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Abstract: Utilizing path analysis, we examined the interconnectedness among six meteorological
variables. Among these, three pertain to energy conditions—air temperature, net solar radiation, and
reference evapotranspiration (ET0)—while the others are associated with hydrological conditions:
precipitation, relative humidity, and water deficiency. These variables were assessed across five
distinct temporal delay levels to understand their influences on the normalized difference vegetation
Index (NDVI) and enhanced vegetation index (EVI) within grassland areas situated in the state of
Espírito Santo, southeastern Brazil. The images underwent processing using analytical algorithms
and a geographic information system (GIS). The direct and indirect impacts of these variables on
the NDVI and EVI exhibited remarkable similarity across varying temporal delays and geographic
regions. Meteorological variables explained over 50% of the observed variation in both indices,
occasionally even reaching levels of 70%. Temperature and relative humidity primarily exerted direct
effects on the indices. Conversely, precipitation exhibited indirect effects on the indices, often in
conjunction with other hydrological variables. ET0 demonstrated a direct effect on the vegetation
indices, particularly after a delay of 32 days. Solar radiation and water deficiency displayed direct
effects up to the 32-day mark, implying that vegetation responds more promptly to these variables.
The proposed methodology enabled a consistent and stable assessment of the direct and indirect
effects of meteorological variables on vegetation indices.

Keywords: enhanced vegetation index; geographic information system; geotechnologies; meteorological
variables; normalized difference vegetation index; path analysis

1. Introduction

Climate stands as the primary driver behind the distribution of various vegetation
types within distinct terrestrial ecosystems, controlling their spatial and temporal trans-
formations at local and global scales [1–3]. Consequently, vegetation assumes a pivotal
role as an indicator, given that any alterations in its quality and quantity reverberate across
its environmental context [4–6]. This underscores the worldwide significance of compre-
hending how vegetation responds to meteorological variables, an imperative subject of
research [7–12]. When a specific meteorological variable significantly impacts the state
of vegetation within an ecosystem, its role gains even greater prominence, particularly
within the context of climate change. Among the variables explored in the realm of plant
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dynamics and growth, air temperature and precipitation emerge as focal points in the
discussion [13–18]. Nonetheless, alongside these aspects, other variables wield influence
over vegetation and must not be disregarded, including net solar radiation, reference
evapotranspiration, and water deficiency [19,20].

Examining both the direct and indirect effects of meteorological variables on vegeta-
tion development holds paramount importance in comprehending the intricate interplay
between climate change and shifts in vegetation dynamics. The integration of geotech-
nologies into the study of vegetation dynamics has expedited the process, rendering it
economically viable and less labor-intensive. Furthermore, remote sensing has emerged
as a highly effective tool across a multitude of research domains. It boasts frequent data
acquisition, serves as an accessible and standardized information source across diverse
spectral regions, and furnishes a global perspective on phenomena [21–25]. Spectral models
like the enhanced vegetation index (EVI) and the normalized difference vegetation index
(NDVI) have demonstrated their efficacy in various studies [26–34]. These images have
enabled the identification of substantial changes in vegetation, given that variations in
vegetation indices exhibit significant correlations with green biomass content and plant
water stress [35,36].

Relying on these crucial insights, given the observation of climate shifts affecting
millions of individuals and giving rise to global economic, environmental, and social
repercussions, particularly within the agricultural sector, it becomes imperative to identify
the meteorological variables that play a more active role in these transformations and
gain a deeper understanding of their impact on vegetation dynamics. In the context of
such scientific inquiries, it often becomes essential to ascertain the presence or absence of
interactions among variables. This necessitates the development of correlation analyses to
evaluate both the strength and direction of the relationship between two variables. How-
ever, while correlation analysis constitutes an important stage, it falls short of establishing a
cause-and-effect relationship and can be misinterpreted. Elevated correlation values might
arise from indirect effects exerted by other variables. In such circumstances, recourse to
alternative methodologies, like path analysis, offers a means to apprehend the genuine
connections between variables [37]. Path analysis entails disentangling correlations into
direct and indirect effects originating from explanatory variables onto the fundamental
variable. The quantification of these effects is achieved through multiple regression analysis.
This dissection of correlations hinges on the predefined set of variables under study, their
individual significance, and the potential interrelations depicted in a path diagram [38].

Scholars have established the versatility of path analysis across various domains, as
follows. (1) Medical Studies: path analysis has been employed in dietary inflammatory
index assessments to gauge its connection with maternal factors and excessive body weight
in Brazilian children during complementary feeding [39]. (2) Psychological Investigations:
within psychological studies, path analysis frequently evaluates caregiving burden, family
functioning, and psychological well-being among older caregivers of elderly adults [40].
Additionally, there is a pronounced interest in understanding the associations between
addiction, self-esteem, fear of loss, individual daily time allocation, and problematic social
media use [41]. (3) Chemical and Physical Research: the methodology’s significance extends
to chemical and physical analyses, as seen in a study revealing the browning of ready-to-eat
crayfish tails during thermal treatment and storage [42]. Furthermore, it contributes to a
comprehensive understanding of adaptive thermal comfort in dynamic environments [43].
(4) Animal Husbandry Studies: in the realm of animal husbandry, path analysis proves
beneficial for exploring direct and indirect effects within the context of lactation number,
calving season, dry period, service period, and insemination number in Holstein cows [44].
(5) Agricultural Studies: in agricultural research, path analysis plays a pivotal role in
establishing causal relationships between vegetation indices and soybean grain yield based
on in situ observations [45]. (6) Genetic Improvement Research: notably, the methodology
finds frequent application in genetic improvement studies. Authors have employed it in
crop breeding to facilitate the formulation of suitable selection procedures [46–52].
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The quantification of both the direct effect of a meteorological variable on vegetation
development and its indirect effect through other meteorological factors has been infre-
quently undertaken. Another significant aspect is that the few studies employing path
analysis to assess the interrelationships between meteorological variables and their effects
on vegetation indices primarily focus solely on the effects of temperature and precipitation
on the NDVI [53–55]. Therefore, as a distinctive aspect of this study, we aim to broaden the
scope by incorporating a greater number of meteorological variables into the analysis pro-
cess. Additionally, we utilize both the NDVI and EVI. Moreover, we take into account the
temporal delay in vegetation response concerning the action of meteorological variables.

