of rapid climate change, enhancing adaptability during periods
of high interannual fluctuation and high spatial variability in vegetation phenology and
temperature can lessen the potential of biodiversity loss [20]. Since they offer a variety
of resources, habitat conditions, microclimatic areas at small scales, and ecosystems with
significant spatial variability [21], places with high spatial variability have better rates of
species survival than areas with low spatial variability [22,23]. Similarly, the high spatial
variability of surface temperatures provides microclimates that reduce the exposure of
species to extreme temperatures and offer heat-protected shelters for species [24,25]. The
satellite-based long timeseries vegetation index can effectively capture the seasonal interan-
nual variation in the enhanced vegetation index (EVI) and land surface temperature (LST)
to obtain phenological indicators [26–28]. The spatial variability feature can be captured by
calculating the variability among pixels in a moving window, i.e., the image texture. Image
textures are effective measures of habitat suitability for wildlife [29,30]. For instance, the
30 m resolution EVI’s standard deviation picture texture features had a positive correlation
with the overall number of native birds in the United States [29] and there was a good
correlation between the abundance of native American birds and the standard deviation
texture of the winter LST [31]. These examples illustrate that the standard deviation tex-
ture of images can be used to measure vegetation and temperature structures in relation
to biodiversity.

Not only do spatial–temporal changes in climate affect biodiversity, but human activ-
ities have also dramatically altered the terrestrial biosphere, leading to land conversion,
global biogeochemical changes, and loss of biodiversity [32,33]. Since the 20th century, the
rapid growth of global population and the disturbance of global ecosystems by human
activities has increased significantly [33,34]. By extracting resources, building infrastruc-
ture, and transforming natural habitats into productive lands, humans exert pressure on
ecosystems. For instance, many species’ habitats have been invaded by rapid urban ex-
pansion, resulting in a reduction of habitat and biodiversity for these species [35]. The
projected increase in anthropogenic pressures in the future may cause species to leave
their natural habitats, leading to severe population decline [36]. Rapid advances in remote
sensing technology can more effectively quantify human pressures on habitats, measure
the level of human activity by building a framework that considers a variety of human
stresses, generate human footprint maps that provide an up-to-date picture of the extent of
human activity on global terrestrial land, and describe the extent of the human alteration
of ecosystems [37,38].

The unique geographical location and topography of Inner Mongolia has created
a complex and diverse ecosystem that is one of the most complete natural ecosystem
areas in China and a key area for biodiversity conservation. Previous studies on the
identification of biodiversity hotspots have mostly been based on species richness and
rarity, as well as on species distribution patterns; however, in general, species-based
biodiversity hotspots still lack sufficient information to support them. This study combines
remote sensing monitoring technology with the use of indices to identify biodiversity
conservation hotspots; this process does not require a large amount of species data and has
the advantages of shortening the process of assessment, expanding the scale, and saving the
consumption of manpower, etc. The results of the analyses will allow for the development
of comprehensive surveys of the biodiversity of hotspot areas and the dynamic monitoring
of the hotspot in the long term.

In summary, long timeseries remote sensing observation data provide important
data support for the study of the impacts of climate change and human activities on
biodiversity [39,40]. This paper proposes a methodology for identifying biodiversity
conservation hotspots by combining spatial–temporal remote sensing and human footprint
indices. The main contributions of this study are as follows: (1) generating spatial–temporal
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remote sensing indices to capture interannual and spatial variability in EVI and LST to
quantify the impacts of climate change on biodiversity, (2) generating the human footprint
index to quantify the impacts of human activities on biodiversity, and (3) integrating spatial–
temporal remote sensing and human footprint indices to identify areas of high, medium,
and low biodiversity conservation concern.

2. Study Area

The Inner Mongolia Autonomous Region is located in the northern part of China
(37◦24′–53◦23′ N and 97◦12′–126◦4′ E). It is the third largest provincial administrative
division in China, with an area of nearly 10,000 km2. The area extends from the Daxingan
Mountains in the east to the coast of the Guyan River in the west and diagonally from
the northeast to the southwest in a long and narrow shape. The area is rich in vegetation,
with forests, grasslands, and deserts along the northeast–southwest sequence. Most areas
receive less than 500 mm of annual precipitation and are ecologically fragile, making
them one of the most sensitive regions to global climate change. There are 11 ecological
zones in the Inner Mongolia Autonomous Region, including plateau, forest, desert, and
grassland. Considering that the geomorphological, hydrological, soil, vegetation, and
climatic characteristics are relatively similar in each ecoregion, the ecological zones were
chosen as the scale of analysis for this study (Figure 1).
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Figure 1. Overview map of the study area and main ecological zones (I-1 Northern Deciduous
Coniferous Forest Ecoregion of the Daxingan Mountains; I-2 Yanshan–Taihang Mountains Deciduous
Broadleaf Forest Ecoregion; I-3 Loess Plateau Agricultural and Grassland Ecolo gical Zone; I-4 Mixed
coniferous forest ecological zone in the Xiaoxinganling Mountains; I-5 Eastern Northeast Plain
Agroecological Zone; I-6 Northeast Plain Western Meadow Grassland Ecoregion; I-7 Deciduous broad-
leaved forest and forest-steppe ecotone in the southern–central Daxingan Moun-tains; I-8 Typical
grassland ecological zone in the eastern–central part of Inner Mongolia Plateau; I-9 Longzhong
Desert Grassland Ecoregion in Central Inner Mongolia Plateau; I-10 Longzhong Desert Grassland
Ecoregion in Central Inner Mongolia Plateau; I-11 Grassland Desert Ecoregion in Central Inner
Mongolia Plateau.
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3. Research Methodology

In this study, MODIS multi-temporal remote sensing image data were used to obtain
annual phenological and seasonal indicators of EVI and LST by fitting curves to generate
interannual variability indices, whereas Landsat 8 standard deviation images were cal-
culated to generate spatial variability indices. In addition, a human footprint index was
calculated to generate a human footprint map of Inner Mongolia and quantify the impact
of human activities on the ecosystem. The spatial–temporal remote sensing index (ST)
and human footprint index (HF) were integrated to identify areas for conservation that
are under climate change and anthropogenic pressures to finally obtain hotspot areas for
biodiversity conservation in Inner Mongolia (Figure 2).
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3.1. Identify Protection Hotspot Areas

In this study, the spatial–temporal remote sensing index (ST) and human footprint
index (HF) were developed to identify biodiversity conservation hotspots based on two
factors: climate change and human activities.

