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Abstract: Paramacrobiotus species have been described in almost every corner of the world. To date,
45 species have been reported from this genus. Among which, 13 belong to the areolatus group
(without a microplacoid) and 32 belong to the richtersi group (with a microplacoid). The species’
presence in different climatic conditions and habitats provides evidence of their adaptation to various
harsh environments. The species of the genus are both bisexual (diploid) and parthenogenetic
(triploid). The bisexual species have external fertilization. And they are omnivorous whose diet
consists of certain cyanobacteria, algae, fungi, rotifers, nematodes and juvenile tardigrades. The
life history of species from this genus varies from species to species. Because the species has a
strong predilection for cryptobiosis, numerous investigations involving anhydrobiosis have been
conducted utilizing specimens from varied Paramacrobiotus species to date. In this review, we provide
a concise summary of changes observed due to various cryptobiotic conditions in many species of
this genus, the geographical distribution of all the species, feeding behaviour, life history, microbiome
community, Wolbachia endosymbiont identification, reproduction, phylogeny and general taxonomy
of the species from the genus Paramacrobiotus. Furthermore, we provide a new diagnostic key to the
genus Paramacrobiotus based on the morphological and morphometric characters of adults and eggs.

Keywords: tardigrade; reproduction; taxonomy; distribution; microbiome

1. Introduction

Tardigrades, also called water bears, is a phylum consisting of ca. 1500 species [1–4]
that inhabit terrestrial and aquatic environments throughout the world [5]. They are
mostly found in mosses, lichens, soil, leaf litter, sediments and on aquatic plants [5–7]. The
phylum consists of two classes, i.e., Heterotardigrada and Eutardigrada [5]. Eutardigrada
is further divided into two limnoterrestrial orders, i.e., Apochela and Parachela. Moreover,
the order Parachela consists of various superfamilies and families, one of them being
Macrobiotidae (Thulin, 1928) [8] with the genus Paramacrobiotus Guidetti, Schill, Bertolani,
Dandekar and Wolf, 2009 [9]. The genus was erected in 2009 from the genus Macrobiotus.
These two genera are distinguished by morphological characteristics such as egg processes’
shape (large and reticulated cones or trunk-cones in the genus Paramacrobiotus, smooth and
inverted goblet shaped in the genus Macrobiotus). Next, only the genus Paramacrobiotus’
buccal armature has a posterior line of strong triangular or bicuspidal teeth. Furthermore
always three, well-separated macroplacoids in the Paramacrobiotus species are present but
mostly two, and in rare cases three with the first two very close, in Macrobiotus species
are present. Also, cuticular pores are absent in Paramacrobiotus but present in Macrobiotus.
Lastly, the shape of the spermatozoa in the Paramacrobiotus species is such that the head
is thin and very long, up to 100 µm, and it is longer than the tail; in the Macrobiotus
species, the head is strongly coiled and long but shorter than the tail, and it has a huge
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midpiece [9]. To date, 45 species have been described: Paramacrobiotus alekseevi (Tumanov,
2005) [10]; Pam. arduus Guidetti, Cesari, Bertolani, Altiero & Rebecchi, 2019 [11]; Pam.
areolatus (Murray, 1907) [12]; Pam. beotiae (Durante Pasa & Maucci, 1979) [13]; Pam. celsus
Guidetti, Cesari, Bertolani, Altiero & Rebecchi, 2019 [11]; Pam. centesimus (Pilato, 2000) [14];
Pam. chieregoi (Maucci & Durante Pasa, 1980) [15]; Pam. corgatensis (Pilato, Binda & Lisi,
2004) [16]; Pam. csotiensis (Iharos, 1966) [17]; Pam. danielae (Pilato, Binda, Napolitano
& Moncada, 2001) [18]; Pam. danielisae (Pilato, Binda & Lisi, 2006) [19]; Pam. depressus
Guidetti, Cesari, Bertolani, Altiero & Rebecchi, 2019 [11]; Pam. derkai (Degma, Michalczyk
& Kaczmarek, 2008) [20]; Pam. experimentalis Kaczmarek, Mioduchowska, Poprawa &
Roszkowska, 2020 [21]; Pam. fairbanksi Schill, Förster, Dandekar & Wolf, 2010 [22]; Pam. filipi
Dudziak, Stec & Michalczyk 2020 [23]; Pam. gadabouti Kayastha, Stec, Mioduchowska and
Kaczmarek 2023 [24]; Pam. garynahi (Kaczmarek, Michalczyk & Diduszko, 2005) [25]; Pam.
gerlachae (Pilato, Binda & Lisi, 2004) [16]; Pam. halei (Bartels, Pilato, Lisi & Nelson, 2009) [26];
Pam. hapukuensis (Pilato, Binda & Lisi, 2006) [19]; Pam. huziori (Michalczyk & Kaczmarek,
2006) [27]; Pam. intii Kaczmarek, Cytan, Zawierucha, Diduszko & Michalczyk, 2014 [28];
Pam. kenianus Schill, Förster, Dandekar & Wolf, 2010 [22]; Pam. klymenki Pilato, Kiosya,
Lisi & Sabella, 2012 [29]; Pam. lachowskae Stec, Roszkowska, Kaczmarek & Michalczyk,
2018 [30]; Pam. lorenae (Biserov, 1996) [31]; Pam. magdalenae (Michalczyk & Kaczmarek,
2006) [27]; Pam. metropolitanus Sugiura, Matsumoto & Kunieda, 2022 [32] Pam. palaui Schill,
Förster, Dandekar & Wolf, 2010 [22]; Pam. peteri (Pilato, Claxton & Binda, 1989) [33]; Pam.
pius Lisi, Binda & Pilato, 2016 [34]; Pam. priviterae (Binda, Pilato, Moncada & Napolitano,
2001) [35]; Pam. richtersi (Murray, 1911) [36]; Pam. rioplatensis (Claps & Rossi, 1997) [37];
Pam. sagani Daza, Caicedo, Lisi & Quiroga, 2017 [38]; Pam. savai (Binda & Pilato, 2001) [39];
Pam. sklodowskae (Michalczyk, Kaczmarek & Węglarska, 2006) [40]; Pam. spatialis Guidetti,
Cesari, Bertolani, Altiero & Rebecchi, 2019 [11]; Pam. spinosus Kaczmarek, Gawlak, Bartels,
Nelson & Roszkowska, 2017 [41]; Pam. submorulatus (Iharos, 1966) [17]; Pam. tonollii
(Ramazzotti, 1956) [42]; Pam. vanescens (Pilato, Binda & Catanzaro, 1991) [43]; Pam. walteri
(Biserov, 1997/98) [44]; and Pam. wauensis (Iharos, 1973) [45]. Furthermore, the genus is
divided into two species groups, i.e., the richtersi group, with the presence of a microplacoid
within the pharynx, and the areolatus group, without a microplacoid within the pharynx.
In turn, Kaczmarek et al. [41] proposed separating subgenera, for which specific names
were clarified by Marley et al. [46]. However, the two subgenera are not valid according to
Guidetti et al. [11] and Stec et al. [47].

