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Abstract: We used near-term climate scenarios for the continental United States, to model 

12 invasive plants species. We created three potential habitat suitability models for each 

species using maximum entropy modeling: (1) current; (2) 2020; and (3) 2035. Area under 

the curve values for the models ranged from 0.92 to 0.70, with 10 of the 12 being above 

0.83 suggesting strong and predictable species-environment matching. Change in area 

between the current potential habitat and 2035 ranged from a potential habitat loss of about  

217,000 km2, to a potential habitat gain of about 133,000 km2.  
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1. Introduction 

Invasive species are a major threat to ecosystems worldwide. They play a major role in displacing 

native species [1-3] and cause deterioration of many ecosystem functions [4,5]. The spread of invasive 

species is the second leading threat to biodiversity following habitat destruction [5], and costs the 

United States up to $120 billion per year [6]. Resource managers today face the challenge of 

determining where an invasive species outbreak may occur, and where an invasive species will  

move next. 
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Early detection of invasive plants is of the utmost importance, especially discovering and mitigating 

invasions when they are small [7-9]. This issue becomes particularly relevant in the face of climate 

change [10,11]. There is a potential for the area of habitat that is suitable for any given species to shift 

with rapid climate change. Those populations that are on the edges of the invasion will have the 

potential to move with the climate change. Some areas will go from being unsuitable habitat to suitable 

habitat; these areas will be the leading edge of the suitable habitat. Other areas will remain stable as 

suitable habitat, and a final area will cease to be suitable habitat [12]. This third category of habitat 

does not imply that species will cease to exist in these areas where it is already established, these 

species may persist from the seed bank for many years in suitable micro-habitats within unsuitable 

areas [10,13,14]. There is also the potential for an adaptable species such as a habitat generalist to 

continue to adapt to new climates and not shift at all, populations of species have the opportunity to 

migrate, adapt, or be extirpated. 

Species-environment matching models (or niche models, or species distribution models) provide a 

method to calculate potential suitable habitat. This method uses various algorithms to examine the 

habitat of a species and match that environmental space to areas where the species does not currently 

exist, locating areas of potential suitable habitat beyond the original data points. Hijmans and  

Graham [15] offer an evaluation of several niche modeling methods. Until fairly recently this type of 

modeling was computationally intense, and model creation could take days to weeks to complete. 

Increases in computing power and subsequent improvement in methods have helped develop the field 

of niche models from theory to practice. A review of the early methods of species distribution 

modeling can be found in Guisan and Zimmerman [16]. Since the turn of the century there has been an 

explosion in the methodology and abilities of species distribution modeling, and in the number of 

publications on the topic. A Web of Science search on “species distribution model*” from 1960 to 

2000 produced 5,155 entries while one third of that time, 2000–2009, produced double the results, 

10,296.  

Species-environment matching models start from a distribution of presence points on a landscape. 

These data do have drawbacks; they do not provide any information on abundance or absence of the 

species of interest. There also may be many gaps in the data that are used. Less than 1% of any 

landscape can be affordably measured [17], and we must use what data we have available. These 

models are a starting point in an iterative process, informing managers of where potential distributions 

may lie and giving an idea of where to add surveys, and where to sample in the future [18]. 

Distribution models form the basis of an excellent first approximation map that is especially applicable 

for early detection programs [19]. 

Many techniques of climate environment matching models for invasive species do not require 

absence data [20]. This is useful for invasive species models because there is no guarantee that a point 

that is collected as an absence point is truly unsuitable habitat; it may be suitable, but the species has 

not yet germinated in or migrated to that location. Maximum entropy modeling (Maxent [21]) uses 

presence data and background data in lieu of true absence data. These models are well suited to 

generate maps of potential distribution and habitat suitability from current point distributions given the 

caveats above.  

Broad scale distribution models are rapidly gaining acceptance. Morisette et al. [22] used climate 

envelope modeling to model current tamarisk potential habitat at a 1 km2 resolution for the continental 
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United States using logistic regression with an Area Under the receiver operating characteristic Curve 

(AUC) of 0.95, but this model did not address climate change. A worldwide bullfrog model was 

created at a 10-minute resolution for current conditions [23]. This model had a very wide distribution, 

but a coarse resolution. Bradley et al. [12] created models at a 4-km2 resolution using Mahalanobis 

distance for five invasive plants in the United States for the year 2100, a management level geographic 

scale, but a very coarse time scale. We integrated aspects of these studies, by examining a management 

level resolution, a country level distribution, and a near term time scale. 

