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Abstract: Environmental monitoring programs must efficiently describe state shifts. We 
propose using maximum entropy modeling to select dissimilar sampling sites to capture 
environmental variability at low cost, and demonstrate a specific application: sample site 
selection for the Central Plains domain (453,490 km2) of the National Ecological 
Observatory Network (NEON). We relied on four environmental factors: mean annual 
temperature and precipitation, elevation, and vegetation type. A “sample site” was defined 
as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] 
footprint), within which each 1 km2 cell was evaluated for each environmental factor. After 
each model run, the most environmentally dissimilar site was selected from all potential 
sample sites. The iterative selection of eight sites captured approximately 80% of the 
environmental envelope of the domain, an improvement over stratified random sampling 
and simple random designs for sample site selection. This approach can be widely used for 
cost-efficient selection of survey and monitoring sites. 

Keywords: environmental variation; species-environmental matching models; species 
distribution models; Maxent; optimal sampling schemes 
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1. Introduction 

Typically, environmental monitoring programs wish to make inferences about an entire landscape, 
watershed, region, or nation from a small number of sample sites, thus reducing the cost of the 
program. Effective sampling sites would be expected to span important climatic, topographic, and 
environmental gradients, encompassing a broad range of vegetation types, soils, and geological 
substrates. Additional gradients, such as disturbance regimes, land use change, and future climate 
changes might also be important to capture. However, costs generally limit the design of monitoring 
programs to a small number of sites in a subset of environmental gradients. And, designers are 
expected to distribute sample sites in a quantitative and objective (i.e., a probabilistic) manner to later 
extrapolate results to the larger, un-sampled region with measurable estimates of uncertainty. 

In a world unconstrained by cost, a region might be sampled with a random distribution of sample 
sites or a systematic sampling scheme [1]. However, random sampling, especially with small sample 
sizes, typically misses rare but important habitats, while systematic sampling typically over-samples 
common habitats [2]. 

Where costs are an overriding concern, designers might ask: What are the minimum number of 
sample sites needed to adequately represent the majority area and environments of a region? We 
propose that maximum entropy modeling, often used for species-environmental matching or “niche” 
models [3–5], might be useful. Species-environmental matching models typically relate species 
occurrences to environmental predictor variables. They define and map suitable habitat compared to 
unsuitable habitat, often referred to as the environmental envelope of a species. The models use 
various algorithms to model the distribution of the known locations (response variable), select 
significant predictor variables and determine their fit, evaluate the strength of association between 
predictors and response, and predict habitat suitability in areas where the distribution is unknown [6,7]. 
The models have been used to successfully quantify the environmental niche of a species [3,5,6], 
predict species invasions [8], estimate species distributions in future climates [9], and in conservation 
planning and reserve selection [10,11]. 

Now, consider the difficult task of designing the National Ecological Observatory Network 
(NEON), “a continental-scale research platform for discovering and understanding the impacts of 
climate change, land-use change, and invasive species on ecology” [12]. The program designers used 
Multivariate Geographic Clustering [13,14] to divide the United States into twenty cohesive 
“domains” that maximize homogeneity of eco-climatic variables. Domains range in size from 866,827 
km2 (Northern Plains domain) to 16,528 km2 (Pacific Tropical domain). Each domain includes a “core 
wildland site” designed to describe long-term trends, and “relocatable sites” that will capture 
environmental heterogeneity, especially with regard to land use, that exists within the domains. 
Nominally, each domain will contain two relocatable sites that will move at five-year intervals. 
Airborne observations of each site and the surrounding area (multiple sensors over a 400 km2 area) 
will help quantify regional variability. But, where should future relocatable sites be located and how 
many sites might be required to capture majority of the domain heterogeneity? 

Our objectives were to: (1) test the use of maximum entropy modeling to iteratively select 
dissimilar sites to optimize the sampling of important environmental variation at low cost for one of 
the domains (i.e., Central Plains); (2) compare this new Maxent Dissimilarity Sampling (MDS) 
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approach with commonly used random sampling and stratified random sampling approaches; and  
(3) demonstrate the general utility of MDS approach for designing cost-efficient environmental 
monitoring programs from landscape to national scales. We hypothesized that the model-driven, 
iterative selection of dissimilar sites will optimize site selection across the domain to capture 
environmental heterogeneity. 

2. Methods 

2.1. Study Area 

The Central Plains domain (453,490 km2) includes parts of New Mexico, Colorado, Nebraska, 
Kansas, Oklahoma, and Texas [15]. The candidate core site is the Central Plains Experimental Range 
(CPER, Latitude: 40.816; Longitude: −104.749) in the Colorado Piedmont section of the Great Plains. 
A candidate relocatable site within the domain is located near Sterling, Colorado (Latitude: 40.670; 
Longitude: −103.205). 