The analysis was based on the upper and lower quantiles of the spatial–temporal
remote sensing index and human activity index maps. Hotspots were mapped using
the Getis–Ord Gi

* statistic to identify pixel clusters in the categories of high and low
conservation concern due to climate change and human activity [41]. Gi

* is a local spatial
autocorrelation indicator based on the full matrix of distances that can identify the locations
in the study area where elements are highly concentrated, as follows:

G∗iST
=

∑n
j=1 wiST ,jST xjST

∑n
j=1 xjST

(1)

G∗iHF
=

∑n
j=1 wiHF ,jHF xjHF

∑n
j=1 xjHF

(2)

In the formula, xjST and xjHF are the attribute values of the elements jST and jHF, wiST ,jST
and wiHF ,jHF are the spatial weights between the elements iST and jST and the elements
iHF and jHF, and n is the total number of features. G∗i statistics returned a z-score for each
feature in the dataset. Hotspots were indicated by large positive z-score values and chilled
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spots were indicated by large negative z-score values, identifying hot- and cold-spot areas
with 99% confidence intervals.

By superimposing the two indices, a map of biodiversity conservation hotspots was
calculated using the following formula:

BI_G∗i = G∗i_ST ⊕ G∗i_HF (3)

where BI_G∗i is the biodiversity conservation hotspot identified by combining the two
indices, G∗i_ST is the hotspot area identified by the ST index and G∗i_HF is the hotspot area
identified by the HF index. ⊕ is calculated as the part of the area where two hotspots
overlap, i.e., the area where both indices have significantly high values, and is classified as
“Level 1” protected areas; areas without overlap, i.e., areas where either of the two indices
have a significantly higher value, are classified as “Level 2” protected areas; and areas
with low values for either of the two indices are classified as “Level 3” protected areas.
The final biodiversity conservation hotspot area BI_G∗i is classified as a three-tier priority
conservation area.

3.2. Constructing ST Index for Identifying Hotspot Areas

Climate change can lead to seasonal changes in vegetation phenology and temperature,
resulting in a phenological mismatch between the species and the resources on which
they depend for survival, reproduction, and habitat characteristics. In this study, we used
MODIS multi-temporal remote sensing image data to obtain EVI and LST annual phenology
and seasonal indicators by fitting curves to generate interannual variability indices. Landsat
8 standard deviation images were used to generate a spatial variability index. To obtain the
spatial–temporal patterns of the EVI and LST, we integrated the interannual and spatial
variability indices.

Based on the quantile method used to classify each index into high and low values, the
spatial–temporal maps of EVI and LST were integrated as follows: (1) interannual variability
of EVI (MODIS 16-day EVI; 250 m resolution) and spatial variability with EVI (Landsat 8 EVI
standard deviation; 30 m resolution) and (2) interannual variability of LST (MODIS 8-day
LST; 1 km resolution) and spatial variability with LST (Landsat 8 LST standard deviation;
30 m resolution). Prior to integration, resampling was performed using nearest neighbor
resampling to produce two spatial–temporal variation maps: an EVI spatial–temporal map
at 250 m resolution and a LST spatial–temporal map at 1 km resolution.

Finally, we combined the interannual variability maps of the EVI and LST with their
respective spatial variability maps (Table 1). Based on the principle of spatial coherence,
hotspots of biodiversity conservation due to phenological and seasonal variability were
identified by combining the interannual and spatial variability indices.

Table 1. Identification of biodiversity conservation hotspots due to phenological and seasonal
variability.

High Spatial Variability Low Spatial Variability

High interannual variability

Medium conservation (high interannual
variability poses a high threat but high spatial
variability in EVI and LST implies
high resilience)

Highest conservation (high interannual
variability poses high threat; low spatial
variability in EVI and LST means low resilience
and low elasticity)

Low interannual variability

Lowest conservation (low interannual
variability poses low threat level; high spatial
variability in EVI and LST implies
high resilience)

Medium conservation (low interannual
variability poses low threat level; low spatial
variability in EVI and LST implies
low resilience)

3.2.1. Interannual Variability Index

First, MODIS images of the EVI and LST of the Inner Mongolia region from 2002 to
2022 were acquired from the Google Earth Engine and the best-quality cloud-free data were
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selected according to the MODIS quality control (QA) bands. The 20-year EVI and LST
timeseries were filtered using the adaptive Savitzky–Golay filter of TIMESAT software and,
based on the curves obtained from the timeseries, the three phenological indices (EVI) and
three seasonal indices (LST) were calculated for each year; the start of the growing season
(SOS), end of growing season (EOS), and length of growing season (LOS) were determined
using the dynamic threshold method (Table 2). To determine the accuracy of the metrics,
this study examined the accuracy of SOS and EOS identified by different models using the
phenological observation data released by the China National Ecosystem Observation and
Research Network. Based on the latitude and longitude of the observation points and the
year of the phenological data, the mean values of the 3 × 3 pixels were extracted from the
simulated raster data and compared with the measured data and the correlation coefficient
and root mean square error were calculated. Finally, to quantify the interannual variation,
the coefficient of variation (CV) was calculated for each of the six indicators; the CV is a
statistical measure of the dispersion of serial observations and can reflect the temporal
differences in phenology at the pixel level for any land cover type, calculated as:

TCV =
STD

µ
(4)

where TCV denotes the interannual variability index, STD denotes the standard deviation,
and µ denotes the arithmetic mean.

Table 2. Phenology and seasonal indicators and interannual variability indices.

Phenology and
Seasonal Indicators Description Interannual Variability Index

Esos Start of the growing season based on EVI timeseries TCV_ Es
Eeos End of the growing season calculated from EVI timeseries TCV_ Ee
Elos Number of days between EVI start date and end date TCV_ El
Lsos Start of the growing season based on LST timeseries TCV_ Ls
Leos End of the growing season calculated from LST timeseries TCV_ Le
Llos Number of days between LST start date and end date TCV_ Ll

To test whether the physical and seasonal indices were correlated, Pearson correlation
coefficients (r) were calculated between the three EVI and three LST interannual variability
indices to determine whether it was meaningful to retain all indices and select the most
closely related seasonal indices for further analysis based on principal component analysis.

3.2.2. Spatial Variability Index

The spatial variability of EVI and LST was obtained by calculating the standard
deviation images of Landsat 8 EVI and LST in the Inner Mongolia region from 2013 to 2022
on the Google Earth Engine by analyzing their image textures.

Landsat 8 surface reflectance layer 1 bands 2, 3, and 4 were used to determine the EVI.
To obtain the highest quality images, the images were first masked for clouds, shadows, and
water bodies using quality assurance (QA) bands from Landsat 8. Second, by calculating
the 90th percentile of EVI values for each year from 2013 through 2022, synthetic images
were created. The 90th percentile is a ranking of the values by their size, dividing the
data into the lower 90% and the upper 10% and discarding the data in excess of 10%,
which eliminates erroneous high EVI values [29]. The spatial variability index of the EVI
was obtained by employing an 11 × 11 pixel moving window to determine the standard
deviation of 90% of the EVI images. The 90th percentile of the EVI of the neighboring pixels
was used to calculate the standard deviation for the moving window’s center pixel. A
window size of 11 × 11 was chosen because an ecologically significant window of 330 m
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represents a refuge within a region accessible to most species. The formula for calculating
the spatial variability index of the EVI is as follows:

SSTD_EVI =

√
∑n

i=1 (xi − µ)2

n
(5)

where SSTD_EVI denotes the spatial variability index of the EVI, µ is the arithmetic mean,
and n is the sample.

