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Abstract: The longjaw tapertail anchovy Coilia nasus, which migrates from ocean to freshwater
for spawning in spring, is an important anadromous fish with ecological and cultural significance.
To determine parasite infection in anadromous C. nasus, a total of 103 fish from the Yangtze River
were collected and examined in 2021 and 2022. The overall infection prevalence of nematodes in
C. nasus was 100%, with a mean intensity of 13.81 ± 16.45. The mean intensity of nematode infections
in 2022 was significantly higher than that observed in 2021 across all sampling sites (p < 0.05).
Nematodes were widely detected in the mesentery, pyloric cecum, stomach, and liver, among which
the mesentery accounted for the highest proportion, reaching up to 53.52%. A total of eight ascaridoid
nematodes belonging to the family Anisakidae and Raphidascarididae were identified by using
morphological characters and molecular biological techniques, including two species of Anisakis, five
species of Hysterothylacium, and one species of Raphidascaris. A. pegreffii was found as the predominant
species, accounting for 48.65% of all identified parasitic nematodes in liver, while Raphidascaris sp.
was the most common nematode in the mesentery, pyloric cecum, and stomach, reaching up to
39.81%, 36.21%, and 74.36%, respectively. The present study systematically investigated the parasitic
status and community structure of the nematode in C. nasus during its migration in the Yangtze
River. This research provides a foundation for studying the impact of nematode parasitism on the
reproductive migration and population recruitment of C. nasus, and offers valuable insights for
biomarker screening and nematode identification in C. nasus.

Keywords: Coilia nasus; parasite; nematode; Anisakis

1. Introduction

Fish parasitic ascaridoid nematodes, such as anisakid and raphidascaridid, are com-
monly encountered parasites in wild and cultured fish stocks [1–4]. The life cycle of
ascaridoids involves marine mammals, birds, reptiles, amphibians, predatory fish, and
elasmobranchs that serve as definitive hosts, and crustaceans, fish, squid, birds, and sea-
snakes as intermediate hosts [5–8]. The growing impact of parasites on fish health and the
economic significance of parasites in aquaculture and fisheries have enhanced the need for
studies on fish/parasite relationships [9,10]. Meanwhile, the nematodes in the super-family
Ascaridoidea have gained global recognition because of their significant impact on human
health as the causative agents of anisakidosis, a fish-borne parasitic zoonosis via accidental
ingestion of raw or under-cooked fish infected by the family Anisakidae [1,11–13].

The longjaw tapertail anchovy Coilia nasus Temminck & Schlegel, 1846 is a small
to medium-sized anadromous fish belonging to the order Clupeiformes, and is widely
distributed from the coastal waters of China, Korea, and Japan to the interconnected
freshwater tributaries [14,15]. The lower and middle reaches of the Yangtze River is the
most important channel for the anadromous migration of C. nasus. The migration is a
preparatory process for spawning, and wellknown to be a season-dependent and temporally
based reproductive activity [16]. Adult C. nasus has been reported to migrate upstream
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from early February to the end of April, and spawn in the middle and lower reaches of the
Yangtze River and connected lakes [14,17,18]. Unfortunately, in recent decades, stocks of
C. nasus in the Yangtze River have experienced a significant decline due to anthropogenic
influences such as excessive fishing activities, extensive hydraulic construction obstructing
migration routes, and degradation of their natural habitats [19–21]. Recently, parasite
infection in Coilia spp. has attracted much attention [22–26]. Xu et al. [22] found that
Anisakis simplex and Epiclavella chinensis only parasitized the anadromous C. nasus in the
Yangtze River. Therefore, A. simplex was considered as a “biological indicator” of the
anadromous C. nasus in the Yangtze River. Li et al. [23] used the parasites as indicators
of fish migratory movements. They pointed out that the monogenean Heteromazocraes
lingmueni and the acanthocephalan Acanthosentis cheni are suitable biological tags for the
C. nasus population migrating from the middle and lower reaches to the estuary of the
Yangtze River, while the nematodes Contracaecum sp. and A. simplex are suitable biological
tags for population migrating from the coast and estuary to the Yangtze River. The parasitic
infection alters host behavior, damages tissue, affects ingestion, decreases weight, hampers
reproduction, and can even cause death in some cases [10,27]. Thus, the parasites seriously
threatened the health of C. nasus. In this report, C. nasus caught from the Shanghai and
Anqing section of the Yangtze River from 2021 to 2022 were investigated to analyze the
parasitic status and community structure of nematodes in C. nasus.