Thus, our main purpose is to utilize path analysis for the exploration of causal rela-
tionships among the subsequent meteorological variables: three variables linked to energy
conditions (air temperature, net solar radiation, and reference evapotranspiration), and
three variables associated with hydrological conditions (precipitation, relative humidity,
and water deficiency). This investigation encompasses five distinct temporal delay levels
(16, 32, 48, 64, and 80 days) in relation to vegetation’s response to meteorological fac-
tors. We also aim to discern their direct and indirect effects on the NDVI and EVI within
grassland areas.

2. Materials and Methods
2.1. Study Area

The study area covered the southeastern region of Brazil, specifically the state of
Espírito Santo, located between the states of Bahia and Rio de Janeiro, and extending
into Minas Gerais. This area also includes the Atlantic Ocean, bounded by the following
coordinates: parallels 17.9◦ S and 21.3◦ S and meridians 39.6◦ W and 41.8◦ W (Figure 1a).

According to Köppen’s classification, an Aw climate (tropical zone, with dry winter)
predominates in the largest portion of Espírito Santo (53.69%). The study area also en-
compasses several other climate zones, including Cfa, which corresponds to an oceanic
climate without a dry season (14.92%), Am, indicative of a tropical zone with a monsoon
period (13.96%), Cfb, characterized by an oceanic climate without a dry season but with
temperate summers (10.47%), Cwb, denoting a humid temperate climate with dry winters
and temperate summers (3.36%), Af, representing a humid tropical climate (2.76%), Cwa,
indicating a humid temperate climate with dry winters and hot summers (0.83%), and
Cwc, classifying a humid temperate climate with dry winters and short, cool summers
(0.02%) [56].

2.2. Satellite Image Acquisition and Processing

A methodological flowchart outlining the essential steps for acquiring and preprocess-
ing NDVI, quality, and pixel reliability images is presented in Figure 1b, complemented by
a summary of the developed model for automating and documenting data management
processes (Figure 1c) [57].

We specifically selected NDVI and EVI images with a spatial resolution of 250 m and
a temporal resolution of 16 days. These images were accessible at no cost through the
website https://search.earthdata.nasa.gov. Version V06 of the datasets, corresponding to
the h14v10 and h14v11 tiles, was utilized. Each tile encompasses an area of 1200 × 1200 km
(Figure 1a) [28]. The imagery for the span of a decade, from 2008 to 2017, was chosen
(Table 1). A total of 230 images for each layer underwent processing and served as data
sources. All geoprocessing procedures and image editing tasks were conducted using
ArcGIS 10.3 [58].

https://search.earthdata.nasa.gov
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Figure 1. Location of the state of Espírito Santo within the established climate domains, followed
by images corresponding to h14v10 and h14v11 tiles (a); methodological flowchart describing the
preprocessing of NDVI images (b); and steps of the developed model (c).
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Table 1. Dates of MODIS images.

Start Date (Julian Day) Image Years

01/01 (001), 01/17 (017), 02/02 (033), 02/18 (049), * 03/06 (065), 03/22 (081),
04/07 (097), 04/23 (113), 05/09 (129), 05/25 (145), 06/10 (161), 06/26 (177),
07/12 (193), 07/28 (209), 08/13 (225), 08/29 (241), 09/14 (257), 09/30 (273),

10/16 (289), 11/01 (305), 11/17 (321), 12/03 (337), 12/19 (353)

From 2008 to 2017

* Starting from that date, one day was subtracted for each initial date during leap years.

The developed model encompassed ten distinct steps: (1) Mosaics were created for
each layer; (2) the sinusoidal projection was transformed to the Universal Transverse
Mercator (UTM) system; (3) images underwent clipping; (4) pixel reliability classification
was conducted, with the aim of extracting “spurious” pixels (as detailed in Table 2), to
ensure data integrity and consistency [59]; (5) image quality was reclassified within the
valid range of 4 to 37,572 [60]; (6) the reclassified images were used to generate a “correction
mask”; (7) NDVI images were merged with the correction mask, a crucial step to remove
pixels affected by clouds or atmospheric interference from earlier stages [61]; (8) conversion
of images to floating-point values was executed; (9) images were rescaled to digital values
between −1 and +1; (10) images were transformed into vectors, subjected to interpolation
using the inverse distance weighted (IDW) method [62], and finally, delimited based on the
study area [63].

Table 2. Pixel reliability values for the NDVI.

Pixel Value Quality Description Value after Reclassification

−1 No data Unprocessed data No data
0 Good data Can be used with confidence 0
1 Marginal data * Can be used 0
2 Snow/ice Target covered by snow or ice No data
3 Cloud Cloud covered target No data

* Considers additional quality information. Source: [28], authors’ adaptation.

We employed an identical approach for the preprocessing of EVI images, which
was executed in a manner akin to that of NDVI images. The data geoprocessing model
facilitated the automation and linkage of various stages, necessitating minor modifications
to accommodate the processing of all 460 NDVI images, EVI images, their vegetation index
quality, and pixel reliability. This adaptation underscores the model’s potential versatility
for diverse research endeavors.

2.3. Acquisition and Processing of Meteorological Data

Meteorological data were sourced from the automatic meteorological stations (AMSs)
situated within the Instituto Nacional de Meteorologia (National Institute of Meteorology)
(INMET), located in Espírito Santo and its surroundings. Our preference for solely utilizing
data from AMSs arises from their capacity to aggregate minute-to-minute observed me-
teorological values, ensuring automatic availability on an hourly basis [64]. Initially, we
selected twenty-one stations, with particular emphasis on those offering a minimum of ten
years’ worth of meteorological data. The chosen stations included Alegre, Alfredo Chaves,
Vitória, Santa Teresa, Linhares, and São Mateus within the boundaries of Espírito Santo,
alongside Aimorés and Mantena, municipalities located within the state of Minas Gerais
(Figure 2 (label 01)).
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Figure 2. Flowchart of a schematic representation detailing the sequential progression of methodolo-
gies employed in the process of grassland area selection and subsequent computation of the average
vegetation index value.