We recognized that these maps of potential habitat suitability do not address propagule pressure, 

predation by natural enemies, or other biotic interactions [23]. The next step was to examine how a 

species might spread and where. We used the current potential suitable habitat model as a mask and 

developed a distance from seed source surface as a proxy for propagule pressure, a rudimentary 

invasibility index to address this issue.  

Our objectives were to: (1) provide a strategic methodology to forecast scenarios of potential spread 

based on point distributions; (2) create potential distributions of invasive species with Maxent and 

examine the relationship of these species to their environment; and (3) consider data gaps, distance 

from seed source and suitable habitat (a surrogate for propagule pressure) to assess risks to invasion. 

1.1. Methods 

Data 

 

We gathered point data for twelve invasive plant species in the continental United States (Table 1). 

These data were not exhaustive of all locations for each of these species, but were the available data 

from accurate sources (e.g., the Biota of North America Program, www.BONAP.org) gathered for 

these species. There were gaps in the data; some areas were more completely sampled than other areas. 

That said, points are our first and best descriptors of distributions [18]. From points we created a 

systematic methodology for assessing point distributions relative to environmental predictors and 

created models of potential suitability. 
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Table 1. Species modeled. The sample size is the number of points used, after duplicates were removed. The training Area Under the Curve 

(AUC) measures model performance of 70% of the data. The Test AUC measures model performance on the remaining 30% of the data. The 

Threshold value uses the 10 percentile logistic threshold to distinguish between potentially suitable or unsuitable habitat. The area on the 

leading edge of the invasion is the area of potential habitat that has shifted from potentially unsuitable to potentially suitable between the 

current model and the 2035 model. The area on the trailing edge of the invasion is the area of habitat that has shifted from potentially suitable 

habitat to potentially unsuitable habitat between the current model and the 2035 model. 

Scientific name Common 

name 
Sample 

size 
Training 

AUC 

Test 

AUC 

Threshold 

value 

Area on 

Leading 

Edge of 

invasion 

(~km2) 

Area on 

Trailing 

Edge of 

invasion 

(~km2) 

Change 

in Area 

(~km2) 

Habitat 

specialist

? 

Introduced 

after 

1900? 

Bromus tectorum Cheat grass 9517 0.84 0.83 0.43 131,000 131,000 0 No No
Carduus nutans Muskthistle 4670 0.88 0.88 0.39 372,000 383,000 −11,000 No No
Celastrus 
orbiculatus 

Oriental 
bittersweet 282 0.84 0.79 0.24 103,000 156,000 

−53,000
 

No No 

Centaurea stoebe Spotted 
knapweed 5899 0.91 0.90 0.46 195,000 245,000 −50,000 No No 

Cirsium arvense Canada thistle 7960 0.86 0.86 0.45 206,000 423,000 −217,000 No No
Cynoglossum 
officinale

Houndstounge
1884 0.89 0.88 0.34 228,000 219,000 9,000 No No 

Lepidium 
latifolium

Perrennial 
pepperweed 1015 0.93 0.91 0.36 546,000 451,000 95,000 No Yes 

Linaria 
dalmatica

Dalmation 
toadflax 1372 0.92 0.91 0.39 239,000 284,000 −45,000 No No 

Lonicera 
japonica

Japaneese 
honeysuckle

2771 0.70 0.68 0.40 170,000 144,000 26,000 No No 

Lythrum 
salicaria

Purple 
loosestrife 4921 0.85 0.84 0.37 376,000 293,000 83,000 Yes No 

Microstegium 
vimineum

Japanese 
stiltgrass 321 0.78 0.68 0.34 243,000 110,000 133,000 No Yes 

Pennisetum 
ciliare

Buffelgrass 
1876 0.92 0.91 0.37 20,000 20,000 0 Yes Yes 
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We chose species with a broad range of current distributions, narrow to wide; recently introduced to 

well established; and with more than 250 known locations (Table 1). We considered two species as 

habitat specialists; Lythrum salicaria as it is generally confined to wetlands [24]; and Pennisetum 

ciliare being confined to sandy soils, that do not freeze for extended periods, with precipitation from 

200 to 1200 mm per year [25]. We harvested most of the species location data from on-line sources, 

especially the National Institute of Invasive Species Science [26]. NIISS is a data clearinghouse on the 

internet that has quality control measures on the data that it ingests [27]. Each data source is listed in 

Appendix A.  