2. Materials and Methods
2.1. Sample Collection

All procedures involved in the handling and treatment conducted as follows were
given official approval by the animal ethics committee of the Chinese Academy of Fishery
Sciences, and fish collection was approved by the Department of Agriculture and Rural
Affairs of Shanghai and Anhui Province with scientific fish collection license. The proto-
col was approved by the Committee on the Ethics of Animal Experiments of the Fresh-
water Fisheries Research Center, Chinese Academy of Fishery Sciences (Authorization
Number: 20221223).

Fish were caught at the Yangtze River estuary (Shanghai section) and the lower reach
of Yangtze River (over 580 km to estuary, Anqing section) with gill net between May
and July in 2021 and 2022, and immediately transported to laboratory on ice. A total of
103 C. nasus were examined for parasites, and fish body length and sex were recorded.
Fish were dissected and the internal organs (abdominal cavity, mesentery, pyloric cecum,
stomach, and liver) (Figure 1) were checked under stereomicroscope (Nikon SMZ18).
Nematodes isolated from each organ were washed in saline and then fixed with 100%
ethanol. In addition, specimens of C. nasus and nematode were all deposited at Freshwater
Fisheries Research Center, Chinese Academy of Fishery Sciences. Specimen were observed
under light microscopy and identified according to the morphological characters of head,
tail tip, and excretory and digestive systems.
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2.2. Molecular Identification

A total of 250 nematodes isolated from C. nasus at the Shanghai (16 individuals) and
Anqing (10 individuals) sections of the Yangtze River, which were sampled in 2022, were
all used for molecular identification. Genomic DNA from individuals was extracted us-
ing a Column Genomic DNA Isolation Kit (Sangon, Shanghai, China) according to the
manufacturer’s instructions. The ribosomal ITS1-5.8S-ITS2 region was amplified using
the primers NC2-ITS-F (TTAGTTTCTTTTCCTCCGCT) and NC5-ITS-R (GTAGGTGAAC-
CTGCGGAAGGATCATT) [28] and the predicted PCR production was about 1000 bp.
PCR reaction (50 µL) includes 25 µL 2 × Taq Master Mix (Dye Plus) (Vazyme, Nanjing,
China), 2 µL of each primer, 4 µL DNA template, and 17 µL ddH2O, and the thermal
profile was set as 95 ◦C, 5 min (initial denaturation) followed by 35 cycles of 95 ◦C, 30 s
(denaturation), 56 ◦C, 30 s (annealing), 72 ◦C, 60 s (extension), and a final extension of
72 ◦C for 10 min. PCR products were purified and sequenced at Sangon Biotech (Shanghai,
China). The obtained DNA sequencing chromatograms were checked in Chromas 2.6.6 and
assembled with SeqMan (LaserGene package 11.0), aligned in Geneious (5.6) [29]. Sequence
similarity was searched against the GenBank database using the Basic Local Alignment
Search Tool (BLAST).

Phylogenetic trees were conducted with Bayesian inference (BI) based on the obtained
sequences. The best nucleotide substitution model (K2P) was estimated with Modelfinder
according to Bayesian information criterion (BIC). BI analyses were conducted using the
software MrBayes ver. 3.1.2 with parameter settings nruns = 4, rates = gamma, and
ngen = 100,000.