We conducted an analysis of six meteorological variables, comprising three associated
with energy conditions (air temperature, net solar radiation, and reference evapotranspi-
ration) and three pertaining to hydrological conditions (precipitation, relative humidity,
and water deficiency). Notably, the reference evapotranspiration was computed using the
Penman–Monteith method, a procedure outlined in the Food and Agriculture Organization
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of the United Nations’ bulletin 56 [65]. Additionally, alongside the daily records for precipi-
tation and evapotranspiration, we computed the daily sequential water balance according
to established methods [66] and determined water deficiency using 100 mm of available
water capacity as a reference point [67,68].

In relation to the missing data within the variables obtained from AMSs (constituting a
fraction of less than 4% of the overall dataset), we opted to utilize the MissForest R package
software (ArcGis 10.3) for the purpose of imputation [69]. The selection of this software was
driven by its relevance in addressing nonparametric imputation requirements concerning
missing values encountered within a diverse spectrum of multivariate datasets. At the
core of this approach lies the utilization of a random forest model, which is trained on the
observed values within a designated data matrix. This enables the prediction and subse-
quent completion of the absent values. This technique is well suited for accommodating
intricate interactions and nonlinear relationships inherent in the dataset. It is pertinent to
note that the MissForest software eliminates the need for calibration via tuning parameters
and circumvents any reliance on assumptions regarding the underlying data distribution.
An additional noteworthy aspect is its capacity to offer an assessment of input quality. This
is realized through the generation of error estimates, which provide a qualitative, albeit
averaged, gauge of reliability verification for each variable.

Particularly in the computation of average values for temperature, relative air hu-
midity, and net solar radiation, our focus rested upon utilizing daily data, adhering to the
temporal resolution of the vegetation indices’ images, which is set at 16 days. Conversely,
for rainfall, reference evapotranspiration, and water deficiency, our approach involved
aggregating their values over the same time interval. This yielded a total of 230 values for
each variable per AMS.

The current study’s aim entailed implementing a temporal delay to gauge the interval
within which vegetation responds to the effects of meteorological variables. In essence, the
data spanning from 13 October 2007 to 31 December 2017 were compiled (Table 3) while
incorporating five levels of delay (16, 32, 48, 64, and 80 days) with respect to the dates
corresponding to the vegetation index images.

Table 3. Different levels of temporal delay for assessing vegetation response to meteorological
variables.

Days of Delay in Relation to
Vegetation Index

NDVI or EVI i-th Value (yi) in Response to the i-th
Value of the Meteorological Variable (xi)

0 yi, with xi without temporal delay
16 yi, with xi previous 16 days
32 yi, with xi previous 32 days
48 yi, with xi previous 48 days
64 yi, with xi previous 64 days
80 yi, with xi previous 80 days

2.4. Selection of Agricultural Areas Influenced by Meteorological Variables

On one hand, the ideal approach for assessing the distinct interrelations among the six
meteorological variables under investigation, alongside their effects on the NDVI and EVI,
would entail the deployment of isolated experimental plots within each AMS. On the other
hand, due to substantial requisites of human and financial resources, we were able only to
partially explore aspects pertaining to the demarcation of study areas characterized by a
singular crop type.

In order to ensure a standardized comparison of the outcomes of vegetation indices in
relation to their responses to the effects of meteorological variables, our focus was directed
towards a specific crop type possessing the following attributes: (1) exhibiting a relatively
swift responsiveness to variations in meteorological conditions; (2) showcasing the highest
attainable degree of homogeneity in soil coverage; (3) manifesting minimal susceptibility
to topographic shading effects; (4) experiencing limited anthropic changes throughout its
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growth cycle; and (5) demonstrating a substantial prevalence within the state of Espírito
Santo. Accordingly, we elected to investigate grassland areas as our preferred crop choice,
given their alignment with the requisite criteria and their potential to best align with the
aims of our research endeavor.

As evident in numerous Brazilian states, grassland areas within Espírito Santo pre-
dominantly consist of the Brachiaria/Urochloa genus. This species is recognized for its
limited nutritional content, inadequate management practices, and lack of appropriate
fertilization or soil correction, as documented in previous research [70]. The aforemen-
tioned forage species exhibits heightened carbon fixation efficiency within temperature
ranges of 30 ◦C to 40 ◦C and is categorized as a C4 plant. This classification delineates
its photosynthetic mechanism, where C3 plants denote the majority of green plants that
produce a three-carbon molecule (3-phosphoglyceric acid) as the initial stable product in
the photosynthetic biochemical sequence. Conversely, C4 plants refer to those capable of
exceptional dry matter production, adept at fixing CO2 in four-carbon compounds like
malate, oxaloacetate, and aspartate [71].

Attention should also be paid to the spatial proximity of the study areas in relation to
the AMSs, as we aimed at mitigating potential variance in the meteorological parameter
values attributed to geographic distance. In pursuit of this objective, circular zones with
radii of up to 10 km were delineated around the precise coordinates of the monitoring
stations, facilitating the identification of geographically indicative regions within Espírito
Santo. Additionally, areas characterized by minimal variations in elevation were included
in the assessment, given the substantial impact of elevation on temperature patterns. Under
the premise that elevated altitudes are associated with lower temperatures, as documented
in prior investigations [72,73], a temperature gradient of approximately 6.5 ◦C per one
thousand meters alteration in elevation is observed [73,74].