The predominant vegetation at the core site is C4-dominated native shortgrass steppe, and a variety 
of other communities in the domain (e.g., southern mixed grass and cool season species) are also 
present. The climate at the core site is characterized by low precipitation, periodic water deficits, and 
large interannual and interseasonal climatic fluctuations. Most (70%) of the annual precipitation is 
derived from the Gulf of Mexico and falls during the warm season between April and September. 
However, mean temperature and precipitation, elevation, and vegetation are highly variable across the 
domain (Figure 1). It is clear that additional ecological observatory sites will be needed to capture the 
major environmental gradients and heterogeneity across the domain. 

2.2. Environmental Variables 

Environmental factors used in this example included mean annual temperature and precipitation 
from Daymet climate dataset [16] (1980–1997), elevation [17], and land use land cover types [18]. 
These variables were chosen based on the strong east-west climatic and elevational gradients in this 
domain. All these layers were clipped to the extent of the Central Plains domain (1 km spatial 
resolution, Albers Equal Area projection). 

2.3. Maxent Model 

There are many species-environmental matching models. We used a relatively newer method which 
has consistently fared well in model comparison studies [3,6,7]. The maximum entropy model, 
Maxent, is a general purpose predictive model that relies on presence—only data [4,5]. Based on the 
principle of maximum entropy, Maxent integrates available information as constraints and obtains the  
least-biased inferences when insufficient information is available. This method estimates the 
probability distribution of a species by finding the probability distribution of maximum entropy, which 
is a probability that is closest to uniform [4]. Maxent produces a habitat suitability surface with 
probability values varying from 0 (least suitable or most dissimilar) to 1 (most suitable or most similar 
to presence cells). Maxent automatically calculates percent contribution of different environmental 
variables to the model. In our case, presence data reflected a NEON site, and was operationally defined 
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as a 20 km × 20 km area that approximates the footprint of the NEON airborne observation platforms 
(AOP; 12). Each 1 km2 cell in the 400 km2 area was designated as a presence location, the model 
selected pseudo-absence cells (or background points) randomly from the remainder of the domain. The 
resulting probability of occurrence or habitat suitability model is comprised 1 km2 cells assigned a 
likelihood of similarity to the presence cells. 

Figure 1. Major environmental gradients and vegetation in the Central Plains domain. M1 
to M6 are the sites selected using Maxent dissimilarity criteria, S1 to S6 using stratified 
random sampling, and R1 to R6 using random sampling design. 
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The initial models incorporated presence data from the NEON core site at the CPER and the North 
Sterling, Colorado relocatable site (first one, then the two sets of 400 presence cells). With the mean 
probability of occurrence output surface, we mapped areas in the domain that were the most dissimilar 
(probability of suitable habitat less than 0.1 × 10−6) to the environmental envelope captured by the 
NEON sites (probability of suitable habitat > 0.1). We randomly selected a new sample site—a 
hypothetical NEON relocatable site—from the frame of most dissimilar cells, buffered the site to 
account for environmental variability captured by the 400 km2 airborne observations, and ran the 
Maxent model with the three sites (three sets of 400 presence points). We repeated this process until 
we captured >75% of the cells in the domain. 

Maxent (version 3.3.0) was used for the modeling and is freely available [4]. The validation of 
predictive model outputs from Maxent was accomplished by using the area under the receiver 
operating characteristic (ROC) curve or AUC; automatically calculated by Maxent (4) for each model 
step. At each step 10 replicates were run using 75% of the data for training the model and 25% data for 
validation, and average AUC was calculated. 

We compared the efficacy of this Maxent Dissimilarity Sampling approach to two other commonly 
used sampling strategies. In both cases, we kept the CPER core site and North Sterling site and 
generated six new sites of the same size and shape as used in the Maxent approach described above  
(20 km × 20 km). We generated a stratified random design by adding six new sites stratified by 
temperature (high versus low), precipitation (high versus low), elevation (high versus low) and 
dominant vegetation (two classes, grassland and forest). We created a simple random sample design by 
randomly selecting six sites across the domain. We compared how each design captured the dominant 
environmental gradients of the domain with eight total sample sites.  

3. Results and Discussion 

Maximum entropy modeling quickly identified similar and dissimilar habitats after the initial model 
run on the core site (Figure 2). Similar habitats, based on temperature, precipitation, elevation, and 
vegetation type were located in close proximity to the CPER site. The most dissimilar sites, according 
to the model, were located to the far southeast in the domain. A sampling design based solely on 
dissimilarity would have placed the second site in the most dissimilar region. However, to capture land 
use variations (intensive agriculture versus short grass steppe) and for logistical reasons (cost being a 
driving concern), the North Sterling site has been proposed as the first relocatable site (Figure 3b). 

The question remained, where should the third, fourth, fifth, and so on, sites be located to 
adequately capture the heterogeneity of the domain? Locating the third site according to  
model-directed habitat dissimilarity in the southeast portion of the domain resulted in a model that 
captured about 19% of the domain in the environmental envelope of the sites (Figure 3c) as compared 
to just 2.2% (Figure 3a), and 7.9% (Figure 3b), after the first two runs.  

