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Abstract: Studying the distribution of morphologically cryptic animal species is always a very
difficult task. Because most marsh frog species (the Pelophylax ridibundus complex) are cryptic, we
used molecular markers to identify them. Three marsh frog species (P. ridibundus, P. kurtmuelleri and
P. cf. bedriagae) inhabit the northern part of Western Palearctic. We created a database of localities
and built models of their modern distribution. These models showed that the most suitable habitats
are on the north of the Mediterranean region for P. cf. bedriagae, temperate Europe for P. ridibundus,
and the Balkan coastal areas for P. kurtmuelleri. The projection of the modern ecological niches under
the late-Quaternary climatic conditions showed that the range of P. kurtmuelleri remained largely
unchanged during the period, whereas the ranges of P. cf. bedriagae and especially P. ridibundus
changed greatly over time. During the Last Glacial Maximum, the presumed range of P. cf. bedriagae
covered a relatively large area in the north of the Mediterranean region and the south of European
Russia. Glacial refugia of P. ridibundus were apparently located in the northern Balkans, the northern
coast of the Black and Azov seas, and possibly in Western Europe. The northward long-distance
post-glacial dispersal of P. ridibundus occurred from refugia in the northeastern Balkans and the
Black-Azov seas region. Since the Late Pleistocene, suitable habitats for P. cf. bedriagae in southern
Russia began to decline, but local habitats for P. ridibundus become more suitable. Therefore, a mosaic
of populations consisting of these both species and their hybrids has now been found here.

Keywords: ecological modeling; West Palearctic; hybridization; asymmetric mitochondrial introgression;
Holocene; Pleistocene

1. Introduction

Analysis of species distribution is very important for studying the processes of specia-
tion and the formation of ecological niches, as well as their changes under the influence
of various environmental factors [1]. Ecological niche models of species distributions are
becoming increasingly popular and accurate [2]. They are used to find the most suitable
habitats for species and to predict the expansion and contraction of a species’ range under
climate change [3,4]. Models have been used to understand the ecological requirements,
study niche segregation, and facilitate field work by predicting potential distribution areas
and improving their conservation, and for many other purposes [5]. The modeling can also
determine the boundaries of both past and future ranges of species [6–8]. For example, the
question of how the Quaternary glaciations influenced changes in biota is of significant
scientific interest, and modeling can reconstruct the dynamics of species distributions in
the late Quaternary [9–11].
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Marsh frogs of the Pelophylax ridibundus complex are a group widespread in the
Western Palearctic from northwestern Spain, France, and Great Britain in the west to the
Kamchatka peninsula in the east and from the outskirts of St. Petersburg (Russia) in the
north to West China, Afghanistan, Pakistan, Saudi Arabia, North Syria, East Libya, Malta,
and Sardinia in the south [12–16]. The frogs inhabit various biotopes including forest,
bushland, meadow, forest-steppe, steppe, semi-desert, and desert and survive well in
anthropogenic and agricultural landscapes. The complex composition has not yet been
sufficiently studied. At the moment, it includes about a dozen described and undescribed
taxa. According to phylogenetic relationships and distribution patterns, the complex can be
divided into western and eastern groups [17,18]. The western group includes P. ridibundus
(Pallas, 1771) and P. kurtmuelleri (Gayda, 1940). The eastern group consists of numerous
species and lineages, namely P. cypriensis Plötner, Baier, Akn, Mazepa, Schreiber, Beerli,
Litvinchuk, Bilgin, Borkin, and Uzzell, 2012, P. caralitanus (Arikan, 1988), P. cerigensis
(Beerli, Hotz, Tunner, Heppich, and Uzzell, 1994), P. persicus (Schneider, 1799), P. terentievi
(Mezhzherin, 1992), the Anatolian (“P. cf. bedriagae”), Cilician, Euphrates, Iranian, Balkhash,
and Syrdarya lineages [17–23]. Because most of these species are morphologically cryptic,
boundaries of their ranges are extremely insufficiently studied. A particular difficulty is
that various species of the complex are actively introduced into new regions, because they
are used for food, as laboratory animals, or carried by tadpoles when water bodies are
artificially stocked with fish [24–26].