In this paper, we summarize the data on the taxonomy, distribution, mode of reproduc-
tion, microbiome study, feeding behaviour, life history, morphological taxonomy, phylogeny
and cryptobiotic studies, along with providing a new key for species identification in the
genus Paramacrobiotus.

2. Morphological Taxonomy

The genus Paramacrobiotus is divided into two morphologically distinct species groups:
areolatus (species without a microplacoid or with rudimentary structures in the place of
microplacoid in the pharynx) and richtersi (species with a microplacoid in the pharynx)
(e.g., [23,28]). It was suggested that the microplacoid was initially present but was lost
in some species from the areolatus group. But, the opposite situation, in which the mi-
croplacoid gradually appeared, is also possible [41]. For example, in Pam. vanescens, the
microplacoid suggests a gradual reduction. In turn, in Pam. areolatus and Pam. centesimus,
the microplacoid is generally absent, but a thin cuticular thickening is present in the place
where the microplacoid should normally be present and can be considered as a rudimen-
tary microplacoid [14,47]. Although the presence or absence of the microplacoid seems to
be a clear morphological character dividing the genus Paramacrobiotus into two separate
phylogenetic lineages (which was suggested by Kaczmarek et al. [41]), but genetic studies
did not confirm this [11,47].

At present, 45 species are formally attributed to the genus Paramacrobiotus, 13 belong
to the areolatus group, and 32 belong to the richtersi group. They can be further divided into
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smaller groups based on egg types. In total, seven types of eggs were identified. However,
two of them (areolatus and richtersi types) are the most common and occur in 37 species
(ca. 82%). In the next two species, the huziori type of eggs are present (ca. 5%). The other
types of eggs (i.e., beotiae, chieregoi, csotiensis, tonollii and submorulatus) were identified only
in single taxa (for details of egg morphology, see Kaczmarek et al. [41]). Furthermore, eggs
are unknown for one species, Pam. wauensis.

In recent years, two very important species for taxonomy of the entire genus, Pam.
areolatus and Pam. richtersi, were integratively redescribed [11,47]. Another species, Pam.
fairbanksi, described based mostly on genetic data, was also morphometrically well charac-
terized a few years ago [21]. However, a few Paramacrobiotus species still need a redescrip-
tion based on the type material or on additional material from type localities. Descriptions
of Pam. beotiae, Pam. chieregoi, Pam. csotiensis, Pam. rioplatensis, Pam. submorulatus, Pam.
tonollii and Pam. wauensis are inaccurate, and some important morphological informations
are lacking.

Another two species, i.e., Pam. kenianus and Pam. palaui, are cryptic taxa described
mostly based on genetic data without morphological differential diagnosis [22].

Descriptions of the other Paramacrobiotus species are more or less complete, but in
most of them, exact morphometric data of claws and buccal tubes placoids and, above all,
genetic data are lacking (see Table 1 and Supplementary Materials SM.01). Based on all the
abovementioned doubts, three species, i.e., Pam. kenianus, Pam. palaui and Pam. wauensis,
are not included in the key.
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Table 1. Selected morphological characters of the known species of genus Paramacrobiotus (schematic illustrations of different types of egg process shapes presented
in Figure 1).

Species Cuticle
Number of Rows

in Oral Cavity
Armature

Eyes Lunules IV Granulation
on Legs Egg Type

Egg Process
Height
(in µm)

Egg Process
Base Width

(in µm)

Egg Process
Shape

Number of
Processes on

Circumference

Paramacrobiotus
alekseevi smooth I–III absent dentate IV richtersi 11.8–21.8 13.3–22.9 cone with cap 10–12

Paramacrobiotus
arduus smooth I–III absent smooth I–IV richtersi 12.1–18.3 10.4–16.3 simple cone 16–21

Paramacrobiotus
areolatus smooth I–III present crenate I–IV areolatus 20.0–28.0 19.0–22.0 simple cone ?

Paramacrobiotus
beotiae smooth I–III absent dentate ? beotiae up to 16.0 ? spines ?

Paramacrobiotus
celsus smooth I–III absent smooth I–IV richtersi 15.2–19.1 14.3–18.2 simple cone

(jagged) 15–19

Paramacrobiotus
centesimus smooth I–III absent smooth I–IV areolatus 7.0–11.0 ? simple cone 11–12

Paramacrobiotus
chieregoi smooth I–III absent smooth ? chieregoi ? ? elongated

cone 14

Paramacrobiotus
corgatensis sculptured I–III present dentate ? richtersi 20.0–25.0 18.0–24.0 simple cone

(jagged) 8–11

Paramacrobiotus
csotiensis smooth II–III present ? ? csotiensis ? ?

hemispherical
covered with a
hyaline layer

?