The maximum entropy approach to selecting dissimilar sampling sites showed that after selecting 
six additional site locations following the two “fixed sites” at the Central Plains Experimental Range 
site and North Sterling, Colorado, that 80% of the domain’s environmental envelop could be captured 
(Figure 3h). Elevation and precipitation differences across the domain contributed more significantly 
to the models compared to temperature and vegetation type (Table 1). After the final model, elevation 
and precipitation combined contributed 83.4% to the model.  
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Figure 2. Core site model results with zones of similarity and differences. 

 

Figure 3. Iterative Maxent models, subsequent selection of new sample sites (numbered in 
consecutive order; M1 to M6), and similar (green) and dissimilar (blue) area at each step. 
Numbers next to each figure show the percentage of the domain’s environmental envelop 
that was captured by Maxent Dissimilarity Approach. 
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Table 1. Maxent model results and the percent contribution of environmental variables. 
AUC is area under the ROC (receiver operating characteristic) curve. 

Model 
Average 
validation 
AUC 

Mean annual 
temperature 
(°C) 

Mean annual 
precipitation 
(cm) 

Elevation 
(m) 

Land use 
land cover 
types 

Core 0.996 3.8 32.6 63.3 0.4 
Core + Sterling 0.993 24.5 57.7 17.3 0.5 
Core + Sterling + 1 0.992 37.8 32.1 28.8 1.3 
Core + Sterling + 1 to 2 0.989 29.6 37.8 29.5 3.2 
Core + Sterling + 1 to 3 0.983 19.1 34.3 41.7 4.9 
Core + Sterling + 1 to 4 0.973 16.2 42.4 38.8 2.6 
Core + Sterling + 1 to 5 0.949 12.0 36.9 48.1 2.9 
Core + Sterling + 1 to 6 0.929 12.4 34.6 48.8 4.3 

The percentage of the area covered (green areas in the successive models; Figure 3), tended to 
increase in a linear fashion as new sites were added (Figure 4). The final two sites filled in more of the 
gaps in environmental space, compared to the first two sites. 

Figure 4. Number of sample sites (each 20 × 20 km area) and percent of regional 
environmental envelop captured by the Maxent dissimilarity sampling design (diamonds), 
stratified random design (triangles), and simple random design (circles). The Core site and 
Sterling site are held constant for all designs. M1 to M6 are the sites selected using Maxent 
Dissimilarity Sampling, S1 to S6 using stratified random sampling, and R1 to R6 using 
random sampling design. 
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Keeping the core site and Sterling site set for each design, the stratified random design initially 

captured more of the environmental gradients of the domain by selecting sites in rare forested 
vegetation types (Figure 4). However, after six new sites were added, the Maxent Dissimilarity 
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Sampling approach captured more of the total natural variation in the domain. Adding six randomly 
selected sites failed to capture as much of the dominant environmental gradients in the  
domain (Figure 4). 

3.1. Discussion 

There are many caveats associated with species-environmental matching models. All such models 
are affected by sample size, extent of the study area, the clustering of presence points, and the 
resolution and accuracy of predictive layers [4,5,19]. The clustering problem is especially relevant to 
this approach, where the presence points were forced to be clustered in a 20 km × 20 km area. This 
artificially inflates AUC values (Table 1), especially in the initial modeling stage. Likewise, the 
sample was spatially restricted ranging from just 400 to 3200 1 km2 cells, or just 0.09% to 0.71% of 
the domain. In addition, we placed new sites in the lowest probability of similarity (highest areas of 
dissimilarity; probability < 0.1 × 10−6) without comparing alternative sites at each stage. 

A cost layer could be superimposed on the sampling scheme to compare the trade-offs in sample 
site selection. In this case study, dissimilar sites were far from the core site, primarily because it was 
selected in a distinct (higher elevation, low precipitation) area in the domain. The costs associated with 
capturing the environmental extremes in the domain cannot be easily avoided in this case. We also 
note that for most NEON domains, the design for relocatable sites emphasizes land-use contrasts. 
Capturing the environmental heterogeneity within a given domain is not the main driver for relocatable 
site selection [12]. 

3.2. General Utility of This Approach 

The selection of potential sites for environmental monitoring is objective-driven [20]. However, 
designers commonly wish to extrapolate information in space and over time, to an entire region or area 
of interest. The maximum entropy modeling approach described above may have general application 
from landscape scales to continental scales. Additional climatic, topographic, phenological, and 
environmental factors can be easily included (e.g., [6,21]). However, in many cases, only a handful of 
factors may contribute heavily to model outcomes. In our test case, elevation and precipitation 
dominated the model.  

The maximum entropy approach has many advantages over other approaches. It is a multivariate, 
non-parametric approach, handles non-linearities in the predictor variables well, and is largely 
unaffected by high cross-correlations and spatial autocorrelation among variables [4,5]. There is no 
guarantee that a small set of monitoring sites will effectively capture all the important changes the 
future may hold. It would become increasingly difficult to use a stratified sampling approach when 
more environmental strata are included. This is likely less of a problem when additional strata (layers) 
are added in the Maxent Dissimilarity Sampling approach. Thus, this probability based approach 
provides an unbiased method for selecting a small number of sites across many key  
environmental gradients. 
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