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Abstract: Camera traps play an important role in biodiversity monitoring. An increasing number of
studies have been conducted to automatically recognize wildlife in camera trap images through deep
learning. However, wildlife recognition by camera trap images alone is often limited by the size and
quality of the dataset. To address the above issues, we propose the Temporal-SE-ResNet50 network,
which aims to improve wildlife recognition accuracy by exploiting the temporal information attached
to camera trap images. First, we constructed the SE-ResNet50 network to extract image features.
Second, we obtained temporal metadata from camera trap images, and after cyclical encoding, we
used a residual multilayer perceptron (MLP) network to obtain temporal features. Finally, the image
features and temporal features were fused in wildlife identification by a dynamic MLP module. The
experimental results on the Camdeboo dataset show that the accuracy of wildlife recognition after
fusing the image and temporal information is about 93.10%, which is an improvement of 0.53%,
0.94%, 1.35%, 2.93%, and 5.98%, respectively, compared with the ResNet50, VGG19, ShuffleNetV2-
2.0x, MobileNetV3-L, and ConvNeXt-B models. Furthermore, we demonstrate the effectiveness of
the proposed method on different national park camera trap datasets. Our method provides a new
idea for fusing animal domain knowledge to further improve the accuracy of wildlife recognition,
which can better serve wildlife conservation and ecological research.

Keywords: wildlife recognition; ResNet50; temporal metadata; attention mechanism; data fusion

1. Introduction

Long-term monitoring of wildlife plays an important role in biodiversity conservation
research [1]. Camera traps have been widely used in wildlife monitoring due to their
non-invasive nature and low cost [2]. Camera trap data are used in many studies [3,4] for
animal behavior identification [3] and abundance estimation [4]. These studies are based
on identifying the species pictured in camera trap footage from camera trap images. It is
more helpful to start the above studies when the recognition is more accurate.

Wildlife identification research based on deep learning has acquired more and more
attention due to the benefits of automatically extracting wildlife-related information and
the effective processing of a large number of images [5]. Gomez Villa et al. [6] selected
26 animals from the Snapshot Serengeti dataset and evaluated the potential of deep convo-
lutional neural network frameworks such as AlexNet, VGGNet, GoogLeNet, and ResNet
for the species identification task. The recognition accuracy of top-1 is 35.4% when the
training dataset is unbalanced and contains empty images and 88.9% when the dataset is
balanced and the images contain only foreground animals. Zualkernan et al. [7] proposed
an edge-side wildlife recognition architecture using the Internet of Things (IoT) and the
Xception model to recognize wildlife images captured by camera traps and transmit the
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recognition results in real-time to a remote mobile application. Furthermore, by compar-
ing the accuracy of VGG16, ResNet50, and self-trained networks in recognizing animal
species such as snakes, lizards, and toads in camera-captured images, it was demonstrated
that both ResNet50 and VGG trained using transfer learning outperform the self-trained
model [8].

To enhance the performance of wildlife recognition, Xie et al. [9] proposed an inte-
grated SE-ResNeXt model based on a multi-scale animal feature extraction module and
a vision attention module, which enhances the feature extraction capability of the model
and improved the recognition accuracy on a self-constructed wildlife dataset from 88.1% to
92.5%. Yang et al. [10] improved the accuracy of YOLOv5s from 72.6% to 89.4% by introduc-
ing the channel attention mechanism and the self-attention mechanism. Zhang et al. [11]
designed a deep joint adaptation network for wildlife image recognition, which improved
the generalization ability of the model in open scenarios and increased the recognition
accuracy of 11 animal species from 54.6% to 58.2%.

In addition to improving model recognition performance by modifying the network
structure and training strategy, some studies have also improved model recognition per-
formance through data enhancement methods. Ahmed et al. [12] used camera-captured
images with noisy labels, which turned some of the correct labels in the training set into
wrong labels, to classify animals and improved the accuracy of recognition by selecting
the largest prediction from multiple trained networks. Zhong et al. [13] proposed a data
enhancement strategy that integrates image synthesis and regional background suppres-
sion to improve the performance of wildlife recognition and combines them with a model
compression strategy to provide a lightweight recognition model that enables real-time
monitoring on edge devices. Tan et al. [14] evaluated the YOLOv5, Cascade R-CNN, and
FCOS models using daytime and nighttime camera trap data, demonstrating that models
trained jointly by day and night can improve the accuracy of animal classification compared
to that when using only nighttime data.