Paramacrobiotus
danielae sculptured I–III present smooth ? areolatus 14.5 24.7 simple cone ?

Paramacrobiotus
danielisae sculptured I–III absent smooth ? richtersi 17.3–23.0 17.5–20.0 simple cone 9–10

Paramacrobiotus
depressus smooth I–III absent smooth IV richtersi 9.3–12.4 simple cone 16–2312.4–15.2

Paramacrobiotus
derkai smooth I–III present smooth I–IV huziori 8.0–17.1 12.5–28.3 simple cone 12–16

Paramacrobiotus
experimentalis smooth I–III absent smooth IV areolatus 10.3–14.9 13.8–19.4 simple cone 10–12

Paramacrobiotus
fairbanksi smooth I–III absent smooth I–IV richtersi 10.9–14.9 10.9–20.8 simple cone

(jagged) ?

Paramacrobiotus
filipi granulation I–III absent smooth I–IV richtersi 17.8–25.2 11.7–21.7 cone with cap 10–11
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Table 1. Cont.

Species Cuticle
Number of Rows

in Oral Cavity
Armature

Eyes Lunules IV Granulation
on Legs Egg Type

Egg Process
Height
(in µm)

Egg Process
Base Width

(in µm)

Egg Process
Shape

Number of
Processes on

Circumference

Paramacrobiotus
gadabouti smooth I–III absent smooth IV richtersi 12.1–23.7 15.0–25.5 truncated

cones 11–13

Paramacrobiotus
garynahi with pores I–III absent smooth I–IV areolatus 18.0–30.0 20.0–42.0 cone with cap 10–13

Paramacrobiotus
gerlachae smooth I–III absent smooth IV richtersi 11.8–14.5 16.8–18.7 simple cone ?

Paramacrobiotus
halei sculptured I–III absent ? I–IV richtersi 11.0–14.0 22.0–23.5 blunt cone 11

Paramacrobiotus
hapukuensis smooth I–III absent smooth absent –areolatus 15.7–21.1 14.8–16.6 elongated

cone 10

Paramacrobiotus
huziori smooth I–III present smooth I–IV huziori 20.0–33.0 20.0–30.0 simple cone 9–11

Paramacrobiotus
intii smooth II–III present dentate I–IV areolatus 15.4–24.4 22.0–34.0 simple cone 9–10

Paramacrobiotus
kenianus smooth ? present ? ? richtersi 13.5 ± 1.9 19.7 ± 2.7 simple cone 17.7 ± 3.6

Paramacrobiotus
klymenki smooth I–III absent dentate I–IV areolatus 14.5–18.5 16.4–18.2 simple cone 10–11

Paramacrobiotus
lachowskae smooth I–III present smooth I–IV areolatus 17.6–32.1 8.1–17.7 hemispherical

with filaments 8–14

Paramacrobiotus
lorenae smooth I–III absent smooth I–IV richtersi 25.0–42.2 17.8–23.0 elongated

cone ?

Paramacrobiotus
magdalenae smooth I–III present smooth IV richtersi 13.0–25.0 16.2–21.0 simple cone 10–12

Paramacrobiotus
metropolitanus smooth I–III absent smooth IV areolatus 7.4–14.6 9.8–21.1 simple cone 10–15

Paramacrobiotus
palaui smooth ? present ? ? richtersi 10.2 ± 1.3 13.4 ± 1.3 simple cone 15.4 ± 1.4

Paramacrobiotus
peteri smooth I–III absent smooth ? areolatus 10.0–14.0 9.0–12.0 simple cone

(jagged) ?

Paramacrobiotus
pius smooth I–III absent smooth I–IV richtersi up to 12.3 19.5–24.7 simple cone

(jagged) 10

Paramacrobiotus
priviterae smooth I–III present smooth I–IV richtersi 11.8–15.0 12.9–16.3 simple cone

(jagged) ?
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Table 1. Cont.

Species Cuticle
Number of Rows

in Oral Cavity
Armature

Eyes Lunules IV Granulation
on Legs Egg Type

Egg Process
Height
(in µm)

Egg Process
Base Width

(in µm)

Egg Process
Shape

Number of
Processes on

Circumference

Paramacrobiotus
richtersi smooth I–III absent smooth I–IV richtersi 17.1–22.1 17.2–22.2 simple cone 13–17

Paramacrobiotus
rioplatensis smooth I–III present smooth ? areolatus ca. 4.6 ? elongated

cone 17–19

Paramacrobiotus
sagani granulation I–III present smooth I–IV richtersi 9.4–13.2 14.6–22.4 blunt cone 10–13

Paramacrobiotus
savai smooth I–III present smooth IV areolatus 12.0–18.0 16.7–18.5 blunt cone ?

Paramacrobiotus
sklodowskae smooth I–III present smooth I–IV richtersi 16.0–17.5 20.5–23.5 blunt cone 10

Paramacrobiotus
spatialis smooth I–III absent smooth I–IV richtersi 13–16 15.2–20.4 simple cone 15–23

Paramacrobiotus
spinosus smooth I–III absent smooth I–IV richtersi 22.1–42.2 17.3–26.0 elongated

cone (jagged) 10–11

Paramacrobiotus
submorulatus smooth II–III present ? ? submorulatus 7.0–8.3 17.5–20.4

hemispherical
with concave

on top
13

Paramacrobiotus
tonollii smooth ? present smooth ? tonollii 32.0–35.0 ? elongated

cone 8–10

Paramacrobiotus
vanescens

faint
punctuation I–III absent ? I–IV richtersi 16.0–17.0 24.0–25.0 blunt cone

(jagged) 9–12

Paramacrobiotus
walteri smooth I–III present dentate I–IV areolatus 10.0–17.0 9.0–20.0 simple cone

(jagged) ?

