
Citation: Rákosy, L.; Martin, M.A.;

Sitar, G.M.; Cris, an, A.; Sitar, C.

Exploring Morphological Population

Variability: Host Plant and Habitat

Dependency in the Protected Moth

Gortyna borelii (Lepidoptera,

Noctuidae). Diversity 2024, 16, 227.

https://doi.org/10.3390/d16040227

Academic Editor: Vazrick Nazari

Received: 5 March 2024

Revised: 5 April 2024

Accepted: 6 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Exploring Morphological Population Variability: Host Plant and
Habitat Dependency in the Protected Moth Gortyna borelii
(Lepidoptera, Noctuidae)
László Rákosy 1,2,* , Mihai Alexandru Martin 3, Geanina Magdalena Sitar 4, Andrei Cris, an 5 and Cristian Sitar 6,7,*

1 Departament Taxonomy and Ecology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
2 Forestry Faculty, S, tefan cel Mare University, Universităt,ii 13, 720229 Suceava, Romania
3 Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University,

Kogălniceanu 1, 400084 Cluj-Napoca, Romania; mihai.alexandru.martin.bio@gmail.com
4 Doctoral School “Education, Reflection, Development”, Faculty of Psychology and Sciences of Education,

Babes-Bolyai University, 400006 Cluj-Napoca, Romania; geanina.iacob@ubbcluj.ro or giacob@yahoo.com
5 Romanian Lepidopterological Society, Republicii 48, 400015 Cluj-Napoca, Romania; andrei.crel@gmail.com
6 Zoological Museum, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
7 Department of Cluj, Emil Racovita Institute of Speleology, Clinicilor 5, 400006 Cluj-Napoca, Romania
* Correspondence: laszlo.rakosy@ubbcluj.ro (L.R.); cristian.sitar@ubbcluj.ro (C.S.)

Abstract: In this paper, we discuss the evolutionary implications of the correlation between different
species of Peucedanum plants and the distribution of Gortyna borelii moth populations in Romania.
We highlight geographic separation and isolation among these populations due to anthropogenic
landscape fragmentation, which hinders genetic exchange. A geometric morphometric analysis
was utilized to visualize and compare the morphometric variations in relation to the environmental
variables, particularly the host plant. Additionally, the distribution of G. borelii populations across
Europe and in Romania that are correlated with the host plant was analyzed. The significant
morphological and morphometric differences between the analyzed populations support our working
hypothesis, according to which the use of different Peucedanum species by the larvae of G. borelii
leads to an intraspecific diversification correlated with the host plant species. The newly discovered
population of G. borelii in Romania holds substantial conservation importance, necessitating protection
measures, including demarcating habitat areas and raising awareness among stakeholders. G. borelii
is a protected species at the European level (Habitats Directive 92/43/EEC, Appendices II and IV),
considered endangered due to the isolation of its populations and anthropogenic pressures exerted
through agricultural practices. Understanding the impact of agricultural practices on their habitat is
crucial for effective management strategies. Overall, this study sheds light on the complex interplay
between ecological adaptation, host plant specialization, and speciation dynamics in phytophagous
insects, emphasizing the importance of conservation efforts to preserve G. borelii populations and
their habitats.
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1. Introduction

Lepidoptera represents the greatest diversification of herbivorous insects, including
many species of borers, leafminers, gall-formers, and inquilines [1]. Endophagy arose early
in the evolution of Lepidoptera species and may have promoted their later dispersal [1,2].
The evolutionary history and ecological strategies of Lepidoptera highlight the importance
of understanding their diverse roles within ecosystems and their ability to adapt to various
environmental conditions.

The macroevolutionary patterns driving this diversification, alongside the roles of
chemical ecology and natural selection on populations within and between different com-
munity types, have been extensively explored [3].
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The diversification pattern in Lepidoptera and other insects has often been explained
by host plant specialization [4–6]. Ecological adaptation and specialization encompass
various factors such as competition, predation, parasitism, and habitat adaptability, all
intricately tied to resource distribution and abundance.