Phylogenetic relationships in this complex have been repeatedly studied [17–19,22,27–30].
However, only one environmental modeling study has been conducted that examined
the range changes history of P. kurtmuelleri from the late Pleistocene to the present [31].
However, the main problem with this study was that the analysis was carried out using
data on the distribution of mitochondrial DNA (mtDNA) haplotypes, which often, due
to asymmetric introgression, provide highly distorted data on the position of the species’
range boundaries [32].

High spatial resolution paleoclimate surfaces for global land areas, such as World-
Clim [33] and PaleoClim [34], provide a good opportunity for tracing shifts in range
boundaries of various species during the late Quaternary. Amphibians and marsh frogs
in particular are very suitable subjects for reconstructing their past distribution dynamics
using ecological niche modeling because they are strongly associated with suitable ter-
restrial or semi-aquatic habitats and are not capable of long-distance migrations (like, for
example, some birds). Using the method of the multiplex PCR for identification of cryptic
marsh frog species, we studied vast areas of the East European Plain to identify patterns
of their distribution and revealed here alleles of three marsh frog species (P. ridibundus,
P. kurtmuelleri and P. cf. bedriagae). Therefore, the aims of our study were (1) to define recent
ranges of these three species and (2) to identify the positions of their glacial refugia and
post-glacial colonisation routes, using ecological niche modeling methods.

2. Materials and Methods

We used PCR-based analyses to identify three cryptic marsh frog species. In order
to exclude the effect of mtDNA asymmetric introgression, we used only nuclear DNA
(nuDNA) data for niche modeling. To determine species-specific nuDNA alleles, we ana-
lyzed the intron-1 of the nuclear serum albumin gene (SAI-1) fragments using the methods
described by Hauswaldt et al. [35] and Ermakov et al. [36]. In total, we studied 389 speci-
mens from 156 localities. Thus, the total database, including our and previously published
nuDNA data, consists of 694 localities (Table S1). As it turned out, 240 populations were of
hybrid origin and were excluded from the niche modeling analysis. “Pure” populations
(>75% own alleles) were observed in 454 localities: 243 P. cf. bedriagae, 29 P. kurtmuelleri,
and 182 P. ridibundus. Invasive populations beyond the native distributional ranges, as well
as species and lineages closely related to P. cf. bedriagae (such as P. caralitanus, P. cerigensis,
P. persicus, and others) were not included in our modeling analysis.
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Studying the distribution of mtDNA haplotypes is very useful for analyzing changes
in the past ranges, especially in hybridizing species [37]. Discordant patterns of introgres-
sion of mtDNA haplotypes and nuDNA alleles across a hybrid zone were observed in
many species [38,39]. A variety of processes (e.g., natural selection associated with the
environment or adaptive introgression, sex-biased dispersal, asymmetric reproductive
isolation, and stochasticity associated with the increased effects of drift on maternally inher-
ited mtDNA), can explain these discordances [40]. An asymmetric mtDNA introgression
can often indicate changes in the position of the hybrid zone in the past. If one hybridizing
species displaces another, their hybrid zone will move, and such hybrid zones can move
significant distances [41].

We used the method described by Ermakov et al. [36] to separate the mtDNA (frag-
ments of the subunit 1 of the cytochromec-oxidase gene) of P. cf. bedriagae from the other
two marsh frog species. To identify haplotypes of P. ridibundus and P. kurtmuelleri, we used
an endonuclease restriction analysis [33] or the multiplex PCR of the NADH dehydroge-
nase subunit 2 (ND2) gene fragments with two species-specific forward primers (for P.
ridibundus ND2Pr 5′-TAT AAT CGC GGT GAC TGG GA-3′ and for P. kurtmuelleri ND2Pk
5′-GGG TCA GGC TTG GAT TAA ATT TT-3′) and a single reverse primer (ND2R1 5′-GCT
TTT GGG CCC ATA CCC-3′). Summarizing all of our data and the previously published
data [42–82], the total results included in our database of both the nuclear (nuDNA) and
mtDNA gene analyses consisted of 1176 localities and 5234 specimens (Figure 1; Table S1).