The LST was calculated from Landsat 8-band10 by first collecting images of the Inner
Mongolia region in summer (June–August) and winter (December–February) for each year
from 2013 to 2022 and obtaining median synthetic images of the summer and winter for all
years. The median was analyzed because it minimized the effects of extreme values in the
data [25]. Standard deviations were calculated within a moving window of 11 × 11 pixels
for summer and winter based on median synthetic images for both summer and winter,
as they are the extreme high and low temperatures, respectively, that affect biodiversity
patterns [25,42]. To determine the spatial variability of the LST, the LST spatial variability
index SSTD_LST was generated by combining the summer and winter data. Standard
deviation images for the summer and winter seasons were quantile-classified into five
categories, ranging from 1 (low standard deviation, low variability) to 5 (high standard
deviation, high variability). Combining all the possibilities generated by classifying images
with two standard deviations for summer and winter resulted in yield values ranging from
2 to 10 (Figure 6). Finally, locations with high spatial variability in both summer and winter
were classified as having high spatial variability (combined sum≥ 7), whereas regions with
low spatial variability in both summer and winter were classified as having low spatial
variability (combined sum range 2–6). The formula for calculating the spatial variation
index of the LST is as follows:

SSTD_LST =

√
∑n

i=1 (xi − µ)2

n
(6)

where SSTD_LST denotes the spatial variability index of the EVI, µ is the arithmetic mean,
and n is the sample.

3.3. Construction of Human Footprint Index for Identifying Hotspot Areas

The HF index is used to indirectly assess the impacts associated with human activities
by integrating a range of human pressures into a framework in which the relative levels
of pressure are aggregated [43]. Five human activity factors, namely population density,
livestock density, land use, nighttime light index, and transportation, were selected to
quantify human disturbances in terrestrial ecosystems by mapping human footprints at a
spatial resolution of 1 km to determine the HF in Inner Mongolia while considering the
actual conditions of the region. The impact of human activity increased with increasing
HF values. Data related to population density, livestock density, land use, nighttime light
index, and accessibility were assigned values ranging from 1 to10 and superimposed to
obtain the HF.

HF =
HII − HIImin

HIImax − HIImin
(7)

where HF is the human footprint and HII is the human impact index. HIImax and HIImin
are the maximum and minimum values of the human impact index, respectively. The
calculation method is as follows:

HII = population + grazing + nightlight + transportation + landuse (8)

where population is population density, grazing is grazing density, nightlight is nighttime
light, transportation is the traffic impact index, and landuse is land use.
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3.3.1. Population

Population density is a key determinant of population spatial distribution. This study
used the latest raster data on the population spatial distribution in 2021 that was published
by Landscan (https://landscan.ornl.gov) (accessed on 1 May 2023). The effect of population
density on the ecosystem is logarithmic [44], putting the population density data into a
logarithmic equation and using the natural breakpoint method to classify the data into 10
classes with a value range of 0–10.

population score = 2.21398× log
(

population density + 1
)

(9)

In the formula, population score represents the reallocated grid score and population density
represents the grid’s population density value.

3.3.2. Grazing

Livestock density data were obtained from the World Gridded Livestock Dataset of the
United Nations Food and Agriculture Organization (https://data.apps.fao.org) (accessed
on 1 May 2023).

Livestock grazing is an important industry in Inner Mongolia and an important type
of human activity in this region. In this study, the sum of the cattle and sheep densities
was used to characterize the grazing density. Because the world gridded livestock dataset
only obtained cattle and sheep densities in 2016, in order to obtain the grazing density in
2021 we needed to analyze the trend extrapolation method for cattle and sheep density in
2016 before reassigning the value [45]. First, the total beef and lamb production values in
the Inner Mongolia Autonomous Region in 2015, 2016, and 2021 were obtained from the
statistical yearbook, the change rate of beef and lamb production in 2021 relative to the
production in 2016 was calculated, and the cattle and sheep density in 2021 was obtained
by multiplying the change rate with the cattle and sheep density in 2016 to obtain the final
grazing density. The data for grazing density were also calculated and allocated using the
logarithmic equation with a value range of 0–10 points, since the effect of grazing density
also showed a logarithmic variation law; the specific calculation equation was as follows:

grazing score = 2.51531× log
(

grazing density + 1
)

(10)

In the formula, grazing score stands for the reallocated grid score and grazing density
stands for the grid’s grazing density value.

3.3.3. Nightlight

The nighttime lighting index is used to indicate the level of human activity at night,
which also reflects the level of economic development and the creation of electrical infras-
tructure. Data were obtained from the DMSP-OLS timeseries data for China from to 1992
to 2019 [46]. The data were calibrated to the DMSP-OLS data and the consistency of the
temporal resolutions of the DMSP-OLS and SNPP-VIIRS data was considered with a spatial
resolution of 1 km. The data were scaled to 0–10 points using the quantile method.

3.3.4. Transportation

Transportation was determined using the road and rail data from Inner Mongolia. The
road network data were obtained from OpenStreetMap (https://www.openstreetmap.org/)
(accessed on 1 May 2023). The environmental impact of roads was studied by assigning
scores to roads and railroads [45,47]. Because the train is closed when it runs along the
railroad, the influence on both sides is small; therefore, when evaluating the value, only
the area within 2500 m on both sides of the railroad was assigned nine points, within
2500–3000 m was assigned five points, and within 3000–5000 m was assigned three points.
The highway was assigned ten points within 500 m, within 500–2500 m it was assigned
eight points, within 2500–3000 m it was assigned seven points, and within 3000–5000 m

https://landscan.ornl.gov
https://data.apps.fao.org
https://www.openstreetmap.org/
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it was assigned three points. An area within 500 m on both sides of the road was worth
10 points, within 500–2500 m was worth 8 points, within 2500–3000 m was worth 7 points,
and within 3000–5000 m was worth 5 points. The road and railroad buffers were mosaicked
into a new grid and the maximum values of railroad and road overlap were obtained to
assess the accessibility of traffic lanes.

3.3.5. Land Use

Land use is an important indicator of the intensity of human activities. Based on the
relative degree of disturbance calculated in a regional-scale correlation study [48], a score
was assigned to each land use type. We assigned building land, which is the land use type
most affected by human activities, a maximum score of 10, whereas all other land use types
that were not significantly affected by human activities were assigned a value of 0. Finally,
built-up land, cropland, grassland, watershed, forest land, and unused land were assigned
values of 10, 2, 0, 0, 0, 0, and 0, respectively.