The independent variables used for this study were 19 bioclimatic layers created using 

combinations of minimum and maximum temperatures and precipitation [28]. These bioclimatic layers 

were created as variables to capture climatic seasonality important for organisms. The climate 

variables for current conditions were from the DAYMET dataset for the years 1980–1997 [29]. The 

modeling resolution for current conditions was approximately 1-km2 pixels, the finest resolution we 

could find for each of the data layers over such a broad extent. The climate projection data were 

derived from Parameter-elevation Regressions on Independent Slopes Method (PRISM) data at a 4-m2 

resolution (PRISM data available at http://www.prism.oregonstate.edu/, PRISM Group, [30]). We used 

predictions for 2020 and 2035 created by Jarnevich and Stohlgren [31] by extrapolating climate 

conditions from the PRISM data for 1895 to 2006. We chose years in the near future to be of imminent 

use to land managers.  

 

Modeling Techniques 

 

Once the data were compiled we used maximum entropy modeling (Maxent 3.2.9; [21]) to create 

three predictions for each species: (1) current potential habitat suitability; (2) potential habitat 

suitability in 2020; and (3) potential habitat suitability in 2035. Maximum entropy modeling is a 

machine learning method that requires only presence data. This algorithm estimated potential habitat 

distribution by finding the distribution of maximum entropy, or furthest from random [21]. Maxent 

used background data, or the environmental layers as model inputs [15]. The program removed 

duplicate records within a 1-km2 pixel.  

We tested each species for correlations between the variables using Systat v 12 [32]. We removed 

variables with correlations of r ≤ −0.8 or r ≥ +0.8. The remaining variables were clipped to the 

counties containing data for the species, constraining the model to counties of known realized 

habitat [33]. These variables were used to train each model, creating a potential habitat suitability 

surface at approximately 1-km2 resolution for the current climate. We ran each model 25 times, 

withholding a different 30% of the presence locations from each model run as a test dataset for model 

evaluation, and averaged the results of the runs.  

Then, we applied the model to the entire United States for the current climate and the climate 

scenarios for 2020 and 2035. For overall performance, the models were assessed using the Area Under 

the Receiver Operating Characteristic Curve, or AUC. This is a threshold independent indication of 

model performance [21]. To distinguish the threshold between suitable and unsuitable habitat for 

further analyses, we used the 10 percentile training presence logistic threshold as determined by 

Maxent (Table 1). This created an average potential suitability surface and a clamping surface for each 
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species. The clamping surface shows the areas of the map where the model is extended beyond the 

climatic conditions that it was trained on, and can show areas that the model may be less reliable. We 

chose to mask out these locations from our analyses. Next, we used raster calculator in ArcMap [34] to 

calculate areas of potential habitat stability, potential habitat increase, and potential habitat decrease by 

comparing the current suitability map with the future suitability maps. Stable areas were defined as 

those with suitable habitat across all three time steps, habitat increase was defined as areas that went 

from unsuitable habitat in current conditions to suitable habitat in 2020 or 2035, and habitat decrease 

was defined as areas that went from suitable habitat in current conditions to unsuitable habitat in 2020 

or 2035. 

Finally, we were interested in finding a surrogate for dispersal of the species. We did not have 

detailed data available for dispersal mechanisms of each species, so we used distance from known seed 

source, or nearest data point. For this part of the analysis, we used the clamping and unsuitable habitat 

surfaces for each species as a mask, effectively excluding these areas from the analysis. We used the 

straight line distance function in Spatial Analyst of ArcMap [34] to create a surface of the distance 

from the nearest known presence point. This is a simple first order approximation of invasibility as 

defined by both suitable habitat and available propagules. 