An exemplary instance illustrating such ultra-specialization within isolated popu-
lations, where diversification is driven by ecological adaptation, is observed in Gortyna
borelii Pierret, 1837. This species serves as a compelling subject for morphological and
morphometric studies. With its geographically isolated populations and adaptation to
different host plants within the Peucedanum genus, this species presents as an intriguing
subject for further morphological and morphometric investigations. Such studies hold
significant potential for illuminating the early stages of intraspecific diversification and
incipient speciation.

The fisher’s estuarian moth, Gortina borelii, (Figure 1A,B) is a Noctuidae (Tribus
Apameini) protected in the EU (Habitats Directive 92/43/EEC, Appendices II and IV), and
its population is currently declining in Europe. In the Red List of Romania, G. borelii has
been assessed as NT at the national level and VU in some regions [7].

Figure 1. (A) Gortyna borelli from Viis, oara; (B) Gortyna borelii from newly discovered site near Aphida;
(C) the species’ habitat in Cefa; (D) the species’ habitat in Viis, oara; (E) the species’ habitat in Apahida;
(F) the species’ habitat in the Domogled Mountain.
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The species is found in several smaller, more or less isolated areas in Spain, France,
Great Britain, Germany, Italy, Slovenia, Croatia, Serbia, Hungary, Romania, Bulgaria,
Ukraine, and Russia (north of the Caucasus) [8–10].

The biology and living conditions of G. borelii have been described more or less
accurately in several publications [8,10–25]. G. borelii is considered oligophagous on
Peucedanum sp. [8,10], but it is recorded as locally monophagous [22].

Since molecular data indicate an approximately 29-million-year-old origin for the
Apameini tribe and an evolution correlated with the massive development of the Poaceae
family [26], it can be assumed that endophagous species diverged from this group through
adaptive radiation more than 25 million years ago.

Oviposition usually takes place on dried grasses, between the stem and the leaf that
is close to it [17,24,27]. The eggs, which are flat in shape, are laid in rows resembling
strings, with the female employing her outstretched ovipositor for distribution [17,24,25].
After hatching, the newly emerged caterpillars must traverse several meters to reach
their food source [17,24,25]. The preimaginal stages and biology of the species were first
comprehensively documented by König [12,13] in southwest Romania.

The selection of oviposition sites and the subsequent development of larvae on various
host plants play pivotal roles in determining the survival rates of G. borelii [28–30]. These
factors greatly influence the species’ ability to thrive and reproduce successfully in different
ecological contexts.

In Lepidoptera, the transition to endophagy, internal feeding, and potentially the
exploitation of unoccupied feeding niches likely played a crucial role in the success of early
taxa [31]. Endophagous species have been shown to access superior food sources through
internal feeding [32–34]. Additionally, residing within plant tissues may confer other
advantages, such as protection from pathogens and predators, although this hypothesis
is sometimes debated [35]. Nevertheless, endophagous insects enjoy several benefits,
including reduced competition, protection against natural enemies [36,37], decreased risk
of desiccation due to a microenvironment with physiological advantages, and access to a
higher quality diet [38]. These factors collectively contribute to the ecological success and
evolutionary adaptability of endophagous Lepidoptera species.

Adaptability to host plants stands out as one of the most influential evolutionary
forces driving ecological speciation in phytophagous insects [39,40]. Recent advancements
have led to the identification of adaptive insect genes potentially responsible for host plant
adaptation [41–43]. These genes encode various proteins, including chemosensory proteins
for plant detection, oral secretion proteins to counter plant defenses, digestive enzymes
for plant molecule breakdown, and detoxification proteins to counteract plant secondary
metabolites [42]. Notably, these genes often exhibit accelerated adaptive evolutionary rates
in phytophagous insects [44,45]. Prior studies have also demonstrated speciation processes
with gene flow driven by ecologically divergent selection associated with the use of new
host plants [41,46,47]. For instance, genomic differentiation has been observed between the
maize strain and the rice strain in Spodoptera frugiperda (Noctuidae) [48]. These findings
underscore the complex interplay between ecological adaptation, host plant specialization,
and speciation dynamics in phytophagous insects.