As a tissue sample, we used a toe fixed in a 96% alcohol solution. The samples are
stored in the tissue collections of the Institute of Cytology of Russian Academy of Sciences
(St. Petersburg, Russia) and the Penza State University (Penza, Russia). For the extraction
of DNA, we used the DNA-Extran-2 kit (Syntol, Moscow, Russia); for PCR, we used the 2X
Taq M master mix green kit (Alkor Bio, St. Petersburg, Russia). The PCR mixture (50 µL)
contained 50–100 ng of DNA, 0.5 µM of each primer, and 25 µL of 2X Taq M master mix
green kit. The following method for the amplification ND2 gene species-specific fragments
was used: initial denaturation for 15 min at 95 ◦C, followed by 36 cycles of 94 ◦C for 30 s,
64 ◦C for 30 s, 72 ◦C for 30 s, and a final extension for 10 min at 72 ◦C. This method allowed
receiving PCR products with lengths of 811 bp for P. ridibundus and 431 bp for P. kurtmuelleri.
We used an electrophoresis in polyacrylamide gel to determine the differences between
amplified species-specific fragments.

To predict ecological niches, current and past (the late-Quaternary) ranges of three marsh
frog species, we constructed species distribution models. We applied recent methodological
recommendations to compute robust ecological niche models with MaxEnt 3.4.4 [2,83], such
as occurrence filtering (with MaxEnt), using multiple combinations of model parameters
(features and regularization multipliers), and multiple statistical criteria for model selection.

Altitude and 19 bioclimatic layers representative of the climatic data over ~1950–2000
were extracted from the WorldClim database (http://www.worldclim.org, accessed on 26
June 2023) to build the model under the current climatic conditions. Ten additional layers
were considered: the aridity index (Global Aridity and Potential Evapo-Transpiration; http:
//www.cgiar-csi.org/data/global-aridity-and-pet-database, accessed on 26 June 2023),
the global percent of tree coverage (https://github.com/globalmaps/gm_ve_v1, accessed
on 26 June 2023), and eight land cover variables (spatial homogeneity of global habitat,
broadleaf forests, needle leaf forests, mixed forests and shrubs, and barren, herbaceous,
and cultivated vegetation; https://www.earthenv.org/, accessed on 26 June 2023). To
consider topography in the model, two landscape layers were calculated with QGIS: terrain
roughness and terrain roughness index. Layers had a 30 arc seconds spatial resolution,
and all analyses were conducted under the WGS 84 projection with a species-specific mask
covering to the area of occurrence of these three marsh frog species and adjacent regions
(from 30◦ N to 63◦ N and 6◦ W to 62◦ E).

http://www.worldclim.org
http://www.cgiar-csi.org/data/global-aridity-and-pet-database
http://www.cgiar-csi.org/data/global-aridity-and-pet-database
https://github.com/globalmaps/gm_ve_v1
https://www.earthenv.org/
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Western Palearctic. The range of P. cf. bedriagae is designated by the blue area, P. ridibundus by the 
Figure 1. Distribution of alleles (nuDNA) and haplotypes (mtDNA) of water frog species in the
Western Palearctic. The range of P. cf. bedriagae is designated by the blue area, P. ridibundus by the red
area, and P. kurtmuelleri by the green area. B is P. cf. bedriagae, R is P. ridibundus, K is P. kurtmuelleri, L
is P. lessonae, CA is P. caralitanus, CE is P. cerigensis, PE is P. persicus, P is P. perezi, E is the Euphrates
lineage, and CI is the Cilician lineage. Pie diameter reflects the sample size. Other details are in
Table S1.