2. Results and Discussion 

We had a range of available sample sizes from 282 to 9517 (Table 1), all of which represent quite a 

small proportion of the land in the conterminous United States. Ten of twelve species modeled 

exhibited excellent performance with AUC values from 0.84 to 0.93 ([35]; Table 1). Both Lonicera 

japonica (Japaneese honeysuckle) and Microstegium vimineum (Japanese stiltgrass) had AUC values 

at or below 0.70 indicating only acceptable model performance. There was little variation between 

training data AUC and test data AUC, suggesting repeatable and robust models (test data included 

30% of the full suite of data). Each model run used a different 30% of the available data as test data, 

yet produced a similar result to the majority of the points modeled. The exception here, again, was M. 

vimineum which had a test AUC value 0.1 less than its training AUC value, possibly due to the 

relatively small number of data points available for the species.  

The change in potentially suitable habitat area varied dramatically among species (Table 1). The 

largest increase in potentially suitable habitat was about 133,000 km2 for Microstegium vimineum, a 

species that has been introduced to the United States after 1900. The largest decrease in potential 

suitable habitat was about 217,000 km2 for Cirsium arvense a habitat generalist.  

We achieved excellent model performance based on AUC with the data and computing power that 

are currently available, with the understanding that we did not capture every location of each species 

modeled and that the available data were not collected with probabilistic sampling. And for the 

locations for which we had data, this was still a resolution that may miss patchily distributed resources 

at the microscale, focusing mostly on large-scale climate patterns of the invaders [36]. These models 

were reliant not only on the quality and number of species data points available, but also on predictor 

layers used and the extent and resolution of the models being considered [37]. Future climate scenario 

models also contain their own uncertainty, especially concerning frequency of climate station data and 

interpolation techniques used to create a continuous surface between stations [36]. We presented first 
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iteration models that can point managers and field crews to gaps in information and guide resource 

managers to suitable areas to collect more information.  

This analysis defines the leading and trailing edge of invasion for these 12 species.  

Thuiller et al. [10] suggested looking at these leading and trailing edges, and incorporating migration 

into the modeling of the leading edge and persistence into the modeling on the trailing edge. Finding a 

way to incorporate these variables into such a large-scale model is a challenging and worthwhile task 

for future analysis. 

The invasibility index is a simple distance function that does not include human accelerated 

dispersal such as commerce and trade, trucks, landscaping and disturbance facilitated invasion [38-40]. 

These are all important factors in the spread of invasive plants and excellent future projects. The 

models were also limited by the patchy nature of the presence data we were able to compile. 

Populations may exist in areas where there were data gaps, and these locations will be under-valued in 

the index. 

Current species-environmental matching models performed well for this group of species with 10 of 

12 models having AUC’s indicating excellent model performance. The two species that did not 

perform as well may need additional predictor layers such as canopy cover, soils, or elevation. We also 

recognize that we had access to large amounts of data, and the models may not perform as well with a 

smaller sample size (the smallest sample size was 282). However, Maxent models have been used to 

model rare and threatened species using even fewer than 30 data points [41]. Additionally, due to our 

lack of absence data, we were only able to calculate AUC as a performance metric using a semi-

independent data set. Ideally, we would calculate multiple metrics and examine model performance 

across them all [37], while using an independent data set that may not suffer from the same biases as 

the dataset used to train the model. 

However, given these caveats, this systematic approach has many advantages to resource managers 

and policy makers. The models are easily updated as information becomes available. Providing 

predictions of current habitat suitability, highlighting data gaps, and showing maps of clamping may 

entice resource managers to collect more data and amend the information that currently exists, 

allowing for the creation of even better models. 

2.1. Climate Scenarios 

Climate change in the last half-century has been highly variable in space and over time. Some areas 

warmed, others cooled in consistent trends for greater than 50 years in either direction. There is no 

reason, based on observed historical patterns, to suspect climate change in the future will be uniform in 

direction or intensity at local or regional scales. The standard Global Climate Model (GCM) scenarios 

are based on coarse-resolution global models and tend to show unidirectional trends (warming). There 

is no evidence of cooling for any local or regional area, despite historical observations to the contrary. 