The process of allopatric speciation, in which species split into different strains that
become reproductively isolated and evolutionarily independent, is relatively well known
and documented [49,50]. Host specialization is a well-documented process that leads to
intraspecific diversity, sympatric isolation, and speciation, especially in phytophagous
insects [51–58]

The evolution of host specificity in Lepidoptera species is probably strongly influenced
by plant volatile organic matter [4,59].

In evolutionary terms, the first endophagous insects probably had selective advan-
tages, as they were less likely to be killed by predators, parasitoids, and pathogens, which
may have favored the evolution of endophagy [60,61]. Endophagous insects avoid ingest-
ing plant defense chemicals and/or structures, which are usually concentrated in the cuticle
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and epidermis [62]. Evading plant defenses and feeding on the most nutrient-rich plant
parts resulted in a higher feeding efficiency and performance of endophages compared
to ectophages [34,35]. Conquering new foraging niches and food resources in a limited
foraging space led to better nutrition. Insects are able to manipulate plants to concen-
trate nutrients and reduce plant defenses in their food source, leading to higher insect
performances [34,63]

In many parts of Europe, G. borelii faces significant threats and is classified as endan-
gered or threatened with extinction. Regionally, it is not uncommon for populations to
become extinct or lost entirely, rendering it one of the most endangered noctuid species
in Europe. This precarious status underscores the urgent need for conservation efforts to
safeguard the species and its habitats.

The primary threat to G. borelii is the decline of its food source, largely attributed to
habitat destruction. Many of the sites in the Banat region that were documented by F. König
to the 1970s have been lost to human intervention, particularly through desiccation efforts.
As a result, the remaining populations are dwindling in size and becoming increasingly
isolated, exacerbating the species’ vulnerability to extinction.

In the current study, our objective is to investigate the morphometric variations among
individuals of G. borelii originating from populations that utilize different Peucedanum
species as host plants. We aim to highlight the evolutionary significance of the correlation
between various Peucedanum species and the distribution patterns of G. borelii populations.
Additionally, we emphasize the discovery of a new population of G. borelii, which holds
considerable importance for the species’ conservation efforts in Romania. Through our
research, we seek to contribute valuable insights into the ecological and evolutionary
dynamics of this endangered noctuid species.

2. Materials and Methods
2.1. Habitat Description

In Romania, G. borelii inhabits three distinct habitat types. The first and most widespread
habitat consists of alluvial river plains, where the food plant Peucedanum officinale thrives
in a range of conditions, from wet to dry environments occasionally subject to flooding.
These habitats encompass meadows and tall forb communities, particularly during the
spring season. This habitat type corresponds to populations found in southwest, west, and
northwest Romania, including the historical provinces of Banat, Crisana, and Satu Mare
(Figure 1C).

Another habitat where G. borelii is found is on dry and semi-dry slopes within the
Transylvanian hills. Here, the species has adapted to utilize Peucedanum ruthenicum (syn.
tauricum) as its host plant. These slopes are characterized by xerophilous fringes, which
are located on steep dry slopes and abandoned vine terraces, forming what is commonly
referred to as a “steppe heath” habitat. The plant communities in this habitat type include
Pruno spinosae-Crataegetum and Prunetum tenellae, with characteristic species such as Prunus
spinosa, Crataegus monogyna, and Prunus tenella (Amygdalus nana). This habitat typically
experiences an average annual rainfall of less than 500 mm/year. The specific area corre-
sponding to this habitat type is Viisoara, designated as the Natura 2000 site ROSCI0040
(Figure 1D).