Before generating the model, we calculated Pearsons’s correlation coefficients for all
pairs of 19 bioclimatic variables using ENMTools [84] to eliminate predictor collinearity. For
correlated pairs (|r| > 0.75), we excluded the variable that appeared the least biologically
important for marsh frogs. The resulting dataset contained seven bioclimatic variables:
Bio 2 (mean diurnal range; ◦C × 10), Bio 4 (temperature seasonality; CV × 100), Bio 8
(mean temperature of wettest quarter; ◦C × 10), Bio 9 (mean temperature of driest quarter;
◦C × 10), Bio 14 (precipitation of driest month; mm), Bio 15 (precipitation seasonality; CV),
and Bio 19 (precipitation of coldest quarter; mm). A jackknife analysis was used to estimate
the relative contributions of variables to the MaxEnt model.

We ran the MaxEnt for 10 replicates with 30% random test percentage testing. For the
calibration, we evaluated models created with distinct regularization multipliers (0.5 to 6
at intervals of 0.5) and feature classes (resulted from all combinations of linear, quadratic,
product, threshold, and hinge response types). The number of background points was
20,000. The best parameter settings of statistical significance (partial ROC), predictive
power (omission rates E = 5%), and complexity level (AICc) obtained using the R package
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kuenm [85] were applied to build the models. Additionally, the model performance was
evaluated using the Area Under the Curve (AUC; ranging 0–1) and the True Skill Statistic
(TSS; ranging from −1 to +1) of the 10-percentile training omission threshold [86]. The
ClogLog output format (ranging 0–1) was chosen for processing the resulting maps [87].
The altitudes for each locality were extracted using the QGIS Point Sampling Tool Plugin
(https://plugins.qgis.org/plugins/pointsamplingtool/, accessed on 26 June 2023).

To project the current ecological niches of three marsh frog species on climate condi-
tions during the late Quaternary, we applied seven sets of uncorrelated bioclimatic layers
(Bio 2, Bio 4, Bio 8, Bio 9, Bio 14, Bio 15, and Bio 19) with a 2.5 arc minutes spatial resolu-
tion. Bioclimatic layers representative of the climatic data over 4.2–0.3 ka (Late Holocene),
8.3–4.2 ka (Mid Holocene), 11.7–8.3 ka (Early Holocene), 12.9–11.7 ka (Late Pleistocene,
Younger Dryas Stadial), 14.7–12.9 ka (Late Pleistocene, Greenland Interstade 1), 17.0–14.7 ka
(Late Pleistocene, Heinrich Stadial 1), and ~21 ka (Last Glacial Maximum) were extracted
from the PaleoClim database (http://www.paleoclim.org/, accessed on 26 June 2023).

3. Results
3.1. Current Distribution of Water Frog Species

The native range of P. ridibundus covers most of Europe from northeastern Spain
and eastern France in the west to the eastern part of the Volga-Kama Region in Russia
(Permskiy Kray and Bashkortostan) in the east, and from the ~55–57◦ N parallel in the
north to the northern foothills of the Alps and Balkans, the northern coastal of the Black
and Azov seas, and the Volga River delta in the south (Figure 1). Isolated populations are
known in the Mangyshlak peninsula (West Kazakhstan), the southern foothills of the Alps
(Switzerland) and Bornholm Island (Denmark). The species inhabits plains and foothills
(median 113 m a.s.l.) from the Caspian Sea level (−27 m a.s.l.) up to ~1552 m a.s.l. in the
French Alps. The majority of localities (98%) are scattered below 1000 m a.s.l.

It is important to note that “alien” nuDNA alleles of P. kurtmuelleri and P. cf. bedriagae
were observed almost throughout the entire range of P. ridibundus. Additionally, in many
populations of P. ridibundus, we found alien mtDNA haplotypes of various water frog
species. Moreover, numerous populations of P. ridibundus in the east were characterized by
only P. cf. bedriagae mtDNA haplotypes (Figure 1). Among the populations of P. ridibundus,
the amount of nuDNA alleles and mtDNA haplotypes of P. cf. bedriagae was significantly
higher in the east than in the west (nuDNA: r = 0.230, df = 1.180, p = 0.002; mtDNA: r = 0.397,
df = 1.164, p = 0.000). Additionally, numerous populations of P. ridibundus in Central Europe
were characterized by mtDNA haplotypes of P. lessonae (Camerano, 1882). Therefore, the
number of these mtDNA haplotypes was significantly greater in the west than in the east
(r = 0.369, df = 1.164, p = 0.000). Mitochondrial haplotypes of P. perezi (López-Seoane, 1885)
were observed in southwestern populations (Spain) of P. ridibundus only.