2.3. Data Processing
2.3.1. Terms and Indicators

The terms and indicators were employed here according to Bush et al. [30] and
Wu et al. [31], such as Margalef richness index = (N − 1)/ln(N), where N is the num-
ber of species;

Aggregate Index: GI = (DI − 1)/(ni − 1), where ni is the total number of worm species i;
Infection Index: Z= ni ×(Pi/N2), where Pi is the number of hosts infected by worm i

and N is the total number of worms;
Distribution type and test: DI = variance(S2)/mean value(X). If DI > 1, it is aggregated

distribution. If DI = 1, it is random distribution. If DI < 1, it is uniform distribution. Use
d =

√
2X2 −

√
2N − 3 to test the consistency of distribution types. If d < −1.96, accept the

uniform distribution. If d > 1.96, accept the aggregated distribution. If d < 1.96, accept the
random distribution.

2.3.2. Statistical Analysis

Statistical analyses were performed in SPSS 26 and Excel (Ver. 2401), and the graph
was generated using Origin2021. All infection intensity data were expressed as mean ± sd
and analyzed using nonparametric test (Mann–Whitney test). Statistical significance was
considered at p < 0.05.

3. Results
3.1. Nematode Infection in C. nasus

The body length of longjaw tapertail anchovy C. nasus examined in this study ranged
from 23 cm to 35 cm, with an average of 27.71 ± 2.36 cm. Nematode infection in C. nasus
samples collected at Shanghai and Anqing in 2021 and 2022 were all 100% (Table 1).
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Table 1. Biological characteristics of anadromous Coilia nasus migrating to the Yangtze River.

Site Year N Body Length (cm) Female to Male Ratio Prevalence (%) Mean Abundance

Shanghai section 2021 30 26.93 ± 2.26 4.00:1 100 6.97 ± 5.26
Anqing section 2021 30 27.40 ± 2.28 3.29:1 100 9.40 ± 11.78
Shanghai section 2022 23 28.16 ± 3.12 4.75:1 100 21.35 ± 21.29
Anqing section 2022 20 29.50 ± 2.64 5.67:1 100 22.00 ± 20.72

A total of 1422 nematodes were detected in 103 C. nasus, with a mean intensity of
13.81 ± 16.45. The mean intensity of C. nasus that were sampled in 2021 and 2022 was
8.18 ± 9.12 and 21.63 ± 20.80, respectively. The mean intensity was higher at all sampling
sites in 2022 than that in 2021, and there was a significant difference (p < 0.05) in mean
intensity at the same sampling site in 2022 compared to 2021 (Figure 2). The highest
infection intensity was detected in a female C. nasus, which was approximately 30.10 cm
in body length, with a total of 87 nematodes. Taking gender differences into account, the
results indicated a significant difference in nematode infection intensities between males
and females in 2021 (p < 0.05), whereas such sex-related characteristics were not determined
in 2022 (Figure 3). In addition, the number of individuals with an intensity of 1–10 was the
highest in this study (Figure 4). Finally, a not strict trend of nematodes with an increase in
body length in two years was observed (Figure 5).
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Figure 2. The variations in the mean intensity of nematodes in C. nasus at each sampling site
across different years. Abbreviations: SH2021—Shanghai section of the Yangtze River (2021),
AQ2021—Anqing section of the Yangtze River (2021), SH2022—Shanghai section of the Yangtze
River (2022), AQ2022—Anqing section of the Yangtze River (2022). The numbers enclosed in paren-
theses indicate sampling date. Bars represent standard deviation. The ‘*’ represents statistically
significant disparities (p < 0.05).
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3.2. Infection Difference among Organs