Currently, most wildlife recognition methods can only use camera trap image data
for classification. However, limited by factors such as the shooting angle, animal pose,
background environment, lighting conditions, etc., some animals are difficult to distinguish
in camera trap images alone. In animal identification tasks using citizen science images,
contextual information such as the climate, date, and location that accompanies the acquisi-
tion of citizen science imagery is used to identify the wildlife. Terry et al. [15] developed a
multi-input neural network model that fuses contextual metadata and images to identify
ladybird species in the British Isles, UK, demonstrating that deep learning models can
effectively use contextual information to improve the top-1 accuracy of multi-input models
from 48.2% to 57.3%. de Lutio et al. [16] utilized the spatial, temporal, and ecological
contexts attached to most plant species’ observation information to construct a digital
taxonomist that improved accuracy from 73.48% to 79.12% compared to a model trained
using only images. Mou et al. [17] used animals’ visual features, for example, the color of
a bird’s feathers or the color of an animal’s fur, to improve the recognition accuracy of a
contrastive language–image pre-trained (CLIP) model on multiple animal datasets. Camera
traps in national parks are capable of monitoring wildlife continuously for long periods of
time with reduced human intervention and can provide complete information on animal
rhythms. However, the use of animal rhythm information to aid wildlife recognition in
camera trap images in national park scenes has not yet been explored.

Along with the massive camera trap image collection process, we obtain a lot of
temporal metadata, including the date and time. These temporal metadata can reflect
the activity rhythms of animals [15,18,19]. The quantity of data collected on various days
throughout the year fluctuates due to variations in animal activity levels. Specifically,
as shown in Figure 1, the number of camera trap images capturing kudus is greatest in
August, whereas the highest number of camera trap images featuring blesboks is observed
in October. Furthermore, the amount of data acquired during daylight hours varies due to
distinct circadian rhythms. Based on the animal movement patterns fitted to the images
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captured by the camera traps, it was found that springboks were most active from 06:00 h
to 07:00 h, while kudus were most active from 17:00 h to 18:00 h.
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Figure 1. The kudu, springbok, blesbok, and mountain zebra are species belonging to the Camdeboo
dataset. (a) Distribution of camera trap images in different months. (b) Activity patterns of different
species at different times of the day fitted with Rowcliffe’s R-package “activity” [20].

To investigate whether fusing temporal information can improve wildlife recognition
performance, we designed a neural network for combining wildlife image features and
temporal features, named Temporal-SE-ResNet50. First, we utilized the ResNet50 model
and introduced SE attention to extract wildlife image features. Then, we gained temporal
metadata from wildlife images. After applying cyclical encoding, which uses sine–cosine
mapping for handling periodic data such as the date and time, the temporal features were
then extracted by a residual multilayer perceptron (MLP) network. Finally, the wildlife
image features and temporal features were fused by a dynamic MLP module to obtain the
final recognition results.

Our contribution includes the following three parts:

• We utilized temporal metadata in camera trap images to aid wildlife recognition
and found that extracting temporal features after cyclical encoding of the date and
time, respectively, can effectively improve the accuracy of wildlife recognition, which
provides a new idea for using animal domain knowledge like animal rhythms to
improve wildlife image recognition;

• We proposed a wildlife recognition framework called Temporal-SE-ResNet50 that
fuses image features and temporal features, which uses an SE-ResNet50 network to
extract image features, a residual MLP network to extract temporal features, and then
uses a dynamic MLP module to fuse the above features together;

• We conducted extensive experiments on three national park camera trap datasets
and demonstrated that our method is effective in improving wildlife recognition
performance.

The remainder of this paper is organized as follows: Section 2 describes the framework
used for fusing image features and temporal features, including SE-ResNet50 for extracting
image features, a residual MLP network for extracting temporal features, and a dynamic
MLP module for fusing image features and temporal features. Section 3 describes the data
sources, experimental setup, and evaluation metrics. Section 4 discusses the experimental
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results. Section 5 discusses the experimental results and future research directions. Section 6
presents the conclusions.

2. Methods

In this section, we introduce Temporal-SE-ResNet50, a wildlife recognition framework
that fuses image and temporal information. As shown in Figure 2, the overall framework
of Temporal-SE-ResNet50 consists of four stages. In the image feature extraction stage,
we construct SE-ResNet50 to extract wildlife features from images more effectively than
ResNet50 (see Section 2.1); in the temporal metadata acquisition stage, we first obtain the
temporal metadata from each camera trap image; in the temporal feature extraction stage,
we obtain the corresponding temporal features of the image through the residual MLP
network (see Section 2.2); and in the image feature and temporal feature fusion stage, after
obtaining the image features and temporal features, we use the dynamic MLP module to
fuse the two to obtain the enhanced image representation (see Section 2.3). In the end, we
obtain the recognition results on different species of wildlife.
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Figure 2. Overall framework of Temporal-SE-ResNet50. The framework is mainly divided into four
parts: image feature extraction, temporal metadata acquisition, temporal feature extraction, and
feature fusion.