The third habitat type, which unfortunately remains relatively understudied, is char-
acterized by rupicolous grasslands situated on the limestone plateau of the Domogled
Mountain in Băile Herculane at altitudes ranging from 700 to 1000 m (Figure 1F). This habi-
tat features a dry, rocky terrain with a sub-Mediterranean climate. The caterpillar host plant
in this environment can only be P. longifolium [13,18], as P. officinale, the common host plant
in other habitats, is absent in this area. A further exploration of this habitat type could yield
valuable insights into the ecological preferences and adaptations of G. borelii populations.

The spots identified in eastern and southeastern Romania with records of G. borelii by
Baranyi et al. [9] are incorrect. Contrary to those claims, G. borelii has never been reported
in this particular region of the country [7,64]. Clarification regarding the accuracies of
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distribution records is crucial for maintaining the integrity of scientific knowledge regarding
the species’ range.

2.2. Plant Measurement

We conducted measurements of Peucedanum stem thicknesses in three distinct locations—
Apahida, Viis, oara, and Cefa (Cris, ana)—where the presence of G. borelii is documented
(Figure 1C–E). To determine the average thickness of Peucedanum stems, measurements
were taken 5 cm above the ground level using a caliper. A total of 50 plants were measured
at each location. The mean values were calculated using the ANOVA test to analyze the
data and assess potential variations in the stem thickness among the different locations.

2.3. Distribution Analysis of G. borelii Populations Correlated with the Peucedanum Species

Following the same methodology and using information from [9,10], we delimited the
remaining G. borelii populations in Europe based on the different Peucedanum species on
which they live.

We analysed the distribution of G. borelii populations in Romania correlated with the
different Peucedanum species on which the larvae of these populations live, three specific
types of habitats are highlighted.

2.4. Morphometric Analyses

The specimens of G. borreli that are displayed and preserved in the Rakosy and Sitar
collections were photographed with a Canon EOS 70D camera using a Canon 100 mm
macro lens (Figure 2).

Figure 2. Specimens of G. borelii from study sites: (A) Apahida, (B) Viis, oara, and (C) Cefa (Cris, ana).

The digital photographs were converted to the TPS format using the software TPSUtil,
1.4 version, which allows them to be processed in a system of coordinates. Landmarks [65]
were placed with the program TPSDig2 (http://life.bio.sunysb.edu/morph/soft-utility.
html, accessed on 5 January 2024); the placement was at the base of the wing and on
the intersection of wing veins with the wing edge (Figure 3). A Principal Component
Analysis was used to show a general direction of variation within a group by using the
Principal Components that account for most of the variation: in this case, PC1 and PC2.
The differences among populations was tested using a Canonical Variance Analysis (CVA),
and the statistical differences were calculated using a Permutation Test, as our values might
not follow a normal distribution, and this test can reach a conclusion without assuming

http://life.bio.sunysb.edu/morph/soft-utility.html
http://life.bio.sunysb.edu/morph/soft-utility.html
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any distribution [66]. The Procrustes fit, PCA, CVA and Permutation Test were performed
using the program MorphoJ (https://morphometrics.uk/MorphoJ_page.html, accessed on
5 January 2024).

Figure 3. Landmarks selected for geometric morphometrics and linear measurements.

The following abbreviations were used: AP = Apahinda, VI = Viis,oara, and CR = Cefa (Banat).

3. Results
3.1. Study Sites with New Population Identified in Romania

The population in Cefa (Bihor), like the population in Banat, uses P. officinale as a host
plant. The species’ habitat is located in a clearing in the northern part of the Rădvani forest.
The habitat is a flat meadow surrounded by an oak forest, where P. officinale plants abound.
The Rădvani forest is part of the Cefa Natural Park and covers an area of approximately
3 hectares. This forest is a wetland area of great importance for birdlife, providing feeding
and nesting conditions for a significant number of bird species that are protected at the
European level (Figure 1C).

The population of Viisoara, whose caterpillars live on P. ruthenicum (syn. tauricum),
is located in a protected area (“The Hill of Butterflies”) that has been integrated into the
Natura 2000 site “Coasta Lunii” (ROSCI0040). The steep dry slopes and the host plant are
endangered by the former afforestation with Scots pine (Pinus silvestris) and common ash
(Frasinus excelsior). The mild level of sheep grazing that sometimes takes place here does
not actually do any harm as long as the sheep are not driven out from October to May
(Figure 1D).