In this study, the mesentery exhibited the highest proportion of nematodes among all
tissues of C. nasus, with a total count of 761 nematodes, accounting for 53.52%. There were
470 nematodes in the pyloric cecum, accounting for 33.05%. In addition, the stomach and
liver exhibited the lower parasitic level of nematodes, with a count of 100 and 91, accounting
for 7.03% and 6.40%, respectively. The mean infection intensity of the mesentery and pyloric
cecum was found to be significantly higher (p < 0.05) than that of other organs and tissues
(Figure 6). The mesentery exhibited the highest percentage of nematode detection in
C. nasus at various sampling locations and times, exceeding or almost 50% in all sampling
locations except for the Shanghai section of Yangtze River in 2022. In addition, the stomach
consistently displayed the lowest percentage, except for the Shanghai section of Yangtze
River in 2022. Interestingly, no nematodes were detected in the stomach of C. nasus at the
Anqing section of Yangtze River from 2022. Furthermore, a comparison between mean
intensities of nematodes in tissues or organs from different years revealed that the mean
intensity was higher in 2022 compared to 2021 (Figure 6).
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Figure 6. The distribution and mean infection intensity of parasitic nematodes in different tissues and
organs of C. nasus at each sampling time and site. Bars represent standard deviation. The presence of
distinct letters signifies statistically significant disparities (p < 0.05).

3.3. Composition of Nematode Species

A total of 242 ITS sequences of the 250 nematodes isolated from C. nasus (n = 26) were
successfully obtained, accounting for 96.8%. Based on morphological characters and ITS
sequence alignment search at the GenBank database, eight nematode species belonging to
two families, Anisakidae and Raphidascarididae, were identified, respectively. There were
two anisakid nematodes closely related to the following taxa in GenBank: Anisakis pegreffii
and Anisakis simplex, and six raphidascaridid nematodes: Hysterothylacium aduncum, Hys-
terothylacium fabri, Hysterothylacium sinense, Hysterothylacium amoyense, and Hysterothylacium
sp., Raphidascaris sp. (Table 2). In the 242 identified nematodes, Raphidascaris sp. was the
dominant species, contributing 40.9% of individuals, and it was followed by H. aduncum
and A. pegreffii, with 28.1% and 21.5%, respectively. H. fabri was 7.4%, and H. sinense,
H. amoyense, and Hysterothylacium sp. accounted for only 0.4%, respectively (Figure 7).
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Table 2. Nematodes collected from Coilia nasus (n = 26) and identified by ITS DNA sequence.

Nematode Species
No. of
Individuals
Sequenced

Sequence
Identity
(%)

GenBank
Acc. No.

Closely Related Nematode
in GenBank

Species (Accession) Sequence
Similarity (%)

Hysterothylacium aduncum 68 99.4–100 PP029287 Hysterothylacium aduncum (MH211517) 98.3–100
Hysterothylacium fabri 18 99.4–100 PP029274 Hysterothylacium fabri (MH211492) 99.6–100
Hysterothylacium amoyense 1 - PP029291 Hysterothylacium amoyense (MT269312) 99.89
Hysterothylacium sinense 1 - PP029292 Hysterothylacium sinense (MH211574) 100
Hysterothylacium sp. 1 - PP034301 Hysterothylacium sp. (MF061683) 100
Anisakis simplex 2 100 PP029277 Anisakis simplex (MT355320) 100
Anisakis pegreffii 52 99.9–100 PP029289 Anisakis pegreffii (MH211473) 99.6–100
Raphidascaris sp. 99 99.0–100 PP034302 Raphidascaris sp. (MW370774) 99.5–100
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In the 26 C. nasus from which nematodes were isolated and identified by ITS, A. pegreffii
had the highest infection prevalence at 69.23%. The infection prevalence of H. aduncum and
Raphidascaris sp. was both 61.54%. However, it is worth noting that the infection rate of H.
aduncum at the Shanghai section (C. nasus n = 16) was 100%, and it was not detected at the
Anqing section (C. nasus n = 10) (Figure 8).
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Figure 9 shows a phylogenetic tree constructed from eight ITS sequences of nematode
specimens in this study. The nematodes from the family Raphidascarididae formed a
separate clade.
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3.4. Organ Tropism