We have not found any logical reason, based on observed historical patterns, to accept unidirectional 

projections for all areas [42]. Additionally, precipitation patterns are poorly measured, and even more-

poorly modeled. Observed increases in precipitation are not uniform or unidirectional. Because of 

measurement and modeling errors, few scientists are confident in projections of precipitation over long 

periods. The uncertainty is too high to justify the use of GCMs for precipitation. 
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Our own analysis of climate change patterns suggests higher spatial variation in trends as shorter 

intervals of less than 100 years are investigated. Global Climate Models may be inappropriate for 

county-scale or regional-scale projections. We believe our methods to be the most appropriate for the 

questions we ask. We don’t know of any scientific evidence or papers that suggest that long-term 

GCM model results can be effectively used to predict near-term climate at local and regional scales. 

The climate scenario methods and approaches we have used are carefully explained in Jarnevich and 

Stohlgren, 2009 [31]. 

Forecasts are a tricky business. This does not stop the land managers and policy makers from asking 

scientists and experts to set priorities or give guidelines for setting priorities for rapid response and 

containment of invasive species. Forecasts are simply a tool to assess potential spread of a species. 

These forecasts are particularly important for invasive species early in the invasion process that might 

not have filled all of their niches. For example, the model predicts that Microstegium vimineum will 

have 133,000 additional km2 of potential suitable habitat by the year 2035. If land managers are able to 

keep a watch on these areas before the species spreads it may be possible to contain the invasion [8]. 

The fundamentals of early detection have not changed, but the habitat that is potentially suitable for 

species may be shifting with the changing climate. 

Most of the species modeled in this study were considered habitat generalists. Lobo et al. [37] have 

claimed that Maxent models do not perform well on habitat generalists, yet these models did perform 

well. For the two species that had models that did not perform as well, we may need to add additional 

predictive layers to the model, use a different resolution, or even a different modeling technique. Not 

every species will respond to the same modeling format, and there are many techniques to choose 

from [16,43,44]. 

2.2. Invasibility Index 

While we were not able to address biotic interaction or competition in these models, they could be 

incorporated by using predictor variables of the competition [45,46]. However, we did make an initial 

attempt at addressing propagule pressure, by devising the invasion index and looking at distance from 

known seed source within potential suitable habitat as a proxy for propagule pressure (Figure 1). We 

recognize that we do not have data for every location of the species, yet these data give a first order 

approximation of the potential range of invasion (or invasibility). 

In addition to looking at the invasibility index, it is important to keep in mind the method of 

invasion for each species. Some invasive plant species spread primarily by runners and do not move 

very far with each season, while others spread primarily by seeds on the wind giving them farther 

reaching potential for spread. Plant dispersal is another worthy task of future analysis. 
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Figure 1. Invasibility Index. Colors on the red end of the spectrum are closer to known seed sources, colors on the blue end of the spectrum 

are farther away. Grey represents unsuitable habitat, black represents areas of clamping, or where the model was extended beyond the 

environmental space it was trained on. 

 
 

 

 

Distance to Source (m)
Value

High : 2,200,000

Low : 0
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2.3. Utility of This Approach 

This approach provides a methodology to conduct a triage of invasive species. It has been 

established that it is cost effective and efficient to control small invasions early in the process [8], and 

this method gives resource managers the ability to assess where an invasion may move in 10 to 25 

years time to determine what may happen in the short term [31], instead of looking at the year 2100. 

These models help to identify the leading edge of the invasion, the areas of new potentially suitable 

habitat [47]. The leading edge is extremely important for watch lists, natural areas, ranches and farms. 

This method can be useful for targeted surveys [22] and monitoring to better track actual spread of 

species. These models also identify areas where suitable habitat is receding, changing to less suitable 

habitat, although there is little evidence that, once established, plants ever leave a county-sized 

area [14]. Pearson and Dawson [19] discuss that bioclimatic envelope modeling has its limitations, but 

it works well as a first approximation, especially applicable for an early detection and rapid  

assessment program. 