In light of the aforementioned considerations, we executed the subsequent procedures,
as follows. (1) Spatialization of the designated AMS points was undertaken (Figure 2 (label
01)). (2) A circular buffer with a radius of 10km was established around each AMS location
point, aiming to select areas exhibiting similar meteorological conditions and prevalent
grassland occurrences. This designated region was denoted “influence of sampling area
(ISA)” (Figure 2 (label 02)). (3) Acquisition of imagery from the digital elevation model,
available at http://www.dsr.inpe.br/topodata (accessed on 18 May 2022) [75]. Subse-
quently to this, the ISA regions were reclassified based on the AMS elevation ±25 m
interval. This step was executed to ensure the selection of areas marked by analogous
climatic conditions and was labeled “influence of sampling area elevation (ISAE)” (Figure 2
(label 03)). (4) A randomized generation of 100 points was carried out within each ISAE
zone. Employing a photointerpretation process, 20 points were singled out from areas
characterized by persistent grassland presence over a decade-long span. These selected
points were denoted “influence of sampling area elevation with presence of grassland
(ISAEG),” with particular emphasis on the ISAEG instances within the municipality of
Alegre (Figure 2 (label 04)). Observations: (1) The validation of points situated within
grassland areas was conducted utilizing the subsequent resources: (a) a 2007–2008 or-
thophotomosaic characterized by a 1 m resolution, generously provided by the Instituto
Estadual de Meio Ambiente e Recursos Hídricos (IEMA) (State Institute of Environment
and Water Resources); (b) a 2012–2015 orthophotomosaic distinguished by a 20 cm spa-
tial resolution; (c) images obtained through the employment of the Web Maps Service
(WMS) protocol, encompassing the temporal span of 2008 and 2017. (2) Due to the spatial
resolution of the vegetation index images (250 m × 250 m = 6.25 hectares), our selection
criteria were oriented towards grassland areas exceeding 10 hectares; (3) the computation
of the average NDVI and EVI values was executed for each image, employing a temporal
resolution of 16 days. This calculation was performed across the 20 designated points
within each ISAEG, spanning the interval from 2008 to 2017 (Figure 2 (label 05)).

http://www.dsr.inpe.br/topodata
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2.5. Statistical Analysis of the Relationship between Meteorological Variables and Vegetation Indices

Statistical analyses were conducted employing functions within both the R (ver-
sion 1.5) [76] and GENES [77] software packages (ArcGis 10.3). The identification of
outliers within the dataset encompassing all variables under investigation was accom-
plished by means of box plots. Preceding the analytical procedures, data points considered
as outliers were subsequently eliminated from the dataset.

In the course of this investigation, the statistical analysis was executed through a
two-step process, as follows.

(1) The calculation of Pearson’s coefficients of linear correlation (rxy) (Equation (1))
was undertaken, which serves to quantify both the strength and direction of the linear
association between a pair of variables [13,78]. This step aimed to quantify the extent of
the association between the vegetation indices (specifically NDVI or EVI) and the diverse
meteorological variables encompassing (a) air temperature, (b) relative humidity, (c) net
solar radiation (defined as the disparity between net shortwave radiation and net longwave
radiation, representing the total energy available to influence climatic conditions) [65],
(d) precipitation, (e) reference evapotranspiration, and (f) water deficiency. To scrutinize
the correlation between the x and y variables, we generated hypotheses formulated as:
H0: ρ = 0 (indicating statistical equivalence of correlation to zero) and H1: ρ ̸= 0. The null
hypothesis (H0) would be refuted in cases where the computed level (p-value), representing
the probability of observing a correlation as extreme as the one obtained, is less than
or equal to a predetermined significance level (α). Here, the significance level (α) was
preset to 0.01 [79], constituting the threshold beyond which the null hypothesis (H0) would
be rejected.

(2) Path analysis involves deconstructing correlations into direct and indirect effects
exerted by the explanatory (independent) variables on the basic (dependent) one. These
effects are quantified through regression analysis. In essence, path analysis delineates
the extent to which each independent variable effects a direct or indirect impact on the
dependent variable. Consequently, we conducted path analysis by unpacking the estimated
Pearson correlation coefficients (rxy) into explicit direct and indirect effects of individual
meteorological variables on vegetation indices. The path analysis proceeded through two
distinct phases: (a) construction of the path diagram to establish causal relationships among
the variables, and (b) decomposition of the correlations into a series of path coefficients.
Within this framework, the vegetation indices (NDVI and EVI) were treated as fundamental
variables in the model, upon which we examined the direct and indirect effects stemming
from six meteorological variables (as explanatory factors).

With application of the aforementioned approach [38], the path coefficients are deriv-
able through Equation (2) and estimations of these path coefficients (p̂0i) can be acquired
utilizing the least squares method via matrix resolution (Equation (3)). These path coef-
ficients facilitate, for instance, calculations of the direct effects of variable x1 on y within
the deconstruction of correlation, denoted as p01. Similarly, the indirect effects of variable
x1 on y through intermediaries x2 e x3 are represented as p02r12 and p03r13, respectively.
Consequently, r01 = p01 + p02r12 +p03r13 + p04r14 + p05r15 + p06r16 .

rxy =
∑(xi −

_
xi)(yi −

_
yi)√(

∑ (xi −
_
xi)

2
)
(∑ (yi−

_
yi)

2
) (1)

Here, rxy represents the Pearson coefficients of linear correlation, with x and y denoting
the values of the aforementioned variables.

y = p01x1 + p02x2 + p03x3 + p04x4 + p05x5 + p06x6 + pε u (2)

In this context, y corresponds to the standardized dependent basic variable (NDVI or
EVI), p0i represents the path coefficients or direct effects originated from the meteorological
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variables, xi denotes the explanatory meteorological variables (i = 1, . . ., 6), u embodies the
residual variable, and pε stands as the coefficient associated with the residual variable.

r01
r02
r03
r04
r05
r06

 =



1
r21
r31
r41
r51
r61

r12
1

r32
r42
r52
r62

r13
r23
1

r43
r53
r63

r14
r24
r34
1

r54
r64

r15
r25
r35
r45
1

r65

r16
r26
r36
r46
r56
1

·


p01
p02
p03
p04
p05
p06

 (3)

Before delving into the examination of correlation and path coefficients, as depicted
in Table 4, it was imperative to verify the presence of multicollinearity, in order to avoid
any potential misinterpretations in the outcomes, as highlighted in certain scholarly inves-
tigations [80]. To accomplish this verification, we concurrently employed the following
methodologies. (a) number of conditions (NCs), which is computed through the ratio
between the largest and smallest eigenvalues of the matrix. If the NCs is below 100, it
signifies weak multicollinearity with minimal effect on the analysis. If the NCs lies between
100 and 1000, it denotes a moderate to strong multicollinearity presence. A value exceeding
1000 indicates severe multicollinearity [81]. (b) Variance inflation factor (VIF), which gauges
the extent to which the variance of a coefficient is elevated in comparison to what it would
be if the variable were not correlated with any other. Therefore, all VIF values should be
below 10, indicating an absence of multicollinearity influence [82].