2.1. Camera Trap Image Feature Extraction

Wildlife images obtained by utilizing camera traps in natural scenes are usually
affected by lighting conditions, animal behaviors, shooting angles, backgrounds, etc.,
making recognition challenging. Therefore, we designed the SE-ResNet50 model based
on ResNet [21] and squeeze-and-excitation network (SENet) [22] to extract wildlife image
features. The structure of the SE-ResNet50 model is shown in Figure 3.
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ResNet has had excellent performance in numerous previous wildlife image recog-
nition studies [6,8]. Given the computation and network complexity, we chose a 50-layer
ResNet as the basic network. ResNet-50 starts with a regular convolutional layer for the
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initial feature extraction from input images. It is then followed by four residual blocks.
As shown in Figure 3, each residual block consists of multiple stacked BottleNeck blocks,
where each BottleNeck block typically incorporates multiple convolutional layers, which
help the model to extract different animal features from the input data; e.g., the shallow
residual block extracts simple features such as contours, and the deep residual block ex-
tracts detailed features such as tails and hairs. To maintain the integrity of the information
and to address the problem of gradient degradation during model training, skip connec-
tions are used in every BottleNeck block. These connections allow input features to be
added directly to the output, ensuring that key details are preserved during the learning
process. Subsequently, global average pooling is applied to convert the feature map into
a fixed-length representation. This step helps to summarize the important features of the
data over the entire spatial dimension. Finally, the resulting fixed-length vector represen-
tation is passed to the fully connected layer, which is responsible for performing specific
classification tasks.

Recently, a large number of studies [23,24] have demonstrated that adding an attention
mechanism can effectively enhance the ability of convolutional neural networks to extract
key features. Given that camera trap images usually have complex backgrounds and
different lighting conditions, in order to further enable the model to better focus on key
animal regions and ignore other irrelevant information, we introduce the SE attention
module. This module uses global pooling to compress the global spatial information and
then learns the importance of each channel in the channel dimension. As shown in Figure 4,
it is specifically divided into three operations: squeeze, excitation, and reweight.
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The squeeze operation compresses the input feature map u ∈ RW×H×C through the
spatial dimension using global average pooling and obtains the feature map u1 ∈ R1×1×C,
which represents the global distribution of the responses on the feature channels.

u1 = Fsqueeze(u) =
1

W × H

W

∑
i=1

H

∑
j=1

u(i, j). (1)

The excitation operation models the correlation between the feature channels signifi-
cantly by using two fully connected layers. To reduce the computational effort, the first
fully connected layer compresses the channel C with a ratio of r, and the second fully
connected layer then restores it to C. The feature map u2 ∈ R1×1×C with channel weights is
then obtained using Sigmoid activation.

u′
1 = δ(W1, u1), (2)

u2 = Fexcitation(u1, W) = σ
(
W2u′

1
)
, (3)

where σ denotes the Sigmoid activation function, W2 ∈ RC× C
r , δ denotes the ReLU activate

function, and W1 ∈ R
C
r ×C.
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The reweight operation obtains the final feature map ũ ∈ RW×H×C by the multiplica-
tion channel weights with the original input feature map.

ũ = Freweight(u, u2) = u·u2. (4)

We introduced SE attention module in each residual structure and constructed the
SE-ResNet50 model, which can pay more attention to the key wildlife features and suppress
the other unimportant features.

2.2. Temporal Feature Extraction

Since dates have a cyclical feature, the end of one year and the start of the next year
should be close to each other. Therefore, we use sine–cosine mapping [16] to encode the
date metadata captured by the camera trap as (d1, d2) according to Equations (5) and
(6). With this cyclical encoding, December 31st and January 1st are mapped to be near
each other.

d1 = sin
(

2πd
365

)
, (5)

d2 = cos
(

2πd
365

)
, (6)

where 365 respects the total number of days in a year, or 366 in a leap year.
Correspondingly, for the time metadata, we also use the sine–cosine mapping to

encode the time metadata captured by the camera trap as (t1, t2) according to Equations (7)
and (8). With this cyclical encoding, 23:59 and 0:00 were also mapped to be near each other.

t1 = sin
(

2πt
1440

)
, (7)

t2 = cos
(

2πt
1440

)
, (8)

where 1440 respects the total number of minutes in a day.
Finally, the date and time metadata are combined to form our temporal information

(d1, d2, t1, t2).
Inspired by PriorsNet [25], we extract temporal features from a residual MLP network.