Raphidascaris sp., H. fabri, and H. aduncum did not show strict organ/tissue preference,
and were found in the pyloric cecum, stomach, mesentery, and liver of C. nasus. The domi-
nant species Raphidascaris sp. consisted of 74.36%, 39.81%, and 36.21% of individuals in
the stomach, mesentery, and cecum, respectively. A. pegreffii occurred in the pyloric cecum,
mesentery, and liver, but not in the stomach, and contributed 48.65% of individual numbers
in the liver. In the C. nasus examined here, a few A. simplex and H. sinense were detected in
the mesentery and liver, respectively (Figure 10).
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Figure 10. The proportion of parasitic nematode species identified in each organ and tissue of C. nasus
in 2022.

3.5. Community Structure of Nematodes

The abundance of nematodes in C. nasus was 8, and the average richness was 2.73 ± 1.22.
The Margalef richness index was calculated as 1.28, while the Brillouin diversity index was 1.30.
The Shannon–Wiener diversity index was 1.35 and the Pielou homogeneity index showed
a value of 0.65. The population characteristic values of each nematode in C. nasus were
employed to assess the distribution types (Table 3). The results showed that Raphidascaris
sp., A. pegreffii, and H. aduncum had an aggregated distribution pattern, whereas H. sinense,
H. amoyense, Hysterothylacium sp., and A. simplex displayed random distribution.
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Table 3. The population characteristics of nematodes in C. nasus.

Nematode Species Mean Value Variance Distribution Index d Aggregate Index Infection Index

Anisakis pegreffii 2.000 4.560 2.280 3.677 0.025 1.385
Anisakis simplex 0.077 0.074 0.960 −0.072 −0.040 0.006
Hysterothylacium aduncum 2.615 7.206 2.755 4.737 0.026 1.609
Hysterothylacium fabri 0.692 1.022 1.476 1.589 0.028 0.266
Hysterothylacium sp. 0.038 0.038 1.000 0.071 - 0.001
Hysterothylacium sinense 0.038 0.038 1.000 0.071 - 0.001
Hysterothylacium amoyense 0.038 0.038 1.000 0.071 - 0.001
Raphidascaris sp. 3.808 32.882 8.636 13.779 0.078 2.343

Furthermore, community characteristics of nematodes in C. nasus from the Shanghai
and Anqing sections of the Yangtze River were assessed, respectively (Tables 4 and 5).
Raphidascaris sp. was found to have an aggregated distribution, while A. pegreffii had an
aggregated distribution at the Shanghai section but not in the Anqing section.

Table 4. The population characteristics of nematodes in C. nasus at Shanghai section of the
Yangtze River.

Nematode Species Mean Value Variance Distribution Index d Aggregate Index Infection Index

Anisakis pegreffii 1.625 4.783 2.944 4.012 0.078 1.016
Anisakis simplex 0.063 0.063 1.000 0.092 - 0.004
Hysterothylacium aduncum 4.250 4.600 1.082 0.313 0.001 4.250
Hysterothylacium fabri 0.750 1.000 1.333 0.939 0.030 0.328
Hysterothylacium sp. 0.063 0.063 1.000 0.092 - 0.004
Hysterothylacium sinense 0.063 0.063 1.000 0.092 - 0.004
Hysterothylacium amoyense 0.063 0.063 1.000 0.092 - 0.004
Raphidascaris sp. 3.938 44.863 11.394 13.103 0.168 1.723

Table 5. The population characteristics of nematodes in C. nasus at Anqing section of the Yangtze River.