Paramacrobiotus
wauensis smooth I–III absent ? ? ? ? ? ? ?

Note: I–IV represents the number of pair of legs and ? means unsuitable or not present.
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Figure 1. Schematic illustrations of the types of egg processes in the genus Paramacrobiotus.

3. Molecular Taxonomy

Molecular markers serve as valuable tools for species identification. In the integrative
taxonomy of Tardigrada, four DNA fragments with different mutation rates are commonly
used: two conservative nuclear ribosomal subunit genes, namely 18S rRNA (the small ribo-
some subunit) and 28S rRNA (the large ribosome subunit); the noncoding nuclear ITS-2 frag-
ment (the internal transcribed spacer-2) with high evolution rates; and the protein-coding
mitochondrial COI barcode gene (the cytochrome oxidase subunit I), with an intermediate
effective mutation rate (e.g., [48]). The COI mtDNA molecular marker, in particular, has
been recommended for DNA barcoding purposes (http://www.barcodinglife.org accessed
on 10 July 2023), such as rapid species identification, discrimination between cryptic species,
and resolving phylogenetic relationships among closely related species [49,50]. To gain
additional insights into the phylogenetic relationships within the genus Paramacrobiotus, an
analysis based on COI mtDNA was conducted. This analysis was performed to supplement
the information obtained from previous studies using four molecular markers [24].

Due to ongoing revisions and redescriptions of Paramacrobiotus species, studies are be-
coming more accessible, leading us to anticipate that the species diversity within the genus
is greatly underestimated [11,23]. One significant challenge that needs to be addressed in
future studies is the lack of available barcodes. Despite the designation of 45 species in the
genus Paramacrobiotus, not all species have available barcode sequences. In this study, we
aimed to estimate the phylogenetic relationships among all Paramacrobiotus species (includ-
ing taxa designated as “cf.”, meaning “compare with”, and “aff.”, meaning “similar to”)
for which COI barcode sequences are available in the GenBank database. The alignment of
COI barcode sequences resulted in 574 characters, with 270 variable sites and 241 parsi-
mony informative sites. We used the COI sequence of Milnesium berladnicorum Ciobanu,
Zawierucha, Moglan & Kaczmarek, 2014 [51] as the outgroup to construct the most reliable
evolutionary tree. To determine the most appropriate model of sequence evolution, we
applied jModelTest v. 2.1.4 [52] with both the Bayesian Information Criterion (BIC) and
the Akaike Information Criterion (AIC) [53]. The GTR + G (Time-Reversible model with
gamma-distributed rate heterogeneity) was selected as the best-fitting evolutionary model.

http://www.barcodinglife.org
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The phylogenetic tree was constructed using (i) Bayesian inference (BI) analysis with the
program MrBayes 3 [54], following the settings described by Mioduchowska et al. [55],
and (ii) maximum likelihood (ML) analysis calculated using the program Mega X [56]
with 1000 bootstraps and under the general settings of the selected evolutionary model.
Uncorrected pairwise distances (p-distances) were calculated using MEGA X [56].

The binary model of phylogenetic relationships, which involves reconstructing gene
trees from sequence data, allows us to gain insights into the speciation history of species [57].
However, in our analysis of barcode sequences, we observed speciation events that resulted
in polytomies within the phylogeny of the genus Paramacrobiotus (Figure 2). This means
that more than two descendants were observed from certain nodes [58]. The presence of
unresolved nodes in a polytomic multifurcating tree indicates a lack of a signal in the data
to resolve relationships within the genus Paramacrobiotus. This observation is partially
consistent with previous studies, where both groups, richtersi and areolatus, were described
as polyphyletic [11,47]. However, in the work by Kayastha et al. [24], the interrelationships
of the genus Paramacrobiotus were not depicted as a polytomy when two conservative
coding nuclear molecular markers (18S rRNA and 28S rRNA) and a noncoding nuclear
marker with high evolution rates (ITS2) were included in the analysis. As a result, the
phylogenetic relationships within the genus Paramacrobiotus were resolved. Interestingly,
other examples of polytomies in Tardigrada gene trees based on nuclear molecular markers
have also been observed [59]. In turn, Stec et al. [47] performed a cross-strain experiment
to observe the molecular taxonomy of the genus Paramacrobiotus and indicated hidden
species richness. The authors concluded that the utilization of DNA barcodes may prove
inadequate in fully resolving species diversity and accurately describing species within this
cosmopolitan genus. Hence, both multilocus sequencing and direct experimental testing of
species boundaries are required.
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in parentheses. In turn, locations of identified species are given in abbreviations: JP—Japan;
PL—Poland; HU—Hungary; IT—Italy; MG—Madagascar; MY—Malaysia; BR—Brazil; PT—Portugal;
TN—Tunisia; NO—Norway; IE—Ireland; CO—Colombia; US—United States. The numbers above
the branches represent Bayesian posterior probabilities, and the supporting bootstrap values from
the maximum likelihood analysis are provided beneath the branches. Branches with support below
70% in ML and below 0.7 in BI were collapsed. The COI sequence of Milnesium berladnicorum was
used as an outgroup.