As shown in Figure 5, it is a fully connected neural network model that consists of two fully
connected layers and four fully connected residual layers. Each fully connected residual
layer contains two fully connected layers, two ReLU activation functions, and a Dropout
layer composition. By inputting temporal information into this network model, the feature
mapping of the temporal information is finally obtained. The dimension of the temporal
features is set to 256, which achieves the best performance, as described by Tang et al. [26].
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2.3. Image Feature and Temporal Feature Fusion

After the image features and temporal features were obtained, we used the dynamic
MLP module [27] to fuse the wildlife image features and temporal features, and the overall
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structure of the fusion is shown in Figure 6. Since the dimensionality of the image features
is much more than that of the temporal features, for better feature fusion, we first performed
a dimensionality reduction operation; i.e., we reduced the dimensionality of the image
features to 256, which exists only in Temporal-ResNet50 and Temporal-SE-ResNet50.
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The image features extracted by the convolutional neural network are three-dimensional
in shape as (H, W, C), where H and W denote the height and width of the feature map,
respectively, and C denotes the number of channels. And the temporal features are one-
dimensional. When splicing was performed, the temporal features were mapped to the
same dimension as the image features; then, the text features and image features were
concatenated in accordance with the channel direction, and then feature fusion was per-
formed by a convolutional neural network. So, in a dynamic MLP module, image features
and temporal features were first concatenated together channel-wise and then fed into
the subsequent MLP block to generate image features and temporal features, respectively.
Guided by the temporal features, projection parameters were dynamically generated to
adaptively improve the representation of image features. Finally, after the MLP block, we
obtained the fused features.

After stacking two dynamic MLP modules, we obtained the fused wildlife features.
We expanded the dimensions to the original output image feature dimension. By using a
skip connection, we used the fused features to further enhance the representation of the
original image features. Finally, after the fully connected layer, the learned features were
mapped to the output categories to obtain the final recognition result.

3. Experiments
3.1. Camdeboo DataSet

The data used in this paper came from the Snapshot Camdeboo project, part of the
Snapshot Safari network. Images were collected from camera traps set in the Camdeboo
National Park of South Africa from July 2018 to February 2019, totaling 12,132 camera trap
image sequences. Considering the purpose of our study, we removed the image sequences
labeled human and null from the original camera trap image sequences, and we ended up
with 9859 images of 15 animals. Figure 7 shows some examples of images from our dataset.

We obtained the date and time of observation from the bottom of each image. Given
that the capture time metadata from the camera trap images were in 12 h format, we
converted the time metadata to 24 h format.

To ensure that our model can be better adapted to national park monitoring scenarios,
it is necessary to maintain a consistent distribution of the partitioned training and test set
categories, so we used random sampling for each species. Finally, our dataset was divided
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into a 75% training set and a 25% test set, corresponding to 7397 images and 2462 images,
respectively. Table 1 shows details of the Camdeboo dataset.
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(h) Black wildebeest. (i) Black-backed jackal. (j) Mountain reedbuck. (k) Grey duiker. (l) Horse.
(m) Blesbok. (n) Vervet monkey. (o) Ostrich.

Table 1. Details of the Camdeboo dataset.

Species Number of Training Images Number of Test Images

kudu 1614 538
springbok 1033 344

ostrich 979 326
blesbok 586 195

red hartebeest 507 169
vervet monkey 495 165
mountain zebra 486 162

gemsbok 452 150
grey duiker 418 139

eland 378 126
black wildebeest 144 48

black-backed jackal 122 40
horse 85 28

mountain reedbuck 55 18
baboon 43 14
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3.2. Other Camera Trap Datasets

We also obtained two camera trap datasets from other national parks in Africa, in-
cluding a subset of the Snapshot Serengeti dataset [28] and the Snapshot Mountain Zebra
dataset, which is part of the Snapshot Safari network. This subset of the Snapshot Serengeti
dataset contains 400,000 images, most of which are empty. After removing the images
labeled as blank, human, and other less numerous species, 57,588 images of 20 species were
obtained. Out of these, 75% of the images were used as a training set and 25% were used as
a test set. The details of the Snapshot Serengeti dataset are shown in Table 2.

Table 2. Details of the Snapshot Serengeti dataset.