Nematode Species Mean Value Variance Distribution Index d Aggregate Index Infection Index

Anisakis pegreffii 2.600 4.044 1.556 1.168 0.022 2.080
Anisakis simplex 0.100 0.100 1.000 0.120 - 0.010
Hysterothylacium fabri 0.600 1.156 1.926 1.765 0.185 0.180
Raphidascaris sp. 3.600 16.489 4.580 4.957 0.102 3.240

4. Discussion

The longjaw tapertail anchovy C. nasus is a commercially valuable fish in China,
and was also listed as an endangered (EN) species in a 2018 Red List of Threatened
Species report from the International Union for Conservation of Nature (IUCN) (www.
iucnredlist.org (accessed on 15 October 2023) [32,33]. In this study, anadromous C. nasus
collected from the channel of the Yangtze River at Shanghai and Anqing sections in 2021
and 2022 showed a very high infection rate of nematodes, with 100% prevalence and
a mean intensity of 13.81 ± 16.45 (Table 1, Figure 2). In a C. nasus individual, even
over 80 nematodes were detected. Eight ascaridoid nematodes belonging to the family
Anisakidae and Raphidascarididae were detected and identified in the internal organs,
body cavity, mesentery, pyloric cecum, stomach, and liver. The nematode infection posed
significant challenges to the health of C. nasus, and the high infection rate of Anisakis spp.
was a potential zoonosis risk to the consumer. Additionally, due to the limitation of visual
examination employed in this study, some nematode larvae, such as Contracaecum spp. and
Spiroxys spp., with a low infection rate in C. nasus may be overlooked [34–36].

In the present study, nematode infection in C. nasus was 100%, which is much higher
than previous studies [24,25,28,36]. And, it is worth noting that the mean intensity of
nematodes in C. nasus between 2021 and 2022 was significantly increased from 8.18 ± 9.12

www.iucnredlist.org
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to 21.63 ± 20.80. The mean intensity in 2022 was the highest recorded, at almost twice the
mean intensity of 10.16 ± 9.67 reported by Dai et al. [25] in 2018. This could be attributed
to the fact that C. nasus consumed a substantial number of copepods and krill that had
been infected by many nematodes, indirectly indicating the severity of offshore organism
infections. Meanwhile, according to the results in the present study, the infection rate
of nematodes has no significant correlation with the body length. However, if the host
diet does not change, the infection rate and intensity of parasites are usually positively
correlated with body length [37]. This discrepancy in C. nasus may be attributed to the
larger individuals being parasitized with more nematodes, leading to potential damage
or mortality during migration processes and consequently resulting in lower nematode
abundance in the large C. nasus examined here.

The intensity of nematodes in C. nasus showed no significant variation during the
migration at the Shanghai and Anqing sections in the Yangtze River (Figure 2). This could
be ascribed to nematodes being in the abdominal cavity and not being susceptible to
osmotic pressure generated by migration and changes in the external environment [24].
The nematodes were frequently detected from the mesentery, pyloric cecum, stomach, and
liver of C. nasus. Specifically, the highest percentage of infection was found in the mesentery,
followed by the pyloric cecum, while the lowest percentage was observed in the stomach or
liver. In this study, there were a total of 53.52% nematodes parasitized in the mesentery and
33.05% in the pyloric cecum. The results were consistent with the report of Dai et al. [25].
In addition, nematodes in C. nasus exhibited organ preference, with the highest prevalence
observed in the mesentery, constituting over 50% of total nematode occurrences at each site.

Nematode infection caused a certain degree of damage to the liver of C. nasus (Figure 1),
and this phenomenon was also reported by Liu et al. [10]. Meanwhile, due to density or
developmental requirements, existing nematodes in the host migrated among different or-
gans [38,39]. Balbuena et al. [38] reported that the larvae of H. aduncum could be transferred
from the rectum to brain in herring under laboratory rearing conditions. The migration of
nematodes would lead to the puncture of the stomach and other organs, which is associated
with inflammation and organ damage. Previous studies have demonstrated that ascaridoid
infection elicits inflammatory responses and adaptive immunity in C. nasus [28,40,41].
A high nematode infection rate may result in mortality during migration and failure to
reach spawning grounds, consequently contributing to a decline in the C. nasus population.