3. Experimental Section 

Space prohibits us from discussing each of the 12 species modeled individually (but see  

Appendix B), so we will focus on one example, Lepidium latifolium (perennial pepperweed, Figure 2). 

The main concentration of the 1015 data points that we were able to gather on L. latifolium were in the 

intermountain west of the United States, with some additional data points in California, and a 

smattering of points in the northeast. The current potentially suitable habitat was well distributed 

throughout the US with large areas of potential habitat in the west, throughout the plains states, and a 

large amount of potential habitat in the southeastern United States in an area that was sparse of data. 

The scenario model, showing potential habitat suitability change between current and 2035, suggests 

that there are modest areas of change throughout the United States with potential habitat in the west 

becoming more dispersed and increasing and the habitat in the southeast remaining stable for the  

most part.  

In particular, the models show an overall increase in potential suitable habitat of about 95,000 km2 

in the US between now and 2035 (Table 1). The areas in red on the scenario model (Figure 2C) have a 

high potential to be the leading edge of an invasion by this species, just as the areas in blue that go 

from being suitable to unsuitable have the potential to be the trailing edge of the invasion ( [12];  

Table 1). This scenario map shows that areas of increased potential suitable habitat of the species are 

not confined to any particular part of the country.  
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Figure 2. Potential habitat suitability modeling process for Lepidium latifolium. (A) Distribution of data points. (B1) Current potential habitat 

suitability, (B2) Potential habitat suitability in 2020, (B3) Potential habitat suitability in 2035. (C) Scenario model showing stable potential 

suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in red. (D) Invasion index 

with colors on the red end of the spectrum closer to potential seed source and colors on the blue end of the spectrum farther away. In the entire 

figure grey represents unsuitable habitat and black represents clamping, or areas the model was extended beyond the environmental space it 

was trained on. 
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For each variable included in the models, Maxent provides a response curve allowing for 

interpretation of environmental relationships to the distribution of the species’ suitable habitat  

(Figure 3).  

 

Figure 3. Response curves of the most influential predictors. (A) Mean Diurnal Range,  

(B) Precipitation of warmest quarter, (C) Minimum temperature of coldest month,  

(D) Mean temperature of wettest quarter. 

 

A. B.  

Degrees C   mm precipitation 

 

 

C. D.  

Degrees C    Degrees C 

 

For L. latifolium, the major contributing factors associated with distribution include mean diurnal 

temperature range (24%), precipitation of the warmest quarter (16%), minimum temperature of the 

coldest month (12%), and mean temperature of the wettest quarter (10%; Table 2). The response 

curves associated with these factors show that there may be environmental thresholds for the ideal 

growth of L. latifolium (Figure 3). For example, for mean diurnal range, habitat suitability was low 

until the range begins to increase around 15 degrees C and steadily increases to around 21 degrees C 

showing L. latifolium to have a stronger relationship to a larger diurnal temperature range. L. latifolium 

also has higher habitat suitability with low or high precipitation in the warmest quarter, with high 

minimum temperature of the coldest month, and with higher mean temperature of the wettest quarter. 

Almost all factors in Table 2 are related to temperature. Using these relationships between variables, 

we can learn about the environmental drivers of the systems that we are modeling.  
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Table 1. Top predictors by percent contributed to the model. 

Variable Percent 
Contribution 

Mean Diurnal Range 24 
Precipitation of Warmest Quarter 16 
Min Temperature of Coldest Month 12 
Mean Temperature of Driest Quarter 10 
Mean Temperature of Wettest Quarter 10 
Mean Temperature of Warmest Quarter 8 
Precipitation of Wettest Month 7 
Precipitation Seasonality 4 
Precipitation of Driest Month 4 
Isothermality 4 

3.1. Invasibility Index Map 

The invasibility map of L. latifolium shows this species to have less distance between seed sources 

in the west where most of the presence points were located (Figure 2D). The midwest contains 

potential suitable habitat but very few data points, so potentially minimal propagule pressure, and is 

therefore less invasible due to distance from nearest propagule pressure according to this model. There 

are a few data points at the Virginia-Kentucky border that are creating a hot spot. There are also 

potential hot spots in the northeast. From our data, it appears that the bulk of the propagule pressure is 

in the western United States. Across all 12 species, the invasibility index ranges from species with a 

concentrated distribution such as Pennisetum ciliare (Buffelgrass) to a wider distribution such as 

Microstegium vimineum (Japanese stiltgrass). 