The genetic p-distances between the analyzed COI barcode sequences of Paramacrobiotus
species ranged from 16% to 27%, indicating different species (Supplementary Materials SM.02).
However, it was shown that there are very low genetic differences, i.e., a p-distance of 0.3%,
between Pam. aff. richtersi from Tunisia (GenBank: MH676016) and Pam. gadabouti from
Portugal (GenBank: OP394113), suggesting they belong to the same species (Supplementary
Materials SM.02). This finding is consistent with the work by Kayastha et al. [24], where
both species were described as Pam. gadabouti. No genetic differences were found between
Pam. aff. richtersi from Madagascar (GenBank: MH676008) and Pam. experimentalis from
Madagascar (GenBank: MN097836) (Supplementary Materials SM.02). Both sequences
represented Pam. experimentalis, which is also consistent with the previous study [24].
Moreover, we found very low genetic differences, i.e., a p-distance of 2.1%, between
Pam. arduus from Italy (GenBank: MK041020) and Pam. aff. arduus from Italy (GenBank:
MK041022), indicating the same species (Supplementary Materials SM.02).

4. Cryptobiosis

The stage of an organism’s life known as cryptobiosis is one in which no activity is
apparent [60]. Many organisms go through cryptobiosis to survive the harsh environmental
conditions they encounter [61–63]. A few types of cryptobiosis are known i.e., anhydrobio-
sis (lack of water), anoxybiosis (lack of oxygen), cryobiosis (low temperature), or osmobiosis
(change in osmotic conditions). Tardigrades have a remarkable capacity for undergoing and
surviving several types of cryptobiosis [60,64]. In genus Paramacrobiotus, majority of studies
related to cryptobiosis are anhydrobiosis, or the absence of water, additionally, there has
also been research on famine, freezing, and bet-hedging [65–69]. Reuner et al. [65] studied
how the influence of starvation and anhydrobiosis affects the size and number of storage
cells in Pam. tonollii to understand the energetic side of anhydrobiosis. Starving Pam. tonollii
for seven days led to a reduction in storage cell size by 46.41%, but no significant reduction
in storage cell number was observed. Furthermore, when storage cells’ size and number
were investigated after inducing anhydrobiosis for seven days, no significant changes in
storage cell size or its number in Pam. tonollii were observed. Also, the mortality was
checked using prolonged starvation, and Pam. tonollii reached 50% mortality after 30 days.
Likewise, Rizzo et al. [66] investigated antioxidant defences (capable of counteracting
reactive oxygen species (ROS)) in Pam. richtersi in both active and dehydrated states. The
activity of several antioxidant enzymes, the fatty acid composition, and heat shock protein
(Hsp) expression were compared in these two states. The increase in both antioxidant
enzymes (superoxide dismutase due to induction of both glutathione peroxidase and glu-
tathione during desiccation) and the fatty acid composition (polyunsaturated fatty acids
and the amount of substances reactive to thiobarbituric acid) were observed in desiccated
Pam. richtersi specimens, but no significant differences in the relative level of heat shock
proteins were observed (Hsp70 and Hsp90). In addition, Giovannini et al. [68] performed a
study in which the production of reactive oxygen species and the involvement of bioprotec-
tants during anhydrobiosis in Pam. spatialis was investigated. The study provides evidence
of an increase in ROS production relative to the time spent in anhydrobiosis, which is due to
oxidative stress in the animals. Using RNA interference, the involvement of bioprotectants,
including those combating ROS, was assessed. As Rizzo et al. [66] concluded, the role of
glutathione peroxidase in desiccation in Pam. richtersi, this gene was targeted, and what was
observed was that glutathione peroxidase gene compromised survival during the drying
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and rehydration of Pam. spatialis. This further strengthened the evidence that glutathione
reductase and catalase play important roles during desiccation and rehydration. Also, the
involvement of aquaporins 3 and 10 during the rehydration of Pam. spatialis was observed.
And recently, Roszkowska et al. [69] studied the length of time that different tardigrades
survive in the anhydrobiotic state, including Pam. experimentalis. The study concludes that
anhydrobiotic competence is dependent on habitat instead of nutritional behaviour and
the time taken to return to activity after anhydrobiosis is dependent upon the length of
the anhydrobiosis. It is worth noting that in 2021, the entire genome of Paramacrobiotus sp.,
later described as Pam. metropolitanus, was sequenced [70]. This provides an opportunity
for a better understanding of the genetic basis that enables them to survive the process
of anhydrobiosis. The full DNA sequence has allowed for clues regarding the phylogeny
of TPS-TPP genes responsible for the production of trehalose, a substance involved in
anhydrobiosis. Four years earlier, in 2017, a similar mechanism was described in the action
of the TDP protein [71]. Research conducted on the species Pam. richtersi [9], among
others, revealed the involvement of this compound in DNA protection during the gradual
dehydration of the organism. Further studies on the genomes of tardigrades from the
genus Paramacrobiotus have the potential to uncover new information that can contribute
not only to understanding the unique characteristics of these organisms, but also to gain-
ing broader insights into evolution and the adaptive plasticity of organisms in various
extreme environments.

5. Distribution

Paramacrobiotus species shows worldwide distribution. However, the real distribu-
tion of the Paramacrobiotus species is unknown due to taxonomic problems, misidenti-
fications and lack of genetic data. This is especially visible for often reported species
like Pam. areolatus or Pam. richtersi. Most of the reports of these two taxa belong to a
different species. Here we present a confirmed distribution (reports from type localities
or with genetic confirmation) of all 45 species in the genus Paramacrobiotus to date (in
Supplementary Materials SM.01 and Figure 3).
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6. Feeding Behaviour

Paramacrobiotus species are omnivorous and consume a variety of organisms, including
certain cyanobacteria, algae, and fungi, as well as the rotifer, nematodes, and small juvenile
tardigrades. Additionally, the diets of adults and juveniles differ: adults favour rotifers and
nematodes, whereas juveniles favour unicellular green algae. Moreover, juveniles suck out
all of them, including algal cells, animal food, and fungal cells, in contrast to adults, who
only consume entire fungal and algal cells [72].