The newly discovered site next to Cluj is located at the edge of a former saline lake,
not far from Apahida. On the northern slope of the hill, there is a strong population of
P. officinale. In the valley area, there is a salt steppe with Limonium gmelinii, Aster tripolium,
and other halobiont or halotolerant plant species. From May to August, the noctuid
Discestra dianthi hungarica Wagner, 1930 flies here in large numbers (Figure 1E).

3.2. Host Plant Analyses

The average thickness of the host plant depending on the location is presented in
Table 1.

https://morphometrics.uk/MorphoJ_page.html
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Table 1. The average thickness of the host plant depending on the location (ANOVA test, p < 0.0001).

Min. Median Max. Average

Apahida 5 10 17 10.23
Viisoara 2.5 3.75 13 4.28

Cefa 6 9 14 9.33

3.3. Distribution Analysis of G. borelii Populations Correlated with the Peucedanum Species

We delimited the G. borelii populations in Europe based on the different Peucedanum
species on which they live (Figure 4A). We have thus obtained an interesting geographic
pattern by which the trophic forms of G. borelii are also differentiated geographically.
Thus, the populations in central France feed on Peucedanum gallicum; those in northeastern
Spain, southern/eastern France, and northern Italy on P. officinale; and those in Corsica on
P. paniculatum. The populations in the United Kingdom and Germany feed on P. officinale,
as well as in Hungary, northeastern Croatia, northern Serbia, southwestern, western, and
northwestern Romania, Poland, and Ukraine. We do not know the hostplant from the
records for Bulgaria, Crimea, and Russia.

Figure 4. (A) Distribution of Gortyna borelii in Europe (adapted from [10,67], modified and corrected),
indicating Peucedanum species specific to the larvae in various geographical regions. Circles represent
records prior to 1980, while black dots represent records after 1980; (B) records of Gortyna borelii
from Romania are provided, along with indications of Peucedanum species on which its larvae feed in
different geographical areas.

Distribution Analysis of G. borelii Populations in Romania Correlated with the Different
Peucedanum Species

The analysis of the distribution of G. borelii populations in Romania correlated with
the different species of Peucedanum reveals three particular situations, which highlight three
specific types of habitats (Figure 4B):

• The habitat for G. borelii whose larvae feed on P. officinale is characterized by clay
loam soils, which are often slightly salty, wet, or even very wet in the spring and dry
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in the summer. This type of habitat corresponds to the populations in the west and
north-west of the country, also extending into Hungary. Here, we also include the
Transylvanian habitat near Apahida.

• The much drier, moisture-deficient habitat on the foothills near Campia Turzii (Viis, oara)
is where the G. borelii population lives on P. ruthenicum (syn. tauricum). Individuals
of this population are much smaller in size compared to individuals of populations
feeding on P. officinale.

• The calcareous habitat on Mount Domogled (Băile Herculane) is where the population
of G. borelii feeds on P. longifolium. Although P. rochelianum is also present on Mount
Domogled, we have no information confirming its use by G. borelii larvae.

3.4. Morphometric Analysis

A total of 87 specimens of G. borelii were analyzed, for which the forewings were
measured. Both the left wing and the right wing were measured. Damaged specimens that
did not allow for the placement of landmarks were removed. This resulted in a total of
166 valid measurements.

By using the linear measurements of the wings, we could calculate the average length
and width of the wings (Table 2).

Table 2. Mean wing length and width for all three populations.

Location Average Wing Length Average Wing Width

Apahida 24.03958333 12.66208333
Viis, oara 20.70883721 10.75348837

Cefa 24.90826923 13.27403846

For the geometric morphometrics analysis, we used the Procrustes fit, which gave
us the mean point of each landmark and showed the overall spread of the landmarks
from each specimen (Figure 5) Next, we used a Principal Component Analysis (PCA) to
determine the general direction of variation using the PCs that cumulatively covered most
of the variance (Table 3) (Figures 6–8).