4. Conclusions 

Our strategy was to assess plant invasion at a broad spatial scale. These same techniques are 

applicable to natural area, county, and state scales. We recognize that this is an iterative process of 

invasive species mapping and modeling. Models improve with more data, finer resolution prediction 

variables, and refined climate models. Maxent has proven to be an effective model for mapping 

species distributions despite small sample sizes [48], or scattered species distributions [49]. Different 

modeling techniques such as ensemble models [50,51] may also improve modeling efforts. We relied 

on Maxent, but other models may have done as good or better job of modeling these species [43]. We 

have provided a first approximation model of continental US potential habitat distribution maps for 12 

species at a fine temporal scale. We hope it will be useful. 
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Appendix A. List of data sources. Data sources used to model the twelve invasive plant species. 

Data source Citation 

Crosier PhD - Department of Transportation  [52]  

Crosier PhD - Larimer County  [52]  

Crosier PhD - San Luis Valley  [52]  

Crosier PhD - The Nature Conservancy  [52]  

Crosier PhD - Jackson County  [52]  

Crosier PhD - Larimer County  [52] 

Crosier PhD - Otero  [52] 

Crosier PhD - Royal Gorge  [52] 

Crosier PhD - San Luis Valley  [52] 

Crosier PhD - Colorado State Parks  [52] 

Crosier PhD - CNHP  [52] 

Florida Natural Areas Inventory http://fnai.org/invasivespecies.cfm 

Florida Natural Areas Inventory http://fnai.org/invasivespecies.cfm 

The Great Lakes Indian Fish & Wildlife Commission  http://www.glifwc.org/ 

Idaho State Department of Agriculture Invasive Species Coordinator 

Invasive Plant Atlas of the MidSouth http://www.gri.msstate.edu/ipams/ 

Invasive Plant Atlas of New England http://nbii-nin.ciesin.columbia.edu/ipane/ 

Montana Fish, Wildlife, and Parks 

 http://fwp.mt.gov/insidefwp/gis/shapefiles/fasweeds.zi

p 

Modified Whittaker Plot Information  [53] 

National Institute of Invasive Species Science project - 

Air Force Academy Weed Mapping www.NIISS.org 

National Institute of Invasive Species Science project - 

Bohemian Foundation www.NIISS.org 

National Institute of Invasive Species Science project - 

Colorado www.NIISS.org 

National Institute of Invasive Species Science project - 

ELK www.NIISS.org 

National Institute of Invasive Species Science project - 

Grand Staircase Escalante National Monument www.NIISS.org 
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Appendix A. Cont. 