The Balkan marsh frog (P. kurtmuelleri) inhabits Greece (except for the easternmost
areas), Albania, Macedonia, Montenegro, southern Serbia, Bosnia and Herzegovina, and
southern Croatia (Figure 1). Isolated populations are known in islands of Croatia, Mon-
tenegro, and Greece. The species inhabits foothills from the sea level up to ~802 m a.s.l. (in
median 97 m a.s.l.). Most localities (83%) are scattered below 500 m a.s.l. In some cases,
nuDNA alleles of the species (3–67%) were observed far beyond the species range within
the populations of P. ridibundus (Table S1). For example, such localities were revealed
in Russia, Lithuania, Poland, and the Czech Republic. Mitochondrial haplotypes of P.
kurtmuelleri were widely scattered through the range of P. ridibundus, and were also found
in Thracian populations of P. cf. bedriagae (Table S1).

The native range of P. cf. bedriagae covers the western and northern parts of Turkey
and nearby regions of Greece, northwestern Iran, the Caucasus, the Crimea, western Kaza-
khstan, and some regions in the south of European Russia (Figure 1). Isolated populations
are known in the Greek islands. The species was recorded on plains and foothills from the
Caspian Sea level up to ~2273 m a.s.l. in Turkey (median 359 m a.s.l.). The majority of the

https://plugins.qgis.org/plugins/pointsamplingtool/
http://www.paleoclim.org/
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localities (82%) were scattered below 1500 m a.s.l. Several populations of the species were
revealed in Ukraine and Russia, far beyond the species range (Table S1).

High admixtures of P. cf. bedriagae and “P. ridibundus” nuDNA alleles were observed
in the southern part of the P. cf. bedriagae range in Turkey (Figure 1), but it should be noted
that P. caralitanus and the Euphrates lineage are characterized by a presence of the same
SAI-1 alleles as P. ridibundus. Also we revealed that among populations of P. cf. bedriagae,
the amount of nuDNA alleles and mtDNA haplotypes of P. ridibundus was significantly
higher in the north than in the south (nuDNA: r = 0.172, df = 1.241, p = 0.007; mtDNA:
r = 0.141, df = 1.241, p = 0.028). Mitochondrial haplotypes of P. kurtmuelleri were only found
in the north and west parts of the P. cf. bedriagae range, but P. cerigensis, P. caralitanus,
P. persicus, and the Euphrates and Cilician lineages were observed in south only (Figure 1;
Table S1).

3.2. Distribution Modeling of Species under the Current Environmental Conditions

To calibrate models, we assessed 372 replicates for each species. All of them were
statistically significant when compared with a null model of random prediction. Of these
significant models, no model met the omission criterion of 5%, and only a single (P. cf.
bedriagae) model and two (P. kurtmuelleri) or three (P. ridibundus) models were statistically
significant among the models meeting AICc criteria. Performance metrics for the param-
eter settings used for creating the final models are given in Table S2. Barren land, mean
temperature of driest quarter (Bio 9), and mean temperature of wettest quarter (Bio 8) were
the variables with the highest percentage contributions (39%, 31%, and 11%, respectively)
among the parameters included in the P. cf. bedriagae model. The average AUC and TSS
evaluations were 0.881 (SD = 0.014) and 0.419 (SD = 0.070) indicating a good predictive
power of the final model. Of the parameters included in the P. ridibundus model, precipi-
tation of driest month (Bio 14), habitat homogeneity, and cultivated vegetation were the
variables with the highest percentage contributions (24%, 20%, and 16%, respectively).
The average AUC and TSS evaluations were 0.918 (SD = 0.010) and 0.529 (SD = 0.028)
indicating a high predictive power of the final model. Precipitation of the coldest quarter
(Bio 19), mean temperature of driest quarter (Bio 9), and barren land were the variables
with the highest percentage contributions (37%, 20%, and 12%, respectively) in the P. kurt-
muelleri model. The average AUC and TSS evaluations were 0.981 (SD = 0.008) and 0.781
(SD = 0.076), indicating a high predictive power of the final model.