Figure 5. Graphic representation of Procrustes fit results.

Table 3. Variance covered using Principal Component 1 and Principal Component 2.

PC % Variance Cumulative %

1 44.355 44.355
2 19.81 64.165
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Figure 6. Graphic representation of Principal Component 1 for each landmark.

Figure 7. Graphic representation of Principal Component 2 for each landmark.

Figure 8. PCA1 and PC2 for all individuals in the study, with Confidence Ellipses for means at a 90%
probability. Red-Apahida, green-Cefa, and blue-Viis, oara.



Diversity 2024, 16, 227 10 of 15

We followed with a permutation test, using 10,000 permutation rounds for Procrustes
distances among groups; all results were statistically significant (Table 4). Finally, we
performed a Canonical Variance Analysis to illustrate the shape differences between the
populations (Figure 9).

Table 4. p-values from permutation tests.

AP CR

CR 0.0266
VI 0.0158 0.0004

Figure 9. Canonical Variance Analysis for all individuals in the analysis, with Confidence Ellipses for
means at a 90% probability. Red-Apahida, green-Cefa, and blue-Viis, oara.

4. Discussion
4.1. Correlation between the Different Species of Peucedanum and the Distribution of G. borelii
Populations, with Implications in Intraspecific Diversification

The diversification of the phytophagous insects’ host plants is closely corelated with
intraspecific diversity. Thus, adaptation to new plant species used as host plants in the larval
stage determines the specialized relationships between partners of different sexes within
the species. Consequently, there is a reduction in the gene flow, leading to intraspecific
diversification correlated with the host plant species [68–71].

This can lead to speculation about the tendency for reproductive isolation. Reproduc-
tive isolation through reduced gene flow, together with geographic isolation, leads to the
emergence of adaptive radiation, characterized by the diversification of species through the
transition from one host plant to another. This is a well-known and extensively documented
speciation process, particularly among phytophagous insects [51–53,71–73].

Furthermore, genomic differentiation occurs early in the intraspecific diversification
process and may even expedite this process [74]. The situation of G. borelii populations may
be analogous to that of the butterflies Zerynthia polyxena and Z. cassandra, which feed on
different species of Aristolochia [28,75].

At the European level, specificity for a particular species of Peucedanum is observed
depending on the geographic region. For instance, G. borelii populations in central and
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northern France utilize P. gallicum as their host plant, forming a distinct cluster. Populations
in Corsica form a separate group and use P. paniculatum as their host plant (Figure 4A).

The populations utilizing P. officinale as their host plant group into three distinct
clusters: populations from the United Kingdom form one cluster together with those
from Germany, and a second cluster is formed by populations from northwestern Spain,
southern France, and northern Italy. The populations from central and western Transylvania
(Romania) and the Pannonian Plain (Hungary) form the third cluster.

The Bulgarian populations, alongside those from southwestern Romania, utilize
P. longifolium as their host plant. This species is adapted to calcareous soils with low humidity.

A third species of Peucedanum used as a host plant by G. borelii in Romania is P. ruthenicum.
This third species is also adapted to well-drained, dry habitats, on clayey–sandy soil. Due
to their ecological preferences, the sizes of P. ruthenicum plants are evidently smaller than
those of P. officinale (Table 1).

G. borelii populations adapted to the three Peucedanum species exhibit clear geographic
separation and isolation in Romania (Figure 4B). Despite the relatively short distance of
approximately 35 km between the populations of Apahida and Viis, oara, the anthropogenic
fragmentation of the landscape over the past 400–500 years has hindered genetic exchange
between these trophically differentiated populations. As a result, under the present condi-
tions, it is unlikely that these populations can interbreed or exchange genetic information.