These data are a 10 m resolution global land cover map for 2021 (https://www.esri.
com/) (accessed on 1 May 2023) that was produced using the Sentinnel-2 satellite as the
data source combined with an artificial intelligence land classification model.

4. Results
4.1. Spatial–Temporal Remote Sensing Indices to Identify Conservation Areas Affected by
Phenological and Seasonal Changes G∗i_ST

4.1.1. Interannual Variability of MODIS EVI and LST

Assessment of the interannual variation of the EVI in Inner Mongolia was based on the
CV of three phenological indicators: SOS, EOS, and LOS (TCV_ Es; TCV_ Ee; TCV_ El). These
three indicators had Pearson correlations between 0.72 and 0.84, indicating a moderate-
to-high degree of correlation. The most correlated TCV_ Es was selected using principal
component analysis to further analyze the interannual variation of the EVI. The values
of TCV_ Es varied greatly throughout Inner Mongolia, reaching >0.4 in some locations
of the typical grassland ecoregion in the easternmost Inner Mongolia Plateau (Figure 3a)
and higher TCV_ Es values (CV > 0.25) in most of the typical grassland ecoregion in the
central–eastern Inner Mongolia Plateau, the meadow grassland ecoregion in the western
Northeast Plain, and the grassland-dominated eastern Hulunbuir City and western Xilin
Gol League. TCV_ Ee was lower (mean CV < 0.15) in the mountainous desert ecoregion
of the western Inner Mongolia Plateau, the steppe desert ecoregion of the central Inner
Mongolia Plateau, the Longzhong desert steppe ecoregion of the central Inner Mongolia
Plateau, and the desert dominated Alxa League. Unlike the strong interannual variation at
the beginning of the growing season, the interannual variation at the end of the growing
season was small and the TCV_ Ee values (Figure 3b) were low throughout Inner Mongolia.
The TCV_ El (Figure 3c) was approximately the same as the TCV_ Ee.

Similarly, the interannual variation of the LST in Inner Mongolia was assessed based
on the CV of the three indicators, SOS, EOS, and LOS (TCV_ Ls; TCV_ Le; TCV_ Ll). The three
surface temperature indices were moderately highly correlated, with Pearson correlations
ranging from 0.53 to 0.82. The most relevant TCV_ Ls was selected as the interannual
variation index of the LST. The overall variation in TCV_ Ls was small, with a maximum
CV of 0.31, and TCV_ Ls was significantly higher than TCV_ Le (Figure 4a,b). The highest
TCV_ Ll variability (mean CV > 0.15) was found in the deciduous broad-leaved forest and
forest-steppe ecotone in the southern–central Daxinganling and the meadow ecotone in
the western Northeast Plain, whereas the lowest variability was found in the mountainous
desert ecotone in the western Inner Mongolia Plateau, Central Inner Mongolia grassland
desert ecoregion, and the Longzhong desert grassland ecological zone in Central Inner
Mongolia. Additionally, TCV_ Le and TCV_ Ll were not significantly different across the
autonomous region (CV < 0.1; Figure 4b,c).

https://www.esri.com/
https://www.esri.com/
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Comparing the interannual variability indices of EVI and LST in Inner Mongolia, it
was found that the correlation between them was weak; the areas with high interannual
variability in EVI were not the same as those with high interannual variability in LST.
Specifically, TCV_ Es and TCV_ Ls were weakly positively correlated across Inner Mongolia
(r = 0.11); however, they varied between ecoregions and municipalities.

4.1.2. Spatial Variability of Landsat 8 EVI and LST Standard Deviation Image Textures

The spatial variability of the EVI in Inner Mongolia was assessed by calculating the
standard deviation of the Landsat 8 EVI in an 11 × 11 pixel moving window. The highest
spatial variability in the EVI was found in ecoregions dominated by forest, grassland,
and agricultural land cover types, such as the deciduous coniferous forest ecoregion in
the northern part of the Daxinganling Mountains, the deciduous broad-leaved forest and
forest-steppe ecoregion in the southern–central part, the meadow ecoregion in the western
part of the Northeast Plain, and the eastern part of the typical grassland ecoregion in
the eastern–central part of the Inner Mongolia Plateau. Within each ecoregion of Inner
Mongolia, the spatial variability of the EVI varied greatly between the same land cover
class and different land cover types. For example, the spatial variability was higher in
the meadow-steppe and agroecological zones in the western part of the forest-dominated
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Song Nen Plain near impervious surfaces and farmland (Figure 5(1a–c)). In the farmland-
dominated Hetao-Yinchuan irrigated agroecological zone, farmland and grassland showed
high spatial variability (Figure 5(2a–c)). In the grassland-dominated Xilin Gol League
typical grassland ecoregion, the spatial variability of the EVI was higher when the distance
to bare land and farmland was smaller (Figure 5(3a–c)). In the desert ecoregion of northern
Alxa, which is dominated by bare land (Figure 5(4a–c)), the standard deviation of the EVI
could capture the fine-scale variability of land cover classes. Among the ecoregions, the
spatial variability of vegetation greenness was highest in the Yanshan–Taihang Mountains
deciduous broad-leaved forest ecoregion, the western Northeast Plain meadow-steppe
ecoregion, and the eastern Northeast Plain agricultural ecoregion (mean > 0.1) and lowest
in the western Inner Mongolia Plateau, the northern mountain desert ecoregion, and the
central steppe desert ecoregion (mean < 0.03). Among the cities, the spatial variability of
the EVI was highest in Hohhot and Chifeng (mean > 0.09), and the spatial variability of
vegetation greenness was lowest in the Alxa League and Bayan Nur (mean < 0.04).
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The southwest of Inner Mongolia is where the LST is concentrated throughout the
summer, whereas during winter, the LST diminishes from south to north (Figure 6a,b).
This was combined with the spatial variability of surface temperatures in the summer and
winter (Figure 6(3c)).
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4.1.3. Spatial–Temporal Remote Sensing Index Patterns of the EVI and LST

The interannual variability maps of EVI and LST in Inner Mongolia (Figure 7(1a,2a))
and their spatial variability maps (Figure 7(1b,2b)) were analyzed according to the combi-
nation of their respective high and low variabilities (Table 1) to pinpoint locations whose
phenological and seasonal variability could create high, medium, and low conservation
concerns (Figure 7(1c,2c)). Pixel clustering was used to identify protection hotspots based
on the EVI and LST, which differed significantly (Figure 7(1d,2d)). The conservation
hotspots identified based on the EVI (Figure 7(1d)) were mainly concentrated in the Decid-
uous broad-leaved forest and grassland forest ecotone in the southern–central Daxingan
Mountains and the typical grassland ecological zone in the eastern–central Inner Mongo-
lia Plateau, whereas the hotspots identified based on the LST were concentrated in the
southern–central meadow and grassland ecological zone in the west of the Northeast Plain
and the south of the typical grassland ecological zone in the eastern–central Inner Mongolia
Plateau and the municipal levels were mainly concentrated in the east of Hulunbuir City,
the east and south of Chifeng City, the south of Xilin Gol League, and the southwest of
Ulanqab. The spatial–temporal remote sensing index were used to identify conservation
hotspot areas G∗i_ST due to phenological and seasonal changes and were mainly distributed
in eastern Hulunbuir City, eastern Hinggan League, eastern Chifeng City, and southern
Xilin Gol League based on the spatial consistency between the EVI and LST (Figure 7(3d)).
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4.2. Human Footprint Index Identifies Conservation Hotspots Affected by Anthropogenic
Activities G∗i_HF