7. Life History

Life history refers to total lifespan, development, reproduction and death of an
organism [73]. The life history list in case of tardigrades consists of age at first ovipo-
sition, clutch size, fecundity, hatching percentage, hatching success, lifespan, moulting
number and total number of ovipositions [74,75]. The lifespan differs from species to
species in the case of tardigrades [76]. The life histories of only a few Paramacrobiotus
species have been reported to date, that is, Pam. fairbanski, with an average lifespan of
137.3 ± 136.4 days and 194.9 ± 164.4 days and age at first oviposition of 70.7 ± 19.4 days
and 76.9 ± 16.4 days [77]; Pam. kenianus, with an average lifespan of 125 ± 35 days and
141 ± 54 days, a maximum lifespan of 204 days and 212 days, and age at first oviposition
of 10 days and 10 days [74]; Pam. metropolitanus, with juveniles hatching in 12–20 days
and first oviposition within 11–13 days after hatching [78]; Pam. palaui, with an average
lifespan of 97 ± 31 days, a maximum lifespan of 187 days, and age at first oviposition of
10 days [60]; Pam. richtersi, with an age at first oviposition of 64.2 ± 1.7 days [79]; and Pam.
tonollii, with an average lifespan of 69.0 ± 45.1 days, a maximum lifespan of 237 days, and
an age at first oviposition of 24.4 ± 4.4 days [76].

8. Microbiome

The microbiome represents the entire community of microorganisms, including fungi,
protists, bacteria, archaea, as well as that inhabit all known metazoan species. The bacte-
rial component of the microbiome community plays crucial roles in multiple aspects of
ecdysozoan host life, such as behaviour, metabolism, development, immunity, or pathogen
defence, thereby regulating the functioning of the entire organism [80,81]. Conversely, it
has also been demonstrated that the host’s phylogeny [82] and diet [83] have significant
impacts on the overall microbial composition. Indeed, many metazoan species appear to
harbour their own specific microbiome community [48]. However, our understanding of
the microbiome composition of Tardigrada, based on next-generation sequencing (NGS)
methods targeting the standard 16S rRNA bacterial barcoding gene fragment, is limited to
a very small number of published articles [84–90].

In the case of species from the genus Paramacrobiotus, the microbiomes of a few species
have been studied to date. In 2018, Vecchi et al. [84] described the bacterial communities
associated with six limno-terrestrial tardigrade taxa, one of which was Pam. areolatus. The
study revealed that the microbial community was mainly composed of Proteobacteria
and Bacteroidetes. Interestingly, certain classified Operational Taxonomic Units (OTUs)
showed variations among species from geographically distant samples. However, in all
the investigated species’ microbiome profiles, the order Rickettsiales was consistently
identified. This order belongs to the class Alphaproteobacteria and is characterized by
both pathogens and intracellular mutualists [91]. There were two distinct patterns in the
diversity observed between tardigrades and their substrates, indicating significantly less
microbial diversity in tardigrades compared to their substrates. This phenomenon may be
attributed to tardigrades selectively associating with specific microbial communities that
promote the growth of certain bacterial species while inhibiting others. Another hypothesis
suggests that substrates, being complex matrices with wide surface areas and volumes, can
support high bacterial biomass, resulting in a vast and complex microbial community.
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Similarly, Kaczmarek et al. [21] conducted a microbiome analysis on two populations
of Pam. experimentalis from Madagascar and their laboratory culture environment. These
populations of Pam. experimentalis had been maintained in laboratory culture for two years.
The most abundant phylum in all samples was Proteobacteria. Firmicutes was the second
most dominant phylum in both Pam. experimentalis populations, while Bacteroides was the
second most dominant phylum in the laboratory habitat. With the exception of the phyla
Verrucomicrobia and Saccharibacteria, which were not found in the tardigrade microbiome,
all identified taxa in the Pam. experimentalis microbiome community and laboratory culture
environment were widespread and had comparable abundances. This confirms that the
tardigrade microbiome significantly differs in composition from the bacteria inhabiting their
environment. Moreover, within the microbiome of Pam. experimentalis, OTUs classified as
potential endosymbionts belonging to the order Rickettsiales were identified. The absence
of Rickettsiales OTUs in the environment of the studied species further supports the close
association of these bacteria with their host.

Furthermore, Mioduchowska et al. [88] conducted a study to investigate whether tardi-
grade species are infected with bacterial endosymbionts belonging to the genus Wolbachia.
The analysis included Pam. fairbanksi and Paramacrobiotus sp. In the study, Proteobacteria,
Firmicutes, and Actinobacteria were identified as the three most prevalent phyla among the
analyzed tardigrades, including species outside the genus Paramacrobiotus. However, the
focus of the study was on potential tardigrade endosymbionts, particularly OTUs from the
order Rickettsiales and the genus Wolbachia. Both Rickettsiales and Wolbachia were detected
in the adult Paramacrobiotus sp., while only Rickettsiales were found in Pam. fairbanksi
eggs. Adult Pam. fairbanksi did not have either Wolbachia or Rickettsiales infections. The
genus Wolbachia is an intracellular bacterium belonging to the order Rickettsiales, and it
infects various invertebrates, particularly terrestrial insects [92]. However, recent studies
have identified infections of this bacterial endosymbiont in various freshwater inverte-
brate species [90,93,94]. Generally, this bacterium is transmitted vertically from mother to
offspring and/or through horizontal transfer directly from the environment or between
different hosts [95]. Subsequently, Wolbachia manipulates host reproduction by inducing
parthenogenesis, feminization, male killing, or cytoplasmic incompatibility [96,97].