The incipient intraspecific diversification through host races has been documented and
demonstrated in Lepidoptera species through both classical and recent studies [50,72,76,77].
The notion that adaptation to the host plant can play a decisive and repeatable role in
the early stages of speciation was demonstrated by [39] using stick insects. Host-specific
differentiation may lead to divergence in the adaptation to complex morphological and
behavioral traits.

4.2. Morphological and Morphometric Differences in Relation to the Host Plant

The use of geometric and traditional morphometric measurements has proven suc-
cessful in many studies of wing shape variation among Lepidoptera species over the
years [78–84], and these methods were also applied in our study.

The morphological and morphometric analyses of the wing dimensions and shape in
G. borelii show significant differences among the three populations of G. borelii analyzed
(Table 2) (Figures 6–8).

A cluster analysis of the morphological distances revealed that the wing shape varies
statistically significantly within populations feeding on different Peucedanum species. The
visualization of the canonical variate analysis scatterplot did not demonstrate complete
separation among plant species for the G. borelii populations. However, the canonical
variable explained 90% of the total variance.

These differences are strongly influenced by the host plant (P. tauricum) available in
Viis, oara. The reduced dimensions and significantly smaller stem thickness in P. tauricum
compared to P. officinale (Table 1) have constrained the population of G. borelii to adapt by
significantly reducing their wingspan. The size differences between the two plant species
are closely correlated with the environmental conditions, ecological processes, and selective
pressures [85].

The 400–500 years of isolation of the population from Viis, oara are also reflected in the
modifications observed in the wing shape, as evidenced by the permutation tests for the
Procrustes and illustrated through Canonical Variance Analysis (Figure 9).

It remains to be seen whether genetic analyses for the three ecological forms of G. borelii,
adapted to three different Peucedanum species, will reveal incipient but clear intraspecific
diversification, and subsequently, incipient speciation processes.

The evidence of these initial phases of intraspecific differentiation and incipient spe-
ciation holds significant importance, offering the prospect of deeper exploration using
molecular analyses. Publishing these detailed and valuable observations is essential for
future studies.
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4.3. The Newly Discovered Population of G. borelii and Its Importance for the Conservation of
the Species

The newly discovered population of G. borelii from Apahida is of significant importance
for the conservation of the species in Romania (Figure 1E). The hill with P. officinale and
the salt steppe belong to the Natura 2000 site Suatu–Cojocna–Crairât (ROSCI0238) and
should therefore be protected. G. borelii is not included in the standard list of this Natura
2000 site [86]. Therefore, there are no specific protection measures in the site management
plan. The grassland is partly used as a meadow and partly as a pasture for sheep grazing.
Agricultural land is expanding year after year to the detriment of P. officinale areas. No
P. officinale suitable for the caterpillars was found in the pasture. The small meadows are
mown once a year in July. A second cut takes place irregularly at the end of August–
beginning of September. Uneven areas are left unmown, which favors the preservation of
the caterpillar host plant, and thus, the moth.

The conservation measures required to preserve this newfound population include
the following:

To mitigate the threats faced by G. borelii and its habitat, several conservation measures
can be implemented. One strategy involves demarcating areas with P. officinale and impos-
ing restrictions on certain agricultural activities, such as grazing, which can result in the
partial or complete destruction of these plants. Although not directly consumed by animals,
grazing can still negatively impact the habitat through the trampling of plants. Additionally,
findings from mowing experiments, such as those conducted by [22], suggest that cutting
annually in either August or November can detrimentally affect the moth abundance.

Raising awareness within the local community is another crucial aspect of species
conservation. Educating stakeholders about the importance of preserving G. borelii and its
habitat can lead to greater support for conservation efforts and encourage responsible land
management practices.

Furthermore, investigating the impacts of common agricultural practices in Romania,
such as cleaning meadows by burning, on Peucedanum plants is essential. While it is
possible that the endogenous life of G. borelii larvae provides some protection against fire,
further research is needed to fully understand this aspect and to develop appropriate
management strategies that balance conservation goals with agricultural needs.
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