Table 4. Criteria for the interpretation of path analysis.

Condition Interpretation

1st—if both rxy and path coefficient were statistically significant
in magnitude and signal Direct effect of the explanatory variable

2nd—if rxy exhibited significance, whereas the path coefficient
did not achieve statistical significance Correlation arose due to indirect effects

3rd—if rxy lacked significance, whereas the path coefficient
demonstrated statistical significance

Existence of a direct effect of the variable, however the absence
of correlation was attributed to the presence of indirect effects

4th—if neither rxy nor the path coefficient reached statistical
significance Effects that did not achieve statistical significance (ns)

Source: Adapted from [80].

Subsequently, two approaches were investigated to mitigate the effects of variables
influenced by multicollinearity: (a) the exclusion of highly correlated explanatory vari-
ables and (b) the application of ridge regression, a technique utilized to estimate path
coefficients while determining the optimal course of action to rectify the influence of
multicollinearity. This method has demonstrated favorable outcomes in various research
endeavors [83,84]. For variables unaffected by multicollinearity, standard analytical proce-
dures were employed.

3. Results and Discussion
3.1. Preliminary Correlation Analysis between Meteorological Variables and Vegetation Indices

Research concerning the intricate dynamics of vegetation growth and variations has
consistently yielded analogous findings when employing either the normalized difference
vegetation index (NDVI) or the enhanced vegetation index (EVI). Nonetheless, some
scholars state that the performance of the EVI surpasses that of the NDVI, primarily
attributed to enhancements in its capacity for vegetation monitoring. These improvements
encompass the segregation of signals originating from the lower canopy, attenuation of
interferences stemming from soil and atmospheric affects, and a decelerated saturation
tendency in areas characterized by elevated vegetation density [35,85–87].

The primary objective of this research endeavor is to enhance our comprehension of the
intricate interplay between meteorological factors and vegetation indices. In pursuit of this
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aim, a detailed investigation was undertaken to delineate the correlations existing between
vegetation indices and individual meteorological variables. The analysis encompassed
varying time lags, specifically applied in the geographic areas of Alegre, Aimorés, and
Mantena, which were chosen through a randomized selection process from a pool of eight
AMSs (Figure 3).
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Both the NDVI and EVI exhibited congruent patterns of response to the diverse me-
teorological variables across the distinct geographic areas under scrutiny. Notably, this
correspondence held true for all three distinct areas, characterized by different temporal de-
lay periods encompassing five discrete levels. Remarkably, the EVI demonstrated superior
correlation coefficients to the NDVI in the majority of associations, barring the case of the
variable pertaining to relative humidity.

As depicted in Figure 3, the absolute values of correlation coefficients lack strength in
any association between meteorological variables and vegetation indices [88]. Nevertheless,
it is noteworthy that the EVI has exhibited a higher incidence of statistically significant
correlations in comparison to the NDVI across the three delineated areas. This observation
substantiates findings from a previous investigation conducted at the Reserva Biológica
de Sooretama (Sooretama Biological Reserve) situated within Espírito Santo. The afore-
mentioned research in the same location similarly underscored EVI’s superior performance
vis-à-vis NDVI correlations with identical meteorological variables [89].

We draw the reader’s attention to noteworthy variables demonstrating either positive
or negative correlations with vegetation indices. When considering the most robust cor-
relation coefficients between individual meteorological variables and vegetation indices,
it is pertinent to highlight that temperature, relative air humidity, net solar radiation, pre-
cipitation, and reference evapotranspiration exhibited positive correlations. This suggests
that an increase in these variables is accompanied by a concomitant rise in vegetation
indices, while a decrease in these variables corresponds to a decline in indices. On the
other hand, water deficiency emerged as the sole variable displaying a negative correlation
with vegetation indices—a phenomenon that is normally expected. As water deficiency
intensifies, there is a corresponding decrease in plant growth, underscoring the inverse
relationship. Conversely, augmented vegetation growth is associated with a surplus of
available water.

In relation to the NDVI, a study underscored its positive correlation with average
temperature, precipitation, and relative humidity. Notably, the strongest correlation was
observed with average temperature, yielding a correlation coefficient of 0.7874 [90]. Further
insights into NDVI dynamics can be gleaned from an investigation that scrutinized the
variations in vegetation cover and its correlation with climatic factors in Mongolia spanning
the period 1982 to 1999. The outcomes of this study revealed that the average vegetation
cover during the growth season exhibited a positive correlation with precipitation, with an
average correlation coefficient of 0.6460 [91].

Scholars additionally delved into the investigation of the interrelationship between
the NDVI and the leaf area index (LAI) concerning climatic parameters, encompassing
maximum temperature, minimum temperature, relative humidity, precipitation, wind
speed, and aerosol optical depth, within the geographic context of Haryana, India, spanning
the temporal scope of 2010 to 2020. The correlation coefficient values of both the NDVI
and LAI with the aforementioned climatic variables exhibited temporal variations across
months, although the fundamental essence of their variations remained similar for the two
indices. The overall correlation analysis unveiled a positive correlation between rainfall
and relative humidity with both the NDVI and LAI. In contrast, the remaining climatic
variables exhibited a negative correlation in relation to the indices [92].