The averages of the selected model for P. cf. bedriagae identified areas with high levels
of suitability across the Balkan, Anatolian, and Crimea peninsulas; most Mediterranean
islands; the Caucasus; northern Iran; and some regions in the south of European Russia and
northwestern Kazakhstan (Figure 2A). Some regions were also quite suitable (e.g., in North
Africa, Western Europe, the Apennine peninsula, and Middle Asia), but native populations
of the species were absent here. The suitability of habitats for P. cf. bedriagae declined
toward the temperate zone of Europe. The model for P. ridibundus, in contrast, identified
suitable areas in temperate Europe, as well as some regions in north of the Apennine,
Balkan, and Crimea peninsulas and the Caucasus (Figure 2B). The model for P. kurtmuelleri
identified suitable areas across the Balkan peninsula (Figure 2C). Some additional areas
(e.g., in North Africa; Western Europe; the Apennine, Anatolian and Crimea peninsulas;
most Mediterranean islands; the Caucasus; and North Iran), where native populations of
P. kurtmuelleri are currently absent, displayed suitable habitats as well.
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Figure 2. Average predictions of suitable areas for Pelophylax cf. bedriagae (A), P. ridibundus (B),
and P. kurtmuelleri (C) distributions under the current climate conditions. All areas with red (high
suitability), green (medium), and blue (low) colors likely represent suitable environmental conditions.
Black dots are the localities of each species used in the construction of ecological niche models.

3.3. Distribution of Species at the Late-Quaternary

In order to consistently analyze shifts in the past range boundaries of three marsh frog
species, we used projections of modern ecological niches onto climatic conditions of the
late Quaternary. The presumed range of P. cf. bedriagae covered a relatively large territory
during the Last Glacial Maximum (~21 ka), mostly coinciding with the recent range of the
species’ distribution (Figure 3). In addition, the species appears to have been more widely
distributed in the Eastern Balkans, and areas with suitable conditions were even located
along the Po River valley and the dry bottom of the northern Adriatic. During warming
at the end of the late Pleistocene (17.0–11.7 ka), suitable areas for P. cf. bedriagae strongly
contracted in the Caucasus but expanded in the western Balkans, Apennines, and even
Western Europe (Figure 3). In the Holocene, the situation began to change in the opposite
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direction. The potential range of P. cf. bedriagae in the west shrank, but in the east, the
species’ distribution became wider. In general, however, in the Holocene the boundaries of
the range have not changed much.
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indicate the limits of the current range of the species.

During the Last Glacial Maximum (~21 ka) the presumed range of P. ridibundus
covered the northern Balkans, the northern Black-Azov seas region, the western Caucasus,
and the south of European Russia, as well as perhaps some areas in Western Europe
(Figure 4). During the warmer Heinrich Stadial 1 (17.0–14.7 ka), the presumed range
limits of P. ridibundus were further reduced and covered only some areas in France, the
northern Adriatic, the northern Balkans, and the northern Black-Azov Sea region (Figure 4).
However, the northward expansion of species (especially in the Azov Sea region) already
began at the end of the Pleistocene (14.7–11.7 ka). Since the beginning of the Holocene
(11.7 ka), the range of P. ridibundus apparently began to rapidly expand northward and
reached its recent margins around the border of the early and mid-Holocene (8.3 ka).