In 2023, Mioduchowska et al. [90] described new molecular and bioinformatic tools
for detecting Wolbachia in freshwater invertebrates. In this study, Wolbachia was detected
in Pam. experimentalis, which were the same isolates analyzed by Kaczmarek et al. [85].
Phylogenetic analysis of the obtained bacterial sequences allowed for their classification
within the differentiated supergroup A of the genus Wolbachia. The discovery of Wolbachia
in tardigrades opens new frontiers in understanding the Wolbachia-driven biology and
ecology of Tardigrada.

9. Reproduction

Reproduction refers to the process whereby every known organism produces offspring
either sexually or asexually. In the case of tardigrades, they reproduce only through gametes
via many different patterns, i.e., dioecious (separate male and female), hermaphroditic
(single animal with both male and female reproductive parts), or parthenogenetic (a form
of asexual reproduction when only females are present in the population) [98]. The genus
Paramacrobiotus consists of both bisexual and unisexual species/populations. The Pam.
arduus from Italy is bisexual; the Pam. areolatus population from Italy is bisexual; the
population from Svalbard is unisexual; Pam. celsus from Italy is bisexual; Pam. depressus
from Italy is bisexual; Pam. experimentalis from Madagascar is bisexual; Pam. fairbanksi from
various locations such as the Antarctic, Italy, Poland, Spain and USA is unisexual; Pam.
filipi from Borneo is unisexual; Pam. gadabouti from various locations in Portugal, Australia,
France and Tunisia is unisexual; Pam. kenianus from Kenya is unisexual; Pam. metropolitanus
from Japan is bisexual; Pam. palaui from Micronesia is unisexual; Pam. richtersi from Ireland
is bisexual, and according, to modern taxonomy, probably constitutes a distinct species;
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Pam. spatialis from Italy is bisexual; and Pam. tonolli from the USA is bisexual. Out of 45,
the mode of reproduction for only 14 species is known (Supplementary Materials SM.01).

An important aspect of reproduction is the morphology of sperm, the types of fertiliza-
tion and reproductive strategies. In bisexual Paramacrobiotus species, external fertilization
has been observed, which occurs after the female lays eggs [9]. Sperm in this group of
tardigrades are characterized by a longer acrosome compared to genera like Mesobiotus,
Xerobiotus or Macrobiotus [32]. A similar situation occurs in the case of the tail. The size in
the genus Paramacrobiotus ranges from 13 µm to 29.4 µm, which is considerably longer than
in the genus Macrobiotus (9.4–24.2 µm) [99]. Such dimensions are crucial when discussing
the speed of movement of male gametes, which increases with tail length [100]. However,
the length of the tail can change when the sperm enters the spermatheca. In the species
Paramacrobiotus sp. and Macrobiotus shonaicus (Stec, Arakwa & Michalczyk 2018) [101],
such changes were observed for the first time, characterized by a shortening of the tail
(1.3–3.6 µm). This reduction is natural, as once the sperm reaches the spermatheca, the tail
ceases to serve its purpose, and its length becomes nonessential [99]. Within species, there
are often many differences in sperm morphology (length of the nucleus, acrosome and tail),
which can be potentially useful in the context of research on the taxonomy of the genus
Paramacrobiotus [32].

Among the species in this genus, a significant correlation between reproductive strat-
egy and karyotype has been observed [9]. For example, in different populations (from
Ireland and Italy) of Pam. richtersi, different chromosomal compositions within the COX1
gene were found. It was observed that in the population consisting of only females (an
apomictic phenomenon), animals were triploid, and they underwent ameiotic oocyte mat-
uration. In the case of the bisexual species, individuals were diploid, with chromosomal
pairing occurring during oocyte and spermatocyte maturation [9]. These observed re-
productive differences, genetic studies, and variations in egg morphology allowed the
distinction of four new taxa within the Pam. richtersi species complex.

Also, Guidetti et al. [11] suggest the mode of reproduction being related to a con-
strained or wide distribution of the species. The amphimictic species display a very con-
strained or punctiform distribution, in contrast to the parthenogenetic species’ extremely
extensive spread and presence over multiple continents. The difference in the ability for
dispersal linked to the two modes of reproduction can be used to explain why apomictic
and amphimictic populations are distributed differently.

10. Key for Species Identification
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1. Microplacoid present (richtersi group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . 2 

–. Microplacoid absent (areolatus group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 

2. Cuticular pattern on the dorsal side of the body present and visible in LM (PCM and/or 
DIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

–. Cuticle on the dorsal side of the body smooth or cuticular pattern not visible in LM 
(PCM and/or DIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . 7 

3. Eggs of areolatus type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. Pam. danielae 

–. Eggs of richtersi type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 4 
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8. Lunules under claws IV dentate, eggs of beotiae type . . . . . . . . . . .. . . . . .. . . . Pam. beotiae 

–. Lunules under claws IV smooth, egg of chieregoi type . . . . . . . . . . . . . . . . . . Pam. chieregoi 

9. Eggs of submorulatus type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . Pam. submorulatus 

–. Eggs of richtersi or areolatus type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

10. Eggs of richtersi type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
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12. Eyes present. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pam. priviterae 

–. Eyes absent. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 13 

13. Granulation on leg I–III present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 14 

–. Granulation on legs I–III absent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. depressus 

14. The pt values of the macroplacoid length less than 43.5. . .. . . .. . . . . . . . . . . .. . Pam. pius 

–. The pt values of the macroplacoid length more than 49.0. . . .. . . . . . . . . . . . . . . . . .. . . . 15 

15. Egg process jagged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . .. . . .. . . . . . . . . . . 16 

–. Egg process not jagged . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . .17 

16. Egg processes height less than 15.0 µm and parthenogenetic mode of reproduction. . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. fairbanksi 