Species Number of
Training Images

Number of Test
Images Species Number of

Training Images
Number of Test

Images

Thomson’s gazelle 21,754 7263 dik-dik 543 182
zebra 3990 1339 impala 515 172

Grant’s gazelle 3537 1178 wildebeest 482 158
guinea fowl 2371 789 cheetah 425 140

warthog 1916 638 kori bustard 399 128
hartebeest 1517 513 topi 291 99

giraffe 1408 460 reptiles 264 89
elephant 1253 417 baboon 257 84
buffalo 1075 359 hare 244 81

reedbuck 709 236 bat-eared fox 235 76

The Snapshot Mountain Zebra dataset was collected in Mountain Zebra National Park,
which is located in the Eastern Cape of South Africa. For the Snapshot Mountain Zebra
dataset, we performed the same cleaning operation and obtained 4753 wildlife images of
10 species. After splitting the data for the training and test sets, the details of the Snapshot
Mountain Zebra dataset are shown in Table 3.

Table 3. Details of the Snapshot Mountain Zebra dataset.

Species Number of Training Images Number of Test Images

mountain zebra 1416 470
kudu 407 136

springbok 332 110
black wildebeest 265 88

red hartebeest 255 84
baboon 224 75

black-backed jackal 210 70
vervet monkey 192 64

buffalo 145 48
eland 122 40

3.3. Experiment Settings

All experiments were performed on Ubuntu 16.04 and NVIDIA GeForce RTX 2080Ti
GPU. Table 4 shows the configuration of software and hardware used in all experiments.

Table 4. Experiment configuration of the software and hardware.

Environment Configuration Properties

System Ubuntu 16.04
GPU NVIDIA GeForce RTX 2080Ti
CPU Intel(R) Xeon(R) Platinum 8255C CPU

Development Framework PyTorch 1.7.1
Programming Language Python 3.6
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All camera trap images were resized to 256 × 256. During training, data enhance-
ment methods included image random crop to 224 × 224, random horizontal flip, and
Mixup [29]. We trained the proposed model using the label-smoothing loss function and
set the maximum number of epochs to 90. We used the SGD optimizer with momentum
0.9 and weight decay 1 × 10−4. The initial learning rate was set to 0.01 and the batch size
was set to 64. We adopted the warmup strategy, and the learning rate adjustment method
was defined as follows:

lr = lrinit ×
1
2

(
1 + cos

(
1 + π(epochcurrent + 1)

epochmax

))
. (9)

3.4. Evaluation Metrics

To evaluate the performance of the proposed network, we used accuracy as the
evaluation metric for the model. Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

where TP is the total number of true-positive wildlife samples, TN is the total number of
true-negative wildlife samples, FP is the total number of false-positive wildlife samples,
and FN is the total number of false-negative wildlife samples.

4. Results

In this section, we demonstrate the efficiency of our proposed method by outlining
the outcomes of six different experiments. To begin with, we determined the optimal
learning rate and batch size of the proposed model by performing cross-validation on
the training set. Next, we compared our proposed method with other advanced classifi-
cation methods and demonstrated that our proposed method has better performance in
wildlife identification. Additionally, we compared the recognition accuracy of ResNet50
and Temporal-SE-ResNet50 on different species. Moreover, we conducted a case study to
analyze the reasons for the decline in the recognition accuracy of certain species. Further-
more, we performed an ablation analysis of the proposed method to prove the importance
of each module. In addition, we compared the effects of different temporal coding methods
on the model performance. Then, we compared the effects of adding different attention
modules on the model performance. Finally, we validated the generality of our proposed
method on different national park camera trap datasets, such as the Snapshot Serengeti
dataset and the Snapshot Mountain Zebra dataset.

4.1. Comparison Experiments with Different Learning Rates and Batch Sizes on the
Camdeboo Dataset

Considering the lack of a uniform standard for setting hyperparameters in wildlife
recognition, different learning rates and batch sizes were used on different datasets, and
we used the control variable method to study the effect of different learning rates and
batch sizes on wildlife recognition on the Camdeboo dataset. The performance of the
model under different learning rates and different batch sizes was obtained by using 5-fold
cross-validation on the training set. Under the condition of a fixed batch size of 64, we
set the initial learning rates to 0.04, 0.03, 0.02, 0.01, and 0.001, respectively, based on the
experimental settings of Ding et al. and Lv et al. [30,31]. As shown in Figure 8a, the average
accuracy of 5-fold cross-validation on the training set was highest at 91.31% when the
learning rate was 0.01. Based on the principle that a batch size of a power of two can better
utilize CPU or GPU performance and experimental settings from other studies [30–32], we
set the batch sizes to eight, sixteen, thirty-two, sixty-four, and one-hundred and twenty-
eight when fixing the initial learning rate to 0.01. As shown in Figure 8b, the average
accuracy of 5-fold cross-validation on the training set was up to 91.31% when the batch
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size was 64. Therefore, we chose the batch size 64 and learning rate 0.01 as our optimal
hyperparameters and then retrained our model.
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4.2. Comparison Experiments with Other Advanced Classification Methods on the
Camdeboo Dataset