The species composition and abundance of parasites infecting fish are affected by
a variety of factors, such as the physicochemical properties of the water, feeding, and
the seasons [42]. The anadromous C. nasus exhibits a complex life cycle characterized
by feeding offshore and breeding in freshwater (the Yangtze River and its tributaries),
followed by a return to diverse habitats encompassing seawater and brackish water after
spawning [43]. In this study, eight ascaridoid nematodes were detected in the population of
C. nasus migrating from offshore to the spawning grounds. All of these identified nematodes
are known as parasites in marine environments [44]. However, nematode Contracaecum
spp. and Eustrongylides spp., which were previously reported by Song [36], were not
detected in this survey. The difference may be attributed to either the change in nematode
community in marine environments or the limitations of the parasite investigation in this
study. Moreover, some nematodes had a stronger lethal ability, such as Eustrongylides
spp. [45], and result in the death of the infected C. nasus. Meanwhile, no freshwater
nematodes were detected in the C. nasus populations as per the previous report [24].
C. nasus refrained from feeding during migration and avoided the infection of freshwater
nematodes [46]. Ascaridoid nematodes mainly infect marine fish, and have been detected
in fish, krill, and other animals in the East China Sea and the Yellow Sea, exhibiting a broad
range of hosts [47,48]. C. nasus serves as a common second intermediate host of ascaridoid
nematodes [49]. Krill and copepods, as first intermediate hosts of ascaridoid nematodes, are
the main food sources of C. nasus. C. nasus was infected by nematodes mainly through the
intaking of krill harboring the larvae of nematodes. Therefore, the variation in nematode
species and dominant species observed in this study may be attributed to the changes in
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natural baits and parasites in coastal waters. In recent reports, a decline in ascaridoids in
marine fish has been observed in Japan and Australia [50,51], and this has been ascribed to
lower populations of zooplankton and crustaceans [52]. Here, the inconsistent observations
were not clear, and further studies are needed to assess the nematode infection in marine
fish from China’s offshore water.

Tissue or organ tropism in many parasites is essential for their development and
transmission. In nematode genus Contracaecum, Contracaecum radiatum was often found in
the gastric wall of the fish host [53]; however, Contracaecum osculatum preferred the liver and
body cavity [54]. In arctic ice fish, Ning [55] also discovered that a significant proportion of
nematodes parasitized in the liver due to the larger volume and more abundant nutritional
resources compared to other tissues and organs. In C. nasus detected here, A. pegreffii,
Raphidascaris sp., and H. aduncum were the dominant parasitic nematodes; however, no
obvious organ/tissue preference was observed (Figure 10), and they were found in the
pyloric cecum, stomach, mesentery, and liver of C. nasus. A. pegreffii accounted for the
highest proportion (48.65%) in the liver, and Raphidascaris sp. had the highest proportions
in the other tissues: 36.21% in the pyloric cecum, 39.81% in the mesentery, and 74.36% in
the stomach. Interestingly, A. simplex and H. sinense were only detected in the mesentery
and liver, respectively. However, in this study, only limited nematodes from 26 C. nasus
individuals were identified using both morphological and molecular data. Therefore, the
tissue or organ distribution of nematodes with a low infection rate may be overlooked.

The application of parasites as biological indicators for the fish host population and en-
vironment assessment has recently attracted much attention [56,57]. Xu et al. [22] found that
A. simplex only infected the anadromous C. nasus in the Yangtze River, and was not detected
in the freshwater residents C. nasus. A. simplex was considered as a “biological indicator” of
the anadromous C. nasus in the Yangtze River. Li et al. [23] also reported that parasites infect-
ing C. nasus could be used to indicate the migration between the coast, estuary, and Yangtze
River. However, according to the recent parasite investigation on anadromous C. nasus in
the Yangtze River, A. simplex had a low infection rate, while A. pegreffii, Raphidascaris sp., and
H. aduncum were the common and dominant parasites [25,26].
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