–. Egg processes height more than 15.1 µm and bisexual mode of reproduction. . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. celsus 
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6.5 µm, pt values of second macroplacoid length less than 14.0, pt values of macroplacoid 
row length less than 59.0, placoid row length less than 34.5 µm and pt values of placoid 
row length less than 74.0. . .. ... . . . . . . . . . . . . . . . .. ... . . . . . ... .. . . . . . . .. . . . . . . Pam. filipi 

– Egg processes without elongated terminal portion, second macroplacoid length 7.0 µm 
or more, pt values of second macroplacoid length more than 15.0, pt values of 
macroplacoid row length more than 60.0, placoid row length more than 34.9 µm and pt 
values of placoid row length more than 77.5. . . . . .. . . . . ... . . . . . . .. ... . . . . . . .. ... . . . . . Pam. 
gadabouti 

24. Egg processes with long, thin and flexible terminal portion and egg process height 
more than 24.5 µm . . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . Pam. lorenae 

– Egg processes without long, thin and flexible terminal portions and egg process height 
less than 22.5 µm . . . . . . . .. . . . . . .. . . . .. . . . . . .. . . . . . .. . . . .. . . . . .. . . . .. . . . . 25 

25. Presence of fine granulation on I–III pair of leg and egg process height more than 15.0 
µm . . . . . . . .. . . . . . .. . . . .. . . . . . .. . . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . Pam. richtersi 

–. Absence of fine granulation on I–III pair of leg and egg process height less than 17.0 µm. 
. . . . . . .. . . . . . .. . . . .. . . . . . .. . .. . . .. . . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . Pam. gerlachae 

26. Cuticle with oval pores, egg processes with cap-like structure on the top and clearly 
narrower under caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pam. garynahi 

–. Cuticle without oval pores, egg processes without cap-like structure on the top and 
without narrowing at the top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 



Diversity 2023, 15, 977 16 of 21
Diversity 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

27. Egg processes cone with blunt apex not divided and without elongated terminal part 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. savai 

–. Egg processes different . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 28 

28. Egg processes with long flexible portion on the top i.e. elongated cones . . . . . . . . . . . . . 
. . .. . . Pam. rioplatensis 

–. Egg processes without long flexible portion on the top . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

29. Egg processes’ base width less than 12.5 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. peteri 

–. Egg processes’ base width more than 13.0 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

30. Granulation on IVth pair of legs absent and egg processes height more than 15.5 µm . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. hapukuensis 

–. Granulation on IVth pair of legs present and egg processes height less than 15.0 µm . 31 

31. Presence of wrinkled surface on the egg areolae and the absence of cuticular bulge on 
inner surface of claws I–III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pam. experimentalis 

–. Lack of wrinkled surface on the egg areolae and the presence of cuticular bulge on inner 
surface of claws I–III. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Pam. metropolitanus 

32. Egg of csotiensis type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. csotiensis 

–. Eggs of areolatus, huziori, tonollii or richtersi type . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 33 

33. Eggs of tonollii type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. tonollii 

–. Eggs of areolatus, huziori or richtersi type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 34 

34. The egg areolation of the huziori type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

–. Eggs of richtersi or areolatus type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 

35. Only one row of larger teeth are present in the second band in the oral cavity, the 
distances between all macroplacoids are approximately the same, accessory points are 
well developed but not protruding high above the primary branch, the diameter of bases 
of egg processes is approximately equal to or slightly smaller than their height, 9–11 
processes are present on the egg circumference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . Pam. huziori 

–. A row of larger teeth and a posterior band of small granules/conical teeth present in the 
second band of teeth in the oral cavity, the second macroplacoid situated closer to the first 
than to the third macroplacoid, accessory points extremely well developed, protruding 
high above the primary branch, diameter of bases of egg processes greater than their 
height, 12–16 processes on egg circumference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pam. derkai 

36. Eggs of richtersi type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. spinosus 

–. Eggs of areolatus type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

37. The first/anterior band of teeth visible under PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
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–. The first/anterior band of teeth absent or not visible under PCM . . . . . . . . . . . . Pam. intii 

38. Lunules under claws IV smooth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

–. Lunules under claws IV dentate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 

39. Eyes present, macroplacoid length sequence 2 < 3 < 1, full egg diameter more than 93.0 
µm and egg process height more than 17.5 µm. . . . . . . . . . . . . . . . .. . . . . . . . . Pam. lachowskae 

–. Eyes absent, macroplacoid length sequence 2 < 1 < 3, full egg diameter less than 92.0 µm 
and egg process height less than 11.5 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. centesimus 

40. Eyes present, macroplacoid length sequence 2 < 1 < 3 and egg processes elongated cone 
. . . .41 

–. Eyes absent, macroplacoid length sequence 2 < 3 < 1 and egg processes simple cone. . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. 
klymenki 

41. Egg process height more than 26.5 µm and egg process surface smooth . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pam. areolatus 

–. Egg process height less than 17.5 µm and egg process surface apically covered by 
irregular granulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. Pam. 
walteri 

11. Conclusions 
The genus Paramacrobiotus shows a cosmopolitan distribution with the presence of 

both bisexual and parthenogenetic species. Although the integrative descriptions and 
redescriptions are improving the overall situation and allowing for new opportunities for 
detailed study, the phylogeny of the genus Paramacrobiotus seems to be unresolved. Also, 
there are many other studies regarding the life history, cryptobiotic abilities and 
microbiome community, as well as bacterial endosymbiont infections identification, 
which are lacking, and such studies are required for the advancement of knowledge of 
tardigrades in general. 

Supplementary Materials: The following supporting information can be downloaded at 
www.mdpi.com/xxx/s1. SM.01 Locations, mode of reproduction and presence of genetic data for all 
the Paramacrobiotus species. 
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