To evaluate the performance of our proposed network model, we conducted com-
parative experiments with commonly used convolutional neural network models on the
Camdeboo dataset, such as VGGNet [33], ResNet50, EfficientNet [34], ShuffleNetV2 [35],
MobileNetV2 [36], MobileNetV3 [37], and ConvNeXt [38]. All models used pre-trained
weights on ImageNet and then were fine-tuned on our dataset. As shown in Table 5, our
proposed Temporal-SE-ResNet50 model achieved the highest accuracy of 93.10%, while the
EfficientNet-B0 model had the lowest accuracy of only 77.90%. The MobileNetV3-L model
achieved the highest accuracy in the MobileNet family at 90.17%, and the ShuffleNetV2-2.0x
model achieved the highest accuracy in the ShuffleNet family at 91.75%. Compared with
the ResNet50, VGG19, ShuffleNetV2-2.0x, MobileNetV3-L, and ConvNeXt-B models, the
accuracy of our method improved by 0.53%, 0.94%, 1.35%, 2.93%, and 5.98%, respectively.

Table 5. Accuracy of different classification methods on the Camdeboo dataset.

Method Batch Size Learning
Rate Epoch Accuracy

MobileNetV2 [36] 64 0.01 90 89.24%
MobileNetV3-S [37] 64 0.01 90 86.35%
MobileNetV3-L [37] 64 0.01 90 90.17%
EfficientNet-B0 [34] 64 0.01 90 77.90%

ShuffleNetV2-0.5x [35] 64 0.01 90 78.02%
ShuffleNetV2-1.0x [35] 64 0.01 90 86.31%
ShuffleNetV2-1.5x [35] 64 0.01 90 90.45%
ShuffleNetV2-2.0x [35] 64 0.01 90 91.75%

VGG19 [33] 64 0.01 90 92.16%
ResNet50 [21] 64 0.01 90 92.57%

ConvNeXt-T [38] 64 0.01 90 80.63%
ConvNeXt-S [38] 64 0.01 90 80.46%
ConvNeXt-B [38] 64 0.01 90 87.12%

Temporal-SE-ResNet50 64 0.01 90 93.10%
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Furthermore, we compared ResNet50 and Temporal-SE-ResNet50 in terms of the
training time and average recognition time for a single wildlife image. As shown in Table 6,
compared to ResNet50, our proposed method took 1 min and 53 s longer in training time,
which is perfectly acceptable compared to the improved accuracy.

Table 6. Comparison of different models in terms of training time on the Camdeboo dataset.

Method Training Time

ResNet50 [21] 2 h 37 min 16 s
Temporal-SE-ResNet50 2 h 39 min 9 s

4.3. Comparative Experiments on Recognition Accuracy of Different Species on the
Camdeboo Dataset

To further investigate the effect of temporal features on the species recognition perfor-
mance, we compared the recognition accuracy of each species in the Camdeboo dataset
on ResNet50 and Temporal-SE-ResNet50, respectively. As shown in Figure 9a,b, the recog-
nition accuracy of eight species, including springbok, ostrich, blesbok, mountain zebra,
gemsbok, eland, black-backed jackal, and mountain reedbuck, increased by 3.16% on av-
erage, with the lowest improvement of 0.62% for ostrich and the highest improvement of
11.11% for mountain reedbuck. The recognition accuracy of five species, including kudu,
vervet monkey, grey duiker, horse, and baboon, decreased by 2.70% on average, the lowest
decrease in recognition accuracy was 0.61% for vervet monkey, and the highest decrease in
recognition accuracy was 7.14% for baboon.
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As shown in Figure 10, we computed confusion matrices to investigate the effect of
our method on the recognition performance of different species. In the confusion matrix,
the larger the value of the diagonal elements, the better; and the smaller the value of the
elements at other positions, the better. Comparing Figure 10a,b, for springbok, compared
to ResNet50, our approach mainly reduces the percentage of its misclassification as blesbok,
thus improving the recognition accuracy of springbok.
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4.4. Case Study

From Figures 9 and 10, we found that the decrease in recognition accuracy was mainly
concentrated in baboon and horse images, partially focused on the grey duiker, kudu,
and vervet monkey. As shown in Figure 11, it is believed that this decline was due to the
following two factors. On the one hand, it is believed that this decrease was related to
the rarity of the species. The small number of the species resulted in a relatively small
number of valid images collected by the camera trap, and the model was unable to learn
patterns of animal movement from the small amount of data, thus leading to a decrease
in recognition accuracy for species such as baboons and horses. On the other hand, for
relatively large species such as the grey duiker, kudu, and vervet monkey, because the
number of images collected by camera traps in different months was relatively uniform, the
accuracy of species recognition could not be improved after fusing the temporal features.
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4.5. Ablation Studies

We conducted ablation experiments on the Camdeboo dataset from different per-
spectives, including the importance of each module, the importance of different temporal
encoding styles, and the importance of different attentional modules.