4.2.1. Spatial Distribution of Each Human Activity Factor

Five types of human activity factors were selected, considering the actual situation
in Inner Mongolia: population density, grazing density, land use data, night illumination
index, and traffic accessibility (Figure 8).
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According to Figure 8a, the population in the Inner Mongolia Autonomous Region is
distributed roughly along the line between the eastern foot of the Daxinganling Mountains,
the Yinshan Mountains, and the Helan Mountains. The population density is lower from the
north of this line to the west and higher from the east to the south. The population density
varies significantly among allied cities. For example, Hohhot in the central region has a
higher population density, whereas the Alxa League in the west has a lower population
density due to economic development disparities.

Animal husbandry is a basic industry in Inner Mongolia, and grazing is an important
human activity in this region. As shown in Figure 8b, the spatial distribution pattern
of grazing density in the Inner Mongolia Autonomous Region was high in the central
region and low in the western and northeastern regions. Areas with high grazing density
included the central–eastern part of the Xilin Gol League, Bayan Nur City, Erdos City,
eastern Chifeng City, and Tongliao City.

Nighttime lighting data are important indicators of the intensity of human activity.
According to the nighttime light in Figure 8c, the spatial distribution of nighttime light in
the Inner Mongolia Autonomous Region is uneven and is mainly distributed in cities along
the mainstream of the Yellow River and along the traffic arteries. Due to the huge difference
in urbanization levels between the eastern, central, and western parts of Inner Mongolia,
the intensity of nighttime lighting and urbanization levels in the central part of the country
are significantly higher than those in the eastern and western parts. The top three cities
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in terms of total nighttime lighting value in each league are Hulunbuir City, Xilin Gol
League, and Alxa League. There is a strong correlation between population density and
nighttime lights in the Inner Mongolia region in terms of the spatial distribution because
nighttime lights can accurately reflect the population gathering in urban areas where lights
are concentrated.

The traffic impact index was based on road and railroad data from Inner Mongolia, and
the intensity of human activity was determined by establishing buffer zones and assigning
scores according to different distances (Figure 8d). The road network in Inner Mongolia
has a significant concentration of cities at the prefecture level, whereas the railroad network
has an axial pattern of town linkages owing to the “corridor effect” of the railroad, with the
east–west railroad line as the axis for expansion. The core cities and important nodal towns
in Inner Mongolia are clearly oriented with Hohhot as the axis, which connects with cities
outside the province and radiates to the inner regions.

Land use in Inner Mongolia is dominated by grassland, forest land, and unused land,
whereas water, arable land, and residential land occupy relatively small areas. Grassland is
distributed in most of the central part of the country, unused land is in the western part,
forested land is in the eastern part, arable land is on the southeastern border, and water
and residential land are interspersed among the above land types. The high values were
obtained mainly for the southeastern part of Inner Mongolia, where the land use types were
mainly farmland and construction land, and the low values were mainly in the western
desert areas (Figure 8e).

4.2.2. Distribution Pattern of Human Footprint Index

The human footprint index was calculated by superimposing each human activity
factor in Inner Mongolia, and the results are shown in Figure 9a. The HF was classified
into three levels using the natural breakpoint method (Figure 9b): low (1–10), medium
(10–20), and high (20–49). High HF values were distributed in urban construction areas,
cultivated land, and road construction areas where the degree of human disturbance was
high. Low values were distributed in undeveloped areas surrounded by deserts, forests,
and grasslands, where the disturbance caused by human activities was low.
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For the identification of a human activity hotspot map G∗i_HF based on HF (Figure 9c),
the hotspot areas of G∗i_HF mainly included: the West Liaoning River Plain, the southern
side of the Daqing Mountains, the southeastern part of the Ordos Plateau, the northern
foot of the Yinshan Mountains, the Daxinganling Mountains, the Helan Mountains, and
the Hetao Plain. The population in these areas is mostly distributed along rivers or traffic
routes, with a high population concentration, higher nighttime light intensity and high
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urbanization levels compared with other areas, better traffic accessibility, and a higher
intensity of human activities.

4.3. Results of Hotspot Protection Zone Identification BI_G∗i
According to Equation (3), BI_G∗i was calculated to assess the degree of threat to bio-

diversity in the Inner Mongolia Autonomous Region from two dimensions, climate change
and human activities (Table 3), and to further plan priority protected areas (Figure 10).

Table 3. Basis of priority conservation areas.

Priority Zone Level Climate Change Threatening Human Activities Threatening

Primary Protection Priority Area
(A1–A12) High High

Secondary Protection Priority Area High Low
Low High

Tertiary Protection Priority Area Low Low
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Number, Area, and Spatial Distribution Characteristics of Priority Protected Areas BI_G∗i
The results show that the priority protection areas generated from the combination

of the ST and HF indices in Inner Mongolia had a total area of 668,508 km2 (Figure 11), of
which, 10,581 km2 were priority protection areas, accounting for 0.91% of the total land
area of the Inner Mongolia Autonomous Region and 1.58% of the total area of priority
protection areas. These areas were divided into 12 priority protection areas according to
the topography of the main ecological zones and administrative divisions, some of which
contained multiple protection zones (those indicated with (*) in Table 4 are the existing
protection zones). The primary protected areas are scattered and concentrated mainly in the
eastern part of the country. The second priority protection area covers 273,641 km2, which
is mainly distributed in the northeastern part of the Xinganling Mountains, coniferous
forests, mixed coniferous and broad coniferous forest ecological zones, most areas in
the western meadow grassland ecological zone of the Northeast Plain, the central and
southern parts of the typical grassland ecological zone in the central–eastern part of the
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Inner Mongolia Plateau, the agricultural and grassland ecological zone of the Loess Plateau,
and the western part of the desert grassland ecological zone in the central Longzhong Inner
Mongolia Plateau. The second level of priority protection zone is based on the areas with
a significantly high value of any one of the two hotspot indices and accounts for 40.93%
of the total area of the priority protection zone. The third level of priority protection zone
covers 304,286 km2 and accounts for 57.48% of the total area of the priority protection zone.
This is the largest of the three types of priority protected areas and is mainly located in the
northern Daxinganling mountain mixed coniferous forest ecological zone, the deciduous
broad-leaved forest ecological zone in southern–central Daxinganling, and the grassland
desert ecoregion in the Central Inner Mongolia Plateau.