During the late Quaternary, the presumed range of P. kurtmuelleri was located in
the Balkan coastal areas and remained largely unchanged during the period (Figure 5).
Apparently, only the degree of habitat suitability in eastern Greece and the Dinaric Alps
has changed repeatedly.
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4. Discussion

The recent range of P. ridibundus extends over a vast territory of temperate Europe
(Figure 1). However, it should be noted that in many populations of the species, the
introgression of nuDNA genes of closely related P. cf. bedriagae and P. kurtmuelleri was
observed (Table S1). This may be due to the spread of nuDNA genes from populations
located near hybrid zones and recent human-mediated introductions (over the whole range).
In some regions, the widespread mtDNA introgression of P. lessonae and P. perezi genes has
been observed and associated with the participation of local P. ridibundus in the hemiclonal
reproduction of hybridogenous species, such as P. esculentus (Linnaeus, 1758) and P. grafi
(Crochet, Dubois, Ohler, and Tunner, 1995), respectively [12,62]. Moreover, the emergence
of some isolated populations of P. ridibundus outside the main species range (e.g., southern
Switzerland) may be associated with hybridolysis in the P. esculentus populations [26,75].

In some parts of the range of P. ridibundus, we did not find own mtDNA, but only
alien mtDNA (Figure 1; Table S1). For example, populations of the species in Kaliningrad
province (the Baltic part of Russia) were characterized by only mtDNA haplotypes of
P. lessonae and P. kurtmuelleri. It is important to note that the native range of P. kurtmuelleri
is many hundreds of kilometers away from this area. This situation is likely related to
the post-glacial expansion into the region of refugee populations of P. ridibundus, which
are characterized by P. kurtmuelleri mtDNA. Most likely, such refugee populations of
P. ridibundus were located in the northern Balkans. This assumption is also supported
by our niche modeling data, which show that the Balkans were suitable for the habitat
of P. ridibundus and P. kurtmuelleri in the Last Glacial Maximum and the end of the late
Pleistocene (Figure 4). At the Younger Dryas Stadial (12.9–11.7 ka), the refugee populations
of P. ridibundus could have spread north along the Carpathians, reaching the Baltic Region
at the Early Holocene (Figure 6). Additional evidence of this post-glacial dispersal of
P. ridibundus is provided by Early Holocene paleontological records in Moldova and western
Ukraine [88]. The paleontological records dating from the end of Early Holocene are also
known from northern Germany [89–91]. A similar post-glacial colonization route was
considered for green toads of the genus Bufotes Rafinesque, 1815 [32,92].
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Figure 6. Dynamics of the ranges of Pelophylax cf. bedriagae (blue), P. ridibundus (red), and P. kurtmuel-
leri (green) during the Late-Quaternary. The approximate locations of glacial refugia are designated
by darker blue, red and green areas. Routes of post-glacial colonization of P. ridibundus according to
the LGM predictions and the distribution of nuclear and mitochondrial DNA markers (Figure 1) are
indicated by red arrows. Photo credit: SNL (P. ridibundus from Moscow Province).

On the other side, nuDNA alleles of P. cf. bedriagae are particularly widespread in
Moldova, Ukraine, and Russia (Figure 1; Table S1), which is difficult to explain through
recent human-mediated introductions. These regions are quite far north from the hybrid
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zones of P. ridibundus and P. cf. bedriagae in the Balkans, Crimea, and southern Rus-
sia [47,63,93]. This may be due to the post-glacial northward dispersal of marsh frogs
along the shores of the Black and Azov seas from refugia located near the hybrid zones
of P. ridibundus and P. cf. bedriagae in the north of the Balkans and the south of European
Russia [53].