4.5.1. The Importance of Different Modules in Our Proposed Method

To investigate the contributions of each module to our proposed method, we per-
formed ablation experiments. With the ResNet50 model as a baseline, we considered
three scenarios: adding only temporal information, adding only the attention module,
and adding both temporal information and the attention module. Table 7 shows that only
fusing the temporal information or only adding the attention module to the baseline model
improved the accuracy of wildlife recognition by 0.44% and 0.28%, respectively. When both
fusing the temporal information and adding the attention module, the accuracy increased
by 0.53%.

Table 7. Ablation study of temporal information and attention module.

Model Temporal Information Attention Accuracy
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4.5.2. The Effect of Different Temporal Encoding Methods

To find the optimal temporal encoding method, we compared the effects of different
temporal coding methods on the wildlife recognition model when not embedded in the
SE attention module. The first way was to fit the date and time separately to [−1,1] and
then join them together. The second and third ways were to cyclically encode the time
and date individually using sine–cosine mapping. The last way was to cyclically encode
the date and time using sine–cosine mapping and then join them together. Table 8 shows
that when both the date and time were periodically encoded and then fused with image
features, better accuracy was obtained, with an improvement of about 0.44%.

Table 8. Accuracy of test set under different temporal information encoding methods.

Model Accuracy

ResNet50 92.57%
+ Temporal information without cyclical encoding 92.61%

+ Only date with cyclical encoding 92.65%
+ Only time with cyclical encoding 92.57%

+ Temporal information with cyclical encoding 93.01%

4.5.3. The Importance of the Attention Module

Since the attention mechanism [39] is commonly used in visual tasks to enhance the
feature extraction capability of the network, we considered whether it could be added to
our model to further improve performance. We embedded different attention modules
in the same position of the BottleNeck block of the ResNet50 model to find the suitable
module for the added attention. As shown in Table 9, the recognition accuracy decreased
by 0.4%, 0.28%, and 0.24% when adding the CBAM [40], ECA [23], or CA [24] attention
modules, respectively. Only by embedding the SE attention module did the recognition
accuracy further increase to 93.10%.
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Table 9. Comparison of different attention modules when epoch is 90, batch size is 64, and learning
rate is 0.01.

Model Accuracy

Temporal-ResNet50 93.01%
+ CBAM [40] 92.61%
+ ECA [23] 92.73%
+ CA [24] 92.77%

+ SE [22] (Temporal-SE-ResNet50) 93.10%

4.6. Comparative Experiments on Different Wildlife Camera Trap Datasets

To further demonstrate the effectiveness of the proposed method, we executed exper-
iments on a subset of the Snapshot Serengeti dataset and the Snapshot Mountain Zebra
dataset. We followed the experimental setup in Section 3.2 and compared the recognition
accuracy of our proposed method with that of the baseline method.

The experimental results are shown in Table 10, where our proposed method’s accuracy
was improved by 0.25% and 0.42% over the baseline method’s accuracy on the Snapshot
Serengeti dataset and the Snapshot Mountain Zebra dataset, respectively. This proved that
our proposed method was general and could work on different camera trap datasets.

Table 10. Accuracy of different classification methods on the Snapshot Serengeti dataset and the
Serengeti Mountain Zebra dataset when epoch is 90, batch size is 64, and learning rate is 0.01.

Dataset Method Accuracy

Snapshot Serengeti ResNet50 [21] 95.92%
Temporal-SE-ResNet50 96.17%

Snapshot Mountain Zebra ResNet50 [21] 89.03%
Temporal-SE-ResNet50 89.45%

5. Discussion

In this study, we present a novel method that fuses image and temporal metadata for
recognizing wildlife in camera trap images. Our experimental results on different camera
trap datasets demonstrate that leveraging temporal metadata can improve overall wildlife
recognition performance, which is similar to the findings of Terry et al. [15] and de Lutio
et al. [16] who utilized contextual data to enhance the recognition performance of citizen
science images.