Diversity 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

areas have a high concentration of conservation vacancies and corresponding actions 
should be taken to increase conservation efforts and reduce biodiversity loss. In the past, 
the delineation of protected areas was usually carried out by national, provincial, and mu-
nicipal agencies through field surveys based on rare and endangered species or repre-
sentative ecosystems. However, the hotspot areas identified in this study through the use 
of remote sensing monitoring technology have the characteristics of macroscopicity, ra-
pidity, and repeatability and therefore have the advantages of shortening the time, ex-
panding the scope of identification, and reducing the manpower input of the identification 
process. The results of the identification can be used to carry out comprehensive surveys 
and long-term dynamic monitoring of biodiversity in hotspot areas and to optimize va-
cancies in the existing protected areas. This approach, based on remote sensing technol-
ogy, provides new ideas and methods for protected area planning and can support eco-
logical conservation more efficiently. 

 
Figure 11. Distribution of Nature Reserves in Inner Mongolia. 

5.2. Methods for Identifying Hotspot Areas for Biodiversity Conservation 
The identification of biodiversity conservation hotspots is a common method for in 

situ conservation of biodiversity, and the results can provide a basis for decision making 
under limited conditions. As a method of identifying nature conservation sites, different 
types of hotspots also vary greatly, and hotspots of species richness, endemism, and en-
dangerment show different geographical distributions [52–55]. Considering the differ-
ences in hotspot areas among different species groups, nature reserves are often located 
in more remote areas, whereas areas with more intensive human activities are often under 
protected; therefore, some scholars propose constructing irreplaceability and vulnerabil-
ity priority indicators through systematic conservation planning methods [56].The princi-
ple of the complementarity of biodiversity is considered to optimize the selection of bio-
diversity conservation areas while minimizing conservation costs and thus using limited 
resources to achieve clear conservation objectives [57,58]. In recent years, many foreign 
scholars have used species distribution models to identify hotspots of protected species 
and formulate scientific and reasonable conservation plans. Using the MaxEnt model to 
identify the potential distribution of a single species and superimposing the potential dis-
tribution of multiple species, the richness of the species distribution within the study area 

Figure 11. Distribution of Nature Reserves in Inner Mongolia.

Table 4. Primary hotspot protection areas.

First-Class Protection Priority Area
Name (A1–A12) District Regional Details

A1 Dobao Shan Town Nature Reserve Heihe City, Dobao Shan Town

There are 1880 km2 of woodland in
Dobao Shan town, with 19,457,600 cubic
meters of standing wood, mainly larch,
poplar, linden, Quercus, and birch. The
vegetation cover is high and the
biodiversity is outstanding, most of the
area is in a natural wild state.

A2 Molidawa Bayan Wetland
Ecosystem Reserve

Hulunbuir City, Molidawa Daur
autonomous Banner, Bayan Ewen
National Township

Molidawa Bayan National Wetland Park
has a wetland area of 30,168 km2,
bringing together a number of regional
biota compositions such as the
Daxinganling, Mongolian Plateau,
Songliao Plain, Changbai Mountain, and
North China in China, and has
outstanding biodiversity.
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Table 4. Cont.

First-Class Protection Priority Area
Name (A1–A12) District Regional Details

A3 (a) Wildlife Nature Reserve in
southeastern Chabach Township

(a) Hulunbuir City, Arrong Banner,
Chabach Ewenke National Township

The area under the jurisdiction of
Chabach Township is 164 km2 of arable
land, 370 km2 of forest land, and
186.67 km2 of pasture. Rich forestry
resources, large areas of forests provide
living conditions for wild animals, mainly
moose, horse deer, brown bear, roe deer,
wild boar, lynx, snow rabbits, pheasants,
flying dragons, and other wild animals.

A3 (b) Forest Ecosystem and Wildlife
Reserve in the South of Zalantun,
Wolniuhe Township

(b) Hulunbuir City, Arong Banner,
Woliuhe Town,

Wolniuhe Town has 1.054 km2 of forest,
75.27% forest coverage, and 186.67 km2 of
pasture. The territory has abundant water
resources, fertile land and mild climate.
There are wild plants and herbs such as
mushroom, fern, yellow flowering
cabbage, monkey fungus, hazelnut, etc.
There are also many kinds of wild
animals protected by the state such as
mountain rabbit, wild boar, roe deer, wild
song, flying dragon, etc.

A4 (a) Mengelhan Mountain
Nature Reserve *

Hinggan League, Horqin Right Wing
Banner, Ulanmadu Sumxiang

Mengelhan Mountain Nature Reserve, a
provincial-level nature reserve, is located
at the South of the Daxinganling
Mountains and in the northern part of
Horqin Grassland. Its total area is
212.17 km2. The main objects of
protection are natural secondary forests,
grassland meadow ecosystems, and rare
wildlife and plants.

A4 (b) Ulan River Nature Reserve * Hinggan League, Horqin Right
Wing Banner.

Ulan River Nature Reserve is a
provincial-level nature reserve. The total
area is 585.15 km2 and the main
protection object is the
water-conserving forest.

A5 Bayanhusumxiang Central Grassland
Ecosystem Reserve

Xilin Gol league, West Ujimqin Banner,
Bayanhu shumxiang.

With a total area of more than 70,000 km2,
the Urumqi grassland has been
designated as a “National Key Ecological
Function Area”.

A6 Baoligeng Northeast Grassland
Ecosystem Reserve

Chifeng City, Xilinhot City
Baoligansumu.

Baoligansumu is part of the Inner
Mongolia Plateau and has a complete
grassland type, namely meadow
grassland, typical grassland, semi-desert
grassland, and sandy grassland, with
more than 1200 kinds of plants on
the ground.

A7 (a) South-central Balach Ruud Sumu
Grassland Ecosystem Reserve

Chifeng City, Aruqorchin Banner,
Barachilde South Central

The northern part of Balachi Zhongde is
dominated by the reforestation of barren
hills and the southern part is dominated
by the great reforestation of Wanli, with a
construction area of more than 200 km2.

A7 (b) Xiaoheyan Autonomous
Region-level Wetland Bird District
Nature Reserve *

Chifeng City, Aohan Banner, Linxi Town,

With a total area of 180 km2, the
Xiaoheyan Autonomous Region Wetland
Bird Nature Reserve is a comprehensive
nature reserve that focuses on protecting
birds and the wetland ecosystem on
which they depend.
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Table 4. Cont.

First-Class Protection Priority Area
Name (A1–A12) District Regional Details

A8 Saiyinghuduga Sumu Northwest
Grassland Ecosystem and
Wildlife Reserve

Xilin Gol league Zhenglan banner,
SaiyinHuduga Sumu

Saiyinghuduga Sumu is rich in wildlife
resources, with 708 kinds of plants and
more than 20 kinds of rare
wildlife resources.