Several scholars have investigated the interannual variability in vegetation coverage
and its responses to meteorological variables, along with the effects of climatic changes on
the grassland ecosystem within the northern Tibetan region of China. This inquiry was
underpinned by an analysis of an NDVI dataset and meteorological records spanning from
2000 to 2009. The findings of this study unveiled substantial positive linear associations
between the NDVI values and hydrological as well as thermal conditions. Among these
associations, the connection between the monthly mean minimum temperature and the
NDVI exhibited the most robust correlation. Furthermore, a delayed response of the
NDVI to alterations in hydrological and thermal conditions was identified. The temporal
lag observed in this response was approximately one month for both precipitation and
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temperature variables. However, in the case of cumulative precipitation, the lag extended
to two months [93].

Several scholarly investigations have highlighted the significance of net solar radiation
not only as the principal energy source driving plant biomass production but also as a
potent factor exhibiting a robust positive correlation with reference evapotranspiration.
It has been posited that these variables are intimately interlinked within the soil–plant–
atmosphere system, profoundly affecting water movement and exerting considerable
influence on various vegetation indices [94].

Within the context of three distinct geographic areas (Figure 3), it was discerned that
water deficiency exhibited the most substantial absolute correlation coefficients when jux-
taposed with vegetation indices, particularly when assessed with a sixteen-day temporal
offset. This observation potentially signifies a comparatively faster responsiveness of vege-
tation to instances of water scarcity or excess. However, the validation of this proposition
necessitates further substantiation through path analysis methodology.

Temperature and precipitation emerged as meteorological variables of paramount
significance, exhibiting substantial correlations with both vegetation indices across a range
of temporal delay levels. This observation aligns with their recurrent utilization in scholarly
inquiries concerning plant dynamics and developmental patterns [15,17]. Nonetheless, the
extent of their influence on vegetation indices, whether through direct causation or indirect
associations with other variables, was examined using a path analysis framework.

In this context, pertinent studies propose that temperature escalation, within a certain
limit, holds the potential to accelerate vital metabolic processes linked to plant growth.
For instance, heightened temperatures can stimulate photosynthesis, thereby fostering
an increase in vegetation indices. Nevertheless, it is imperative to acknowledge that
an excessive increase in atmospheric temperature could potentially intensify vegetation
transpiration rates, ultimately precipitating a scarcity of available water for vegetation
growth. This becomes particularly evident in areas characterized by water deficits [95].

Notably, other scholarly investigations state that precipitation emerges as a prominent
determinant influencing the course of plant development. During phases characterized
by increased precipitation, there is a distinct vigor in vegetation growth. Conversely,
instances of diminished rainfall are accompanied by a contraction in growth rates, leading
to substandard vegetation development [96,97].

Of particular relevance, the majority of grasses constituting the grassland ecosystem
(C4 plants) within the study area exhibit a marked affinity for CO2. This characteristic
engenders a concomitant elevation in net photosynthetic rates, coupled with a heightened
light saturation point [71]. Therefore, during periods marked by elevated solar radiation
and elevated temperatures, these C4 plants possess the capacity to generate a greater
biomass output compared to their C3 and crassulacean acid metabolism (CAM) plant
counterparts. This heightened biomass production contributes to an overall increase in the
vegetation index.

Time lags resulting from the delay in vegetation’s responsiveness to meteorological
variations hold significance equivalent to the associations between vegetation indices
and meteorological variables. Delving into the time intervals that encompass this delay
assumes pivotal importance across domains concerning planting, harvesting, management
strategies, and safeguarding of ecosystems [17]. Illustrated in Figure 3, the response of
vegetation to meteorological variables pertaining to energy dynamics (such as temperature,
net solar radiation, and evapotranspiration, depicted in the first lines of graphs (a), (b), and
(c)), can exhibit a relatively extended timeframe (ranging from 48 to 80 days). Conversely,
responses attributed to hydrological variables (including relative humidity, precipitation,
and water deficiency, represented in the second lines of graphs (a), (b), and (c)) tend to
manifest at a comparatively faster pace (spanning 0 to 32 days). In order to facilitate a more
comprehensive and appropriate investigation into the underlying causal relationships
between meteorological variables and vegetation indices, we opted to utilize the path
analysis methodology.
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3.2. Path Analysis of Meteorological Variables and Vegetation Indices

It is essential to underscore that meteorological variables can also exhibit intercorrela-
tions, giving rise to issues of multicollinearity in the context of path analysis. In pursuit
of obtaining path coefficients characterized by reliable accuracy, the presence of multi-
collinearity was initially identified and subsequently mitigated. In the case of the area of
Aimorés, the path analysis unveiled number of conditions (NCs) values below 100 [81],
along with variance inflation factor (VIF) values below 10 across all five temporal de-
lays [82]. Consequently, the analysis was conducted without necessitating adjustments for
multicollinearity-induced biases. Conversely, within the domains of Alegre and Mantena,
the degree of multicollinearity exhibited a scale ranging from moderate to strong. NC
values exceeded 100 for all five temporal delays, and VIF values surpassed 10 specifically
for net solar radiation and reference evapotranspiration variables. In light of this, prior to
initiating the analysis, requisite measures were undertaken to rectify the potential influence
of multicollinearity effects.

In addressing the prevailing concern, our initial strategy involved the deliberate
exclusion of the reference evapotranspiration variable. This variable exhibited a noteworthy
correlation coefficient with net solar radiation and temperature. By adopting this course
of action, a substantial improvement in NC values, well below the threshold of 100, was
achieved across the five remaining variables. Similarly, a reduction in VIF values, falling
below 10, was accomplished. However, it is important to acknowledge that the exclusion
of variables may involuntarily lead to the loss of crucial information concerning the causal
relationship between the eliminated variable and vegetation indices. Given this particular
situation, we employed the ridge regression method, which presents the distinct advantage
of not necessitating the exclusion of variables in the analytical process [81]. To delineate
the procedure briefly, the parameter values for the constant k were carefully identified
through the visual examination of the crest trace [98]. This attempt involved the selection
of the lowest k value capable of effectively enhancing the stability of a majority of path
coefficient estimators. Subsequently, this selected k value was integrated into the main
diagonal of the correlation matrix. This strategic manipulation served to effectively manage
the multicollinearity effects present within the dataset. The consequential outcome of this
particular process was the attainment of NC and VIF values that adhered to appropriate
and suitable intervals, thus establishing the methodological reliability requisite for our
analytical pursuits.