In recent years, a large number of wildlife recognition studies based on camera trap
images have achieved great accomplishments [6–8]. These achievements are attributed
to large amounts of labeled data. To further improve wildlife recognition performance,
the first step is to expand the dataset. However, the process of data annotation is time-
consuming and labor-intensive. To solve this problem without expanding the dataset,
we consider utilizing information from existing images, such as the observation times of
camera traps. By analyzing the frequency and distribution of random animal encounters in
camera traps, this can be used not only to estimate animal population density [18,19], but
also to reflect animal species activity patterns [41]. Unlike previous wildlife recognition
studies which were merely based on camera trap images, we exploit the observation time
of the camera trap images to help interpret the images.

In addition to wildlife recognition using camera traps, species recognition using citizen
science images is also a hot research topic. There are many studies that utilize geographic
and contextual metadata to aid species recognition from public science images. Chu
et al. [42] used geolocation for fine-grained species identification, which improved the top-1
accuracy in iNaturalist from 70.1% to 79.0%. Mac Aodha et al. [25] proposed a method
to estimate the probability of species occurrence at a given location using the geographic
location and time as a priori knowledge. However, studies utilizing the above information
in camera trap data are rare. Consistent with previous studies on citizen science images
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that utilize geographic and contextual metadata, our findings indicated that fusing the
temporal information enhanced the baseline accuracy by 0.44%. Unlike these studies, we
only considered temporal information and did not utilize geographic data. For the temporal
metadata, we further considered date and time separately, where date corresponds to the
animal’s seasonal rhythms and time corresponds to the animal’s circadian rhythms. Our
experimental results show that the periodic coding of date and time separately, followed
by feature extraction and then fusion with image features, can better leverage temporal
metadata. As for geographic metadata, geographic data is not easily accessible, and due to
the deployment of infrared cameras in a national park with very little geographic variation,
the potential for integrating geo-metadata requires further research.

Attention mechanisms have been widely used in the field of animal detection and
recognition owing to their plug-and-play and effective traits. Xie et al. [39] introduced SE
attention in YOLOv5 to improve big mammal species detection from a UAV viewpoint.
Zhang et al. [43] introduced a coordinated attention (CA) module in YOLOv5s to suppress
non-critical information on the face of sheep to recognize the identity of sheep in real time.
Given the different lighting conditions and backgrounds present in camera trap images, to
better extract wildlife features, we compared the performance of the model after adding
different attention modules and found that the addition of the SE attention mechanism can
further improve wildlife recognition by 0.09%.

In general, our proposed method for wildlife recognition has significant advantages,
improving the baseline model by 0.53% on the Camdeboo dataset without additional image
data. In addition, on the Snapshot Serengeti dataset and the Snapshot Mountain Zebra
dataset, our method improved by 0.25% and 0.43% compared to the baseline model. These
findings have important implications for utilizing the potential of animal rhythms for
wildlife identification based on camera trap images. Moreover, these temporal metadata are
already collected with the camera trap image and do not add an additional collection bur-
den. However, the use of temporal information is less useful for animals with insufficiently
trained images. Given that factors affecting wildlife recognition include, in addition to the
number of training images, life habits (e.g., the presence of one or more identical wildlife on
a single image as a result of living in a group or solitary), motion poses (e.g., running results
in the presence of blurring in the image), and the timing of the shot (e.g., the image contains
only a portion of the animal’s body), determining the minimum amount of training data
required for each animal is relatively complex, which deserves to be investigated in depth
in future work.

In the future, we will focus on the following two aspects of work. On the one hand,
to further explore the potential of fusing temporal information, we will further determine
the minimum number of images of each wildlife species to be used in training. On the
other hand, considering that animals living in urban areas can experience changes in
activity patterns due to artificial light, food availability, and human activities, we will
collect datasets of wildlife camera trap images involving different environments or contexts
to investigate the robustness of the recognition model after fusing the temporal metadata
under different activity patterns.

6. Conclusions

In the paper, we have proposed a Temporal-SE-ResNet50 network model that fuses
trap camera images and additional temporal metadata acquired in the images for wildlife
recognition. The model constructs SE-ResNet50 based on ResNet50 and the SE attention
module to extract wildlife features from camera trap images as well as a residual MLP net-
work to extract temporal features and then fuses the image features and temporal features
through a dynamic MLP module for the final wildlife recognition. The experimental results
on the Camdeboo dataset show that the recognition accuracy of this method is 93.10%,
which is superior to the method of wildlife recognition using only images. We also demon-
strate the effectiveness of our method on other camera trap datasets. Our research results
have important implications for the use of temporal metadata for wildlife recognition.
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