A9 (a) Forest Ecosystem Reserve in
Uduntauhai Town

Chifeng City, Wunniut Banner,
Wuduntauhai Town

The town has a forest area of 190 km2,
with a forest coverage rate of 37%. The
tree species are poplar, almond, elm,
camphor pine, fruit trees, etc.

A9 (b) Wupaizi Nature Reserve * Chifeng City, Wunniut Banner,
Wupaizi Village

The reserve covers an area of about 8 km2

and is a protected area for wetland
ecosystems and rare birds.

A10 (a) Black Tiger Mountain-Eagle Beak
Mountain Wildlife Nature Reserve *

Hohhot City, Qingshuihe County, Beibao
Township

The reserve covers a total area of 3 km2

and the main objects of protection are
mountain forests, scrub ecosystems, and
wild plants and animals.

A10 (b) Qingshuihe County Shake Forest
Gorge Nature Reserve *

Hohhot City, Qingshuihe County,
Leekzhuang Township

With a total area of 51.7 km2, the reserve
is a comprehensive nature reserve with a
variety of ecosystems such as mountain
forests and thickets; rare wildlife and
plants are the main objects of protection.

A10 (c) Baiji Shaba Nature Reserve * Hohhot City, Linge County

Baiji Shaba Nature Reserve is a nationally
known example of successful sand
control and reforestation. The type of
protection belongs to desert ecosystem
and wildlife reserve.

A11 Ortok Banner Licorice
Nature Reserve * Erdos City, Ortoge Banner

The total area of the reserve is 1448 km2.
It is a nature reserve for wild plant types
and protects endangered wild plant
populations represented by Ural licorice
and fragile desert steppe ecosystems and
their biodiversity.

A12 (a) Shanghai Miao Town Western
Licorice Nature Reserve

Erdos City, Ortok Qianqi Banner,
Shanghai Miao Town

Shanghai Miao town is in the southwest
of Ertok former banner, planting valuable
the medicinal herbs including licorice
(453.33 km2) with high quality; wild
medicinal herbs also include wintergreen,
bitter ginseng, white tribulus terrestris,
free silk, motherwort, and so on. The
town can use 3280 km2 of pasture, of
which 1000 km2 is for the rare plant
species Tibetan broccoli.

A12 (b) Olezaki Town Central Dashatou
Desert Nature Reserve

Erdos City, Ortok Qianqi Banner,
Olezhaoqi Town

This is a typical combination of
agricultural and pastoral lands. The
natural resources in the area mainly
include Tibetan broccoli, licorice outside
Liang, ephedra, gypsum, natural gas,
oil, etc.

Specific Analysis of Primary Hotspot Protection Areas (*: Existing Protection Areas).

5. Discussion
5.1. Comparative Analysis of Biodiversity Conservation Hotspot Areas

Biodiversity hotspots are areas with the greatest diversity of native species or high
concentrations of endemic species [49], whereas the establishment of nature reserves is
a priority for achieving the maximum conservation of regional biodiversity. In 1998,
Myers identified 10 critical forest conservation areas based on the degree of endemism
and threats to species such as vascular plants and terrestrial vertebrates and identified
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25 global biodiversity hotspots, with 1.4% of the land area containing 44% of vascular
plants and 35% of vertebrates. These areas are the richest in terms of species and cover
3.4% of the global land area and more than 60% of terrestrial species [50]. In 2010, the
“China Biodiversity Conservation Strategy and Action Plan (2011–2030)”, which considers
factors related to the conservation of ecosystems and species, designated 35 biodiversity
conservation priority areas, including 32 terrestrial biodiversity conservation priority areas
and 3 marine biodiversity conservation priority areas [51]. This is the most comprehensive
and systematic priority area in the field of biodiversity conservation in China and has certain
guiding significance for the national priority of biodiversity conservation. Five priority
conservation areas were located in the study area: Daxinganling District, Xiaoxinganling
District, Hulunbuir District, Western Ordos–Heranshan–Yinshan District, and Xilinguole
Grassland District. However, the current priority conservation areas are still too large and
lack operability for optimization of the conservation area network in Inner Mongolia.

According to data on nature reserves in China published in ArcGIS Online, there are
191 nature reserves in the Inner Mongolia Autonomous Region, including 23 national na-
ture reserves, 52 provincial nature reserves, and 116 municipal and county nature reserves
(Figure 11). Nature reserves are areas set aside by the state for special protection and man-
agement, including representative natural ecosystems, natural concentrated distribution
areas of rare and endangered wildlife species, natural relics of special significance, and
other protected objects on land, water, or sea. It is an ecosystem that comprises both biotic
and abiotic environments. Based on the results of the biodiversity conservation hotspot
areas identified in this study and overlaying them with the data of the nature reserves in
the Inner Mongolia Autonomous Region, we found that most nature reserves are located in
priority areas for biodiversity conservation; however, conservation gaps still persist.

By comparing with the primary hotspot protection areas (Table 4), it was found that
the primary hotspot protection areas were not covered and that there were vacancies
in the following areas: A2, A3 (a), A3 (b), A5, A6, A7, A8, A9, A12 (a), and A12 (b).
These areas have a high concentration of conservation vacancies and corresponding actions
should be taken to increase conservation efforts and reduce biodiversity loss. In the past, the
delineation of protected areas was usually carried out by national, provincial, and municipal
agencies through field surveys based on rare and endangered species or representative
ecosystems. However, the hotspot areas identified in this study through the use of remote
sensing monitoring technology have the characteristics of macroscopicity, rapidity, and
repeatability and therefore have the advantages of shortening the time, expanding the
scope of identification, and reducing the manpower input of the identification process. The
results of the identification can be used to carry out comprehensive surveys and long-term
dynamic monitoring of biodiversity in hotspot areas and to optimize vacancies in the
existing protected areas. This approach, based on remote sensing technology, provides new
ideas and methods for protected area planning and can support ecological conservation
more efficiently.