A causal diagram was constructed to facilitate path analysis. In this diagram, the basic
dependent variable was represented by either vegetation index, specifically the NDVI or
EVI. The independent explanatory variables comprised temperature, relative humidity, net
solar radiation, precipitation, reference evapotranspiration, and water deficiency. Addition-
ally, a residual variable (ε) was included in the model to account for unexplained variance.
This diagram encapsulated the intricate relationships among these variables, forming a
foundation for rigorous causal inference and analytical exploration within this domain, as
evidenced by prior contributions in the field.

Drawing upon an adaptation of the proposed method, we embarked on the inter-
pretation of coefficients to discern the direct and indirect effects [80]. By employing this
approach, we were able to elucidate the intricate relationships between variables. To illus-
trate, we present a pattern of the outcomes from the path analysis in Table 5. The table
showcases coefficient values, encompassing both direct and indirect effects, specifically in
the context of EVI analysis within the Aimorés area. This particular presentation extends to
scenarios devoid of any temporal delay, featuring corresponding values for the Pearson
correlation coefficient (rxEVI), coupled with an assessment of multicollinearity diagnostics.
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Table 5. Direct effects or path coefficients (main diagonal) and indirect effects (other values) in the
EVI context, excluding temporal delays, for Aimorés, Minas Gerais; Pearson correlation coefficient
(rxEVI) and multicollinearity diagnosis.

VARIABLES (xi) Temperature Relative
Humidity Solar Radiation Precipitation Evapotranspiration Water

Deficiency

Temperature 0.336 −0.102 0.533 −0.024 −0.322 −0.041
Relative humidity −0.059 0.580 −0.220 −0.145 0.192 0.199

Solar radiation 0.267 −0.191 0.671 0.007 −0.372 −0.078
Precipitation 0.034 0.355 −0.020 −0.237 0.018 0.148

Evapotranspiration 0.263 −0.271 0.606 0.010 −0.412 −0.110
Water deficiency 0.057 −0.473 0.215 0.140 −0.186 −0.244

rxEVI 0.378 0.547 0.304 0.298 0.086 −0.487

Multicollinearity diagnosis

Number of Conditions 45.53

Variance inflation factor 3.17 3.68 6.56 2.11 8.72 3.43

Upon analyzing the highlighted values along the main diagonal, in conjunction with
the corresponding correlation coefficients between meteorological variables and the EVI
(rxEVI), it was determined that temperature, relative humidity, net solar radiation, and water
deficiency exhibited direct effects on the EVI. This determination was supported by the
presence of noteworthy correlation values of rxEVI (both in magnitude and signal) as well
as notable path coefficients. In the case of precipitation, while rxEVI correlation exhibited
statistical significance and the corresponding path coefficient did not, suggesting that this
correlation resulted from indirect effects. These effects were predominantly attributed to
the interrelation between precipitation and relative humidity, as well as water deficiency.
In contrast, reference evapotranspiration demonstrated no discernible effect on the EVI
under these conditions, as neither rxEVI nor the path coefficient yielded significance.

In light of the aforementioned observations, the causal diagram (Figure 4) was adapted
from the GENES software [77]. This diagram visually elucidates the path coefficients, rep-
resenting direct effects of meteorological variables (namely, temperature, relative humidity,
net solar radiation, precipitation, reference evapotranspiration, and water deficiency) on
the EVI through single arrows. Additionally, it illustrates the correlations existing between
the explanatory or independent variables via double arrows.
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An identical analysis was executed for each of the remaining study areas, as well as
for the various temporal delays under consideration in relation to the vegetation response
to meteorological variables. Figure 5 provides a comprehensive overview encompassing all
six meteorological variables, elucidating both the direct and indirect effects on the NDVI
and EVI across five distinct delay levels for the localities of Alegre (a), Aimorés (b), and
Mantena (c). Upon examination, the dynamic nature of variations in vegetation indices and
meteorological variables became evident. Nevertheless, it is of significance to highlight that
the direct and indirect effects of meteorological variables on the NDVI and EVI exhibited
striking similarities across the three areas, thus reiterating a strong correlation between
these two indices.
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The determination coefficients (R2) indicate that the set of six meteorological variables
explained over 50% of the variation observed in both the NDVI and EVI, with potential
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explanatory power extending to around 70% in certain instances, particularly during the
initial delay periods characterized by a slight elevation in the EVI over the NDVI. However,
the substantial residual effect (ε) indicates the potential influence of unaccounted variables
in the path analysis, which might have impacted the vegetation indices, particularly during
the latter delay periods.

As previously indicated, the study area of Aimorés did not require the application
of multicollinearity correction, thereby yielding higher R2 values. On the other hand,
the areas of Alegre and Mantena required corrections through the utilization of a ridge
regression-based approach, leading to a diminution in R2 and an elevation in residual
components when contrasted with the uncorrected analysis. However, it is noteworthy
that both R2 and the residual effect exhibited congruent patterns of variation akin to those
observed in the Aimorés region.

Another aspect to be highlighted is that in cases where variables related to energy
(temperature, net solar radiation, and reference evapotranspiration) or hydrology (relative
humidity, precipitation, and water deficiency) exhibited indirect effects on the NDVI
and EVI. Such effects arose through associations with variables that fall within the same
group, i.e., hydrological variables exhibited correlations among themselves, whereas energy
variables conformed to the same underlying process.

Relative humidity did not exhibit indirect effects on vegetation indices. Nonetheless,
this observation does not infer the variable’s complete independence, as other variables
demonstrated associations with relative humidity through indirect effects. By contrast,
the impact of precipitation was primarily channeled through indirect effects impacting
the EVI and NDVI, mediated by relative humidity and water deficiency. These findings
underscore the notion that precipitation seldom operates in isolation, but rather is nearly
invariably intertwined with other hydrological variables when exerting its influence on
vegetation indices.