National Institute of Invasive Species Science project - 

Grazing effects www.NIISS.org 

National Institute of Invasive Species Science project - 

GVM Weed Test www.NIISS.org 

National Institute of Invasive Species Science project - 

Hart Mountain National Antelope www.NIISS.org 

National Institute of Invasive Species Science project - 

Highway 24 Weed Mapping www.NIISS.org 

National Institute of Invasive Species Science project - 

Invasive Carduus Thistles www.NIISS.org 

National Institute of Invasive Species Science project - 

National Elk Refuge www.NIISS.org 

National Institute of Invasive Species Science project - 

National Wildlife Refuge - USGS www.NIISS.org 

National Institute of Invasive Species Science project - 

Nevada Cheatgrass www.NIISS.org 

National Institute of Invasive Species Science project - 

New Invaders Watch List www.NIISS.org 

National Institute of Invasive Species Science project - 

Peterson Air Force Base Weed Mapping www.NIISS.org 

National Institute of Invasive Species Science project - 

Plains Riparian study www.NIISS.org 

National Institute of Invasive Species Science project - 

Plants of Concern www.NIISS.org 

National Institute of Invasive Species Science project - 

Pondicherry National Wildlife www.NIISS.org 

National Institute of Invasive Species Science project - 

Rocky Mountain NP LANDGAP www.NIISS.org 

National Institute of Invasive Species Science project - 

SAIN Invasive Plants www.NIISS.org 

National Institute of Invasive Species Science project - 

SE-EPPC EDDMaps www.NIISS.org 

National Institute of Invasive Species Science project - 

September 2007 Training at the ELC www.NIISS.org 

National Institute of Invasive Species Science project - 

Wisconsin Invasive Plants of the Future www.NIISS.org 

National Institute of Invasive Species Science project - 

Colorado Department of Transportation www.NIISS.org 

National Institute of Invasive Species Science project - 

Hart Mountain National Antelope www.NIISS.org 

National Institute of Invasive Species Science project - 

National Bison Range www.NIISS.org 

Personal Collection of Robert K. Peet The University of North Carolina at Chapel Hill 

Personal Collection of James F. Quinn University of California, Davis 

Southwest Exotic Mapping Program 

http://sbsc.wr.usgs.gov/research/projects/swepic/swem

p/swempA.asp 

Bureau of Land Management, Utah State Office Salt Lake City, UT 

TexasInvasives.org http://www.texasinvasives.org/ 
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Appendix B. Data distribution, spread model, and invasibility for 12 invasive plant species. 

A. 

 B. 

 C. 

 

Note: Lepidium latifolium models. A. Point distribution, B. Scenario model showing stable 
potential suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing 
potential habitat suitability in red, C. Invasion index with colors on the red end of the spectrum 
closer to potential seed source and colors on the blue end of the spectrum farther away. In the entire 
figure grey represents unsuitable habitat and black represents clamping, or areas the model was 
extended beyond the environmental space it was trained on. 

Distance to Source (m)
Value

High : 2,200,000

Low : 0
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A. 

B. 

C. 
 
Note: Bromus tectorum models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance to Source (m)
Value

High : 600,000

Low : 0
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A.

 B.

C.
 
Note: Carduus nutans models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability 
in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance from Source (m)
Value

High : 600,000

Low : 0
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A.

 B.

 C.
 
Note: Celastrus orbiculatus models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source 
and colors on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the environmental space it 
was trained on. 

Distance from Source (m)
Value

High : 600,000

Low : 0
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A. 

B. 

C. 
 
Note: Centaurea stoebe models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance to Source (m)
Value

High : 2,200,000

Low : 0
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A. 

B. 

C. 
 
Note: Cirsium arvense models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C Invasion index with colors on the red end of the spectrum closer to potential seed source and colors on 
the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance from Source (m)
Value

High : 600,000

Low : 0
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A. 

B. 

C. 
 
Note: Cynoglossum officinale models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source 
and colors on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the environmental space it 
was trained on. 

Distance from Source (m)
Value

High : 1,500,000

Low : 0
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A. 

      B. 

   C. 
 
Note: Linaria dalmatica models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance to Source (m)
Value

High : 600,000

Low : 0
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A.

B. 

C. 
 
Note: Lonicera japonica models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance from Source (m)
Value

High : 600,000

Low : 0
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A. 

B. 

C. 
 
Note: Lythrum salicaria models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

Distance from Source (m)
Value

High : 1,200,000

Low : 0



Diversity 2010, 2              

 

 

766

 

A. 

B. 

C. 
 
Note: Microstegium vimineum models. A. Point distribution, B. Scenario model showing stable potential 
suitable habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat 
suitability in red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source 
and colors on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable 
habitat and black represents clamping, or areas the model was extended beyond the environmental space it 
was trained on. 

Distance from Source (m)
Value

High : 600,000

Low : 0
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A. 

B. 

C. 
 
Note: Pennisetum ciliare models. A. Point distribution, B. Scenario model showing stable potential suitable 
habitat in yellow, decreasing potential habitat suitability in blue, and increasing potential habitat suitability in 
red, C. Invasion index with colors on the red end of the spectrum closer to potential seed source and colors 
on the blue end of the spectrum farther away. In the entire figure grey represents unsuitable habitat and black 
represents clamping, or areas the model was extended beyond the environmental space it was trained on. 

 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

Distance from Source (m)
Value

High : 1,500,000

Low : 0