5.2. Methods for Identifying Hotspot Areas for Biodiversity Conservation

The identification of biodiversity conservation hotspots is a common method for in situ
conservation of biodiversity, and the results can provide a basis for decision making under
limited conditions. As a method of identifying nature conservation sites, different types of
hotspots also vary greatly, and hotspots of species richness, endemism, and endangerment
show different geographical distributions [52–55]. Considering the differences in hotspot
areas among different species groups, nature reserves are often located in more remote
areas, whereas areas with more intensive human activities are often under protected;
therefore, some scholars propose constructing irreplaceability and vulnerability priority
indicators through systematic conservation planning methods [56].The principle of the
complementarity of biodiversity is considered to optimize the selection of biodiversity
conservation areas while minimizing conservation costs and thus using limited resources
to achieve clear conservation objectives [57,58]. In recent years, many foreign scholars have



Diversity 2023, 15, 1064 21 of 25

used species distribution models to identify hotspots of protected species and formulate
scientific and reasonable conservation plans. Using the MaxEnt model to identify the
potential distribution of a single species and superimposing the potential distribution
of multiple species, the richness of the species distribution within the study area can
be obtained and conservation hotspots can be identified [59–61]. In addition, under the
Ecological Red Line Conservation Initiative, it is recommended that future expansion of
protected areas should take into account the threats of climate change and anthropogenic
pressures to appropriately measure the priority of protected areas for conservation; scholars
have already explored the impacts of climate change and human activities on biodiversity
and conducted the delineation of conservation hotspot areas by quantifying climate change
and human activities [37,39]. However, these studies only identified hotspot areas by
focusing on a single dimension of climate change or human activities. In contrast, in this
study, we produced biodiversity hotspot distribution maps for the spatial–temporal remote
sensing index and the human footprint index and, by observing the results, we can find
that the selection of the indices is based on different bases, which leads to differences in
their spatial distributions. Therefore, we comprehensively considered the spatial–temporal
remote sensing index and human footprint index and determined the final conservation
hotspot areas based on the principle of spatial consistency through the superposition
analysis of the indices. The hotspot area identification system constructed combines
two influencing factors, considers both spatial and temporal scales, and improves the
operability of the optimization of the regional protected area network, which is of some
practical significance.

5.2.1. Spatial–Temporal Remote Sensing Index and Biodiversity

High interannual variability in phenology and seasons poses a threat to the survival
of many species; however, high spatial variability can enhance the survival of species
under such threats. In this study, interannual and spatial variability indices were generated
to characterize the interannual and seasonal variability and to identify high and low
conservation hotspots for biodiversity conservation. This study found that there are
significant differences in interannual and spatial variability among ecological regions and
cities in Inner Mongolia, which shows that the risks posed by seasonal fluctuations in
phenology and temperature vary depending on location. Hotspots of conservation related
to climate and seasonal fluctuations were identified using a map of interannual and spatial
variability, that is areas with high interannual variability posing high threats and areas with
low spatial variability and low ecological resilience.

The interannual variability of the vegetation index EVI and the surface temperature
LST in the Inner Mongolia Autonomous Region were found to be quite different based on
the results of the spatial–temporal remote sensing indices. The correlation between the
interannual variability of EVI T_CV_Es and the interannual variability of LST T_CV_Ls
was weak for the entire Inner Mongolian province and in most ecological zones. However,
moderate positive and negative correlations were observed in some ecoregions and small
areas. Some of the explanations for the weak and moderate associations may be that vegeta-
tion growth has adapted to the rapid temperature rise and is less affected by climate change
because Inner Mongolia’s ecoregions are diverse in terms of flora and topography [62] or
because of geographic influences. The delayed reaction of vegetation to precipitation may
also be a factor [63], and this relationship is influenced by the vegetation type [64,65].

MODIS EVI and LST long timeseries data were used to calculate interannual variability
in phenology and seasonal indicators. The timeseries of vegetation indices are derived
from the majority of phenological indicators [66]; however, in areas with little vegetation,
vegetation indices are occasionally unable to identify phenological variation patterns. In
areas with similarities in vegetation phenology and temperature seasonality, changes in
the LST can play a complementary role, for example, in areas such as evergreen forests,
where changes in the LST provide better estimates of seasonal SOS and EOS due to limited
changes in greenness [67]. Temperature changes or temperature seasonality may result from
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climate change, although documenting seasonal fluctuations alone does not adequately
capture the whole impact of this phenomenon; the 20-year MODIS data records climate
change over a fairly short period of time, so this study did not conduct a trend analysis and
chose to focus on seasonal changes, which may lead to higher climate change and more
frequent extreme events. Despite its limitations, satellite remote sensing is the only data
source capable of mapping vegetation phenology over large areas and that can be used to
quantify the threats posed to biodiversity by climate change.

5.2.2. Human Footprint Index and Biodiversity

Compared with natural factors, such as climate, anthropogenic factors can also have
a positive or negative effect on changes in biodiversity in nature reserves, which, in turn,
affects the effectiveness of biodiversity conservation. Although the establishment of nature
reserves has mitigated the effects of anthropogenic disturbances to some extent [68,69], an
increase in anthropogenic disturbances has a clear impact on nature reserves in terms of
the conservation of ecosystems [69] and species [70]. The combination of anthropogenic
disturbances and climate change has been the most important factor in the conservation of
Natural World Heritage Sites.

In this study, only population density, grazing density, land use data, nighttime lights,
and traffic accessibility factors were considered in the calculation of the human footprint
index; other factors affecting human activities and socioeconomic construction (such as the
duration of disturbing activities and disturbances from human activities, such as pollution
and invasive alien species) were not accounted for [37,71,72]. Therefore, the index system
must be further improved. Additionally, the lack of available data can lead to certain
anthropogenic pressures remaining constant over time. If these pressures expand at a
higher-than-average rate, it will lead to an underestimation of the expansion of the human
footprint. Lastly, the human footprint measures the pressure of human activities on nature
rather than the realized state or impact on natural systems or their biodiversity. The main
objective of this study was to update the human footprint map to provide a contemporary
view of human pressures so that the spatial patterns of human activities in Inner Mongolia
can be analyzed and the intensity of human activities can be quantified for the most
recent years.

6. Conclusions

The results of this study show that climate change and the human footprint signifi-
cantly affect biodiversity levels in Inner Mongolia. Firstly, spatial–temporal remote sensing
indices were generated by calculating the interannual and spatial variability of the EVI
and LST in Inner Mongolia over the 20-year period 2002–2021 to identify biodiversity
conservation hotspots induced by rapid climate change, i.e., areas with high threat due to
high interannual variability and high spatial variability with high resilience. Secondly, a
human footprint map of Inner Mongolia in 2021 was generated to determine the intensity
of human activities in the region and the hotspot protected areas, i.e., areas with high
human activities, which are mostly located in urban construction areas, arable land, and
road construction areas. Finally, biodiversity is more likely to be threatened in areas with
greater degrees of climate change and higher anthropogenic pressures than in areas with
milder climate change and lower anthropogenic pressures, so we combined the two indices
mentioned above to analyze the hotspot areas in a stacked combination and delineated
three levels of priority protected areas.

In the framework of this study, we identify biodiversity conservation hotspots in two
dimensions: climate change and human activities. We provide a large-scale, more balanced,
and comprehensive approach to identifying hotspots than previous identifications based
on a single dimension or on data from certain species. Remote sensing allows us to
identify biodiversity conservation hotspots at large scales in other regions and also includes
hotspots for climate change and human activities. In addition, the framework helps to
identify the best areas for the future expansion of protected areas and prioritize their
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expansion. It can help us take timely and proactive measures to maintain biodiversity and
ecosystem integrity.
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