For the purpose of enhancing the visualization and facilitating comparative analysis
of outcomes, Figure 6 provides a distinct presentation of the path coefficients, indicating
significant direct effects, stemming from meteorological variables onto the vegetation
indices within the three delineated areas (Alegre, Aimorés, and Mantena), while considering
various temporal delays.

It is noteworthy that reference evapotranspiration and water deficiency exhibited
contrasting dynamics. Evapotranspiration demonstrated a discernible direct influence
on both vegetation indices, primarily following a delay of 32 days. On the other hand,
the direct effect of water deficiency persisted only up to the 32-day mark, implying that
the vegetation displayed a relatively prompt response to variations in water deficiency
or abundance.

In a particular study centered on the dynamics of the NDVI within a metropolitan
region situated in northern China characterized by a semiarid climate, a comprehensive
assessment of changing climatic influences was conducted. Scholars examined three distinct
factors—precipitation as a representative of water conditions, net solar radiation, and air
temperature—to represent energy conditions [9]. The investigation unveiled substantial
variations in NDVI responses contingent upon climatic factors. Broadly, the NDVI response
time interval related to energy factors surpassed that of water-related factors. This pattern of
behavior aligns notably with findings from analogous investigations conducted in diverse
geographic settings [96,99,100]. However, it is imperative to underscore that an analysis of
causality should not solely rely on correlation coefficients.

Consequently, exercising caution is recommended when drawing inferences con-
cerning the temporal responsiveness of vegetation in relation to meteorological variables
associated with energy or water dynamics. While an exclusive consideration of correlation
coefficients aligns our findings with the aforementioned study [9], divergent conclusions
emerge when evaluating the path coefficients, which denote direct effects. Figure 6 provides
a comprehensive overview of how the temporal response intervals of the NDVI and EVI
exhibited variations relative to meteorological variables. The response to net solar radiation
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was predominantly evident within the initial three delay periods, spanning up to 32 days.
Air temperature and relative humidity emerged as the primary drivers exerting direct in-
fluences on vegetation indices across nearly all delay phases. Reference evapotranspiration
engendered a discernible response primarily within the latter four delay levels, while water
deficiency exhibited a response primarily within the initial three periods of delay.
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Precipitation did not exhibit direct effects in either index, although this observation
should not be misconstrued as implying a lack of impact on the development of grasses
and, by consequence, the composition of grasslands. Rather, it underscores the prevailing
notion that precipitation typically operates in concert with other hydrological variables,
notably water deficiency and relative humidity. Therefore, precipitation manifests indirect
effects on vegetation indices, given that its mere occurrence does not inherently signify
available water for plant growth, owing to the presence of associated factors that contribute
to this phenomenon.

Two studies conducted in China employing path analysis to assess the effects of pre-
cipitation and temperature on vegetation growth based on the NDVI yielded similar results.
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Within the semiarid and pastoral region of Ordos City, in the northern part of the country,
the authors concluded that precipitation held greater significance as a climatic factor influ-
encing vegetation growth compared to temperature. Enhanced precipitation levels directly
promoted vegetation growth, whereas temperature elevation exhibited a damaging influ-
ence by diminishing overall precipitation during the entire growing season [55]. In another
investigation within the Ziya–Daqing basins, the effects of temperature and precipitation
on vegetation growth were predominantly conveyed through direct effects.

Across 42% of the analyzed area where the path analysis demonstrated efficacy and
the NDVI exhibited significant correlation with temperature, the magnitude of the direct
temperature effect exceeded its indirect impact. In 58% of this territory, the magnitudes of
direct and indirect effects were found to be comparable. Within 23% of the basins, interan-
nual NDVI variations were predominantly governed by the direct effect of precipitation,
while in 5%, the interplay of precipitation and temperature exerted direct effects. In less
than 1% of the cases, the interplay of direct temperature effect or indirect impacts of these
climatic factors held dominance. Importantly, the direct temperature effect was largely
negative, signifying that an annual rise in temperature detrimentally affected vegetation
growth. In contrast, the majority of the direct effect stemming from precipitation was
positive, indicating that an increase in annual precipitation was favorable to enhanced
vegetation growth [54].

Upon careful examination of the aforementioned elucidations, it becomes evident
that comprehending the intricate interconnections between meteorological variables and
vegetation dynamics necessitates progressively advanced and complex investigations.
Therefore, it is crucial to emphasize that our study contributes to a broad comprehension of
the associations among meteorological variables and vegetation indices, specifically the
NDVI and EVI, albeit within a restricted set of meteorological variables under tropical
climate conditions. Nonetheless, it remains fundamental to encompass the interplay of
these or other vegetation indices with the entirety of local meteorological variables to
achieve a more nuanced understanding of the dynamics governing plant development
across the investigated areas.

4. Conclusions

The responses of vegetation to climate factors involve intricate processes. However,
given the specific aims of this research, not to mention its methodological underpinnings,
we have drawn the following conclusions. (1) The utilization of path analysis facilitated the
comprehensive assessment of both direct and indirect effects of meteorological variables on
vegetation indices. This analytical approach proves to be highly advantageous, consider-
ing that many studies employ correlation coefficients indiscriminately to examine causal
relationships among variables. (2) Regarding EVI outcomes, they exhibited superiority
over NDVI results in terms of the quantity of significant correlations with meteorological
variables, as well as the responses to both direct and indirect effects of variables within
grassland areas. (3) The effects of meteorological variables on vegetation indices exhibited
variations contingent upon distinct delay periods. Consequently, such analyses become
vital for developing strategies pertaining to planting, harvesting, ecosystem preservation,
and management. (4) Indirect effects of meteorological variables on both the NDVI and EVI
occurred in conjunction with variables belonging to the same group, implying interactions
within hydrological variables or between variables linked to energy. (5) Direct and indirect
effects of the aforementioned variables on vegetation indices displayed notable consistency
across different areas and temporal delays. (6) Notably, our methodological framework
retains its adaptability to various regions within Brazil and potentially on a global scale.
Such adaptations could be employed to ascertain similarities or disparities in obtained
outcomes, involving a broader spectrum of meteorological variables and diverse vegetation
indices in future research endeavors.
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