However, we assume that changes in the range boundaries of P. ridibundus and P. cf.
bedriagae in the post-glacial period may have had the greatest impact on the recent distribu-
tion of nuDNA alleles and mtDNA haplotypes of these species, at least in the east of the
P. ridibundus range. This hypothesis is confirmed by the distribution of mtDNA haplotypes.
In many populations of P. ridibundus in the east of European Russia, haplotypes of P. cf.
bedriagae predominated (Figure 1; Table S1). As a rule, such a situation occurs when one
species is gradually replaced by another [41]. Indeed, according to our niche modeling
data, refugia of P. cf. bedriagae could be located in the East Balkans, the Anatolian penin-
sula, the Caucasus, and south of European Russia. However, since the Heinrich Stadial 1
(17.0–14.7 ka) habitats suitable for P. cf. bedriagae in the south of European Russia began
to decline (Figure 3) and vice versa; over time, living conditions for P. ridibundus become
more suitable (Figure 4). Nevertheless, the process of replacing one species by another
apparently did not proceed very quickly, and therefore we can observe mosaics of the
populations of both P. ridibundus and P. cf. bedriagae and wide distribution of their hybrids
in this region (Figure 1). This trend may be similar to that observed in other hybridizing
amphibian species. For example, in tree frogs Hyla arborea (Linnaeus, 1758) and H. orientalis
Bedriaga, 1890 hybrid zones located in the refugee zone in the Balkans are much narrower
than those located outside them in Poland [10]. Perhaps we see a similar picture in these
marsh frogs, where P. ridibundus and P. cf. bedriagae’s Balkan hybrid zone is much narrower
than those located in southern Russia [63,93].

The northward post-glacial dispersal of P. kurtmuelleri from the Balkan refugium
appears to have been blocked by competition and hybridization with two other marsh frog
species living to the north and east. Therefore, the current native range of P. kurtmuelleri
has not changed much since the late Pleistocene [31]. However, current human-mediated
introductions of P. kurtmuelleri to other regions of southern Europe, some Mediterranean
islands, and North Africa [12,24,94,95], which have quite suitable habitats according to our
niche modeling analyses (Figure 2), have been very successful.

Although direct paleontological evidence does not yet exist, according to our niche
modeling data, in addition to the traditional Mediterranean marsh frog refugia, such as
the Balkan and Anatolian peninsulas and the Caucasus, which are common for most
Western Palearctic amphibians [96–107], other extra-Mediterranean refugia could also
exist [94,108–112]. During the Last Glacial Maximum (~21 ka), the refugee regions in the
northern Black-Azov seas region and the south of European Russia were covered by steppe
herb-shrub vegetation, with small groves mainly located in ravines [113,114]. Recently,
such habitats have been quite suitable for the populations of marsh frogs in the steppes
and deserts of southern Russia [115,116].

The existence of extra-Mediterranean refugia is also confirmed by data obtained on
other amphibian species. Thus, the presumed refugia of Pelobates vespertinus (Pallas, 1771),
Lissotriton vulgaris (Linnaeus, 1758), and Bombina bombina (Linnaeus, 1761) were located in
the northern Black Sea region and the south of European Russia [117–121]. The presence of
other extra-Mediterranean refugia (e.g., the Carpathians, the Codri Hills, and the Danubian
Plain) was also assumed for Triturus cristatus (Laurenti, 1768), T. dobrogicus (Kiritzescu,
1903), Lissotriton vulgaris (Linnaeus, 1758), Lissotriton montandoni (Boulenger, 1880), Pelobates
vespertinus (Pallas, 1771), Bombina variegata (Linnaeus, 1758), Rana arvalis Nilsson, 1842, and
R. temporaria Linnaeus, 1758 [41,120–129].
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creating the present time model and relative contribution (%) of variables.
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water frogs (Anura: Ranidae: Pelophylax) in eastern Hungary. J. Zool. Syst. Evol. Res. 2017, 55, 129–137. [CrossRef]

70. Weigand, H.; Lopez de Llergo, J.C.; Frantz, A.C. Genomic basis for an informed conservation management of Pelophylax water
frogs in Luxembourg. Ecol. Evol. 2022, 12, e8810. [CrossRef] [PubMed]

71. Hoffmann, A.; Plötner, J.; Pruvost, N.B.M.; Christiansen, D.G.; Röthlisberger, S.; Choleva, L.; Mikulíček, P.; Cogălniceanu, D.;
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