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Abstract: Information derived from high spatial resolution remotely sensed data is critical 
for the effective management of forested ecosystems. However, high spatial resolution 
data-sets are typically costly to acquire and process and usually provide limited geographic 
coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to 
provide the spectral or spatial detail required for certain types of products and applications, 
offer inexpensive, comprehensive landscape-level coverage. This study assessed using an 
object-based approach to extrapolate detailed tree species heterogeneity beyond the extent 
of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using 
image segments, regression trees established ecologically decipherable relationships 
between tree species heterogeneity and the spectral properties of Landsat segments. The 
spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm), 5 (i.e., SWIR: 1.55–1.75 µm) 
and 7 (SWIR: 2.08–2.35 µm) were consistently selected as predictor variables, explaining 
approximately 50% of variance in richness and diversity. Results have important 
ramifications for ongoing management initiatives in the study area and are applicable to 
wide range of applications. 
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1. Introduction 

Information derived from high (i.e., <5m) spatial resolution remotely sensed data is critical for the 
effective management of forested ecosystems. However, fine spatial resolution remotely sensed data 
are typically expensive to acquire and process. In addition these data are normally limited in 
geographic coverage, thus limiting their applicability to landscape-level analysis. In contrast to high 
spatial resolution data sources, medium (i.e., 5–30 m) spatial resolution multispectral satellite imagery 
(e.g., Landsat) are readily and freely available, providing wall-to-wall landscape-level coverage [1,2]. 
However, Landsat data inherently lacks the spectral and spatial resolution required to meet all 
management needs and applications for most of the worlds’ forests. Thus, developing methods to 
extrapolate information derived from higher spatial resolution sensors to the much broader spatial 
extent provided by Landsat-like data has important ramifications for a variety of management  
goals [3]. 

One approach towards linking fine and moderate resolution remotely sensed data involves filtering 
the spatial resolution of fine-grained products to correspond with spatially coarser satellite imagery.  
A common approach towards filtering is through the majority, which determines the dominant value 
within a grid. While capable of determining dominance within predefined areas, majority calculations 
are problematic as they risk inflating the presence of common values while under-representing rarer 
categories [4]. As an alternative to conventional spatial filters such as the majority, measures of 
heterogeneity may be useful in degrading spatial resolution while maintaining important information 
content. Heterogeneity, defined here as the degree of spatial variation exhibited within an ecosystem, is 
known to impact the structure, function and distribution of biodiversity, and has proven relevant as an 
information source for forest restoration and conservation [5–7]. Despite their usefulness, measures of 
heterogeneity are typically calculated at somewhat arbitrary spatial extents within user-defined windows, 
thus limiting their applicability to forest management decisions made at varying scales. Heterogeneity 
measures could prove more applicable and representative if they corresponded with tangible, 
ecologically-relevant units (e.g., forest stands). 

While pixel-based methods are typically employed when processing remotely sensed data, object-based 
methods, which emulate intuitive human interpretation, are better suited at identifying ecologically-relevant 
units [8,9]. Through an object-based approach, segmentation initially partitions an image into spectrally 
and spatially similar multi-pixel groups which correspond with definable landscape elements (e.g., 
forest stands) [8,10–12]. As opposed to arbitrarily defined spatial entities (i.e., pixels), image segments 
become the unit of analysis and are characterized according to their geometrical properties (e.g., size, 
shape) and underlying statistical values, allowing for definition of distinct classes to which all 
segments are assigned membership [10,13]. The utility of object-based methods for extrapolating fine 
spatial resolution products across broader areas represented by Landsat data has been established, but 
examples are few and limited to extrapolating LiDAR-derived metrics [13]. 
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Here, we assessed the use of an object-based approach to extrapolate tree species heterogeneity 
beyond the localized extent of non-contiguous hyperspectral/LiDAR flight-lines to the broader extent 
of a Landsat satellite image. First, to justify our approach, we illustrate the shortcomings of coarsening 
tree species distribution data derived from airborne hyperspectral and LiDAR data using majority 
filtering. Next, a Landsat-5 Thematic Mapper image was segmented, providing wall-to-wall 
representation comprised of definable landscape elements (i.e., forest patches) instead of image pixels. 
Three measures of heterogeneity (i.e., richness, evenness and diversity) were then calculated for the 
extent of species-level data. The advantageousness of image segmentation is established through 
comparing representations of species heterogeneity at the scale of Landsat pixels versus variably sized 
image segments. Next, regression trees are used to determine the strength of relationships between the 
statistical and geometric properties of Landsat segments (i.e., independent predictor variables) and 
their corresponding tree species heterogeneity values (i.e., dependent response variables). Resulting 
statistical relationships were used to define rules and extrapolate species-level information to the extent 
of the British Columbian southern Gulf Islands (SGI). The applicability of these results to local 
ongoing management concerns and extension to other environs are also considered. 

2. Experimental Section 

2.1. Study Area 

The area of interest includes the Gulf Islands National Park Reserve (GINPR) and its surrounding 
lands in the SGI archipelago, in southwest BC, Canada, covering approximately 1050 km2 (30 km 
east/west by 35 km north/south, centered at latitude 48.76° and longitude −123.18°), representing some 
of the province’s most diverse ecosystem assemblages [14] (Figure 1). Throughout the SGI, 
anthropogenic activities pose an ever-growing threat, making it one of the most ecologically at-risk 
regions in Canada [14]. Numerous forested ecosystem types and associated floral and faunal species 
are considered rare and/or at-risk [15]. Forested lands in the SGI are dominated by Pseudotsuga 
menziesii (Douglas-fir) and secondarily by Alnus rubra (red alder). Other common coniferous tree 
species, listed in their relative order of dominance, include Thuja plicata (Western red-cedar), Pinus 
contorta (lodgepole pine), Abies grandis (grand fir) and Tsuga heterophylla (Western hemlock). 
Additional typical broadleaf species include Arbutus menziesii (arbutus), Acer macrophylum (bigleaf 
maple), Populus balsamifera (black cottonwood), Quercus garryana (Garry oak) and Populus 
tremuloides (trembling aspen). Resulting from wide-spread harvesting, approximately 70% of forests 
are 40–80 years old, with tracts of mature stands 80–250 years (~25%), pole/sapling <40 years (~4%), 
and scattered late seral pockets >250 years in age (<1%) [16]. 
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Figure 1. The British Columbian southern Gulf Islands as shown in the near infrared band 
of a Landsat-5 TM satellite image. The extent of hyperspectral/LiDAR flightlines are 
shown in green/purple. 

 

2.2. Data 

2.2.1. Hyperspectral/LiDAR-Derived Tree Species Data 

As described in [17], maps representing the distribution of 11 tree species were produced (at a 2 m 
spatial resolution) through the classification of fused airborne hyperspectral and LiDAR data, collected 
concurrently in mid-July, 2006. (Figure 2a provides an example of species data for a portion of the 
study area). Species maps provide detailed and accurate distribution information, with user’s and 
producer’s accuracies for most species ranging from >52%–95.4% and >63%–87.8%, respectively. 
However, this more accurate and detailed species-level data is limited to 23 non-contiguous flightlines, 
~1 km wide and of variable length, covering approximately ~2800 ha [17]. 
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Figure 2. For a portion of the study area: (a) 2 m tree species distribution data derived 
from fused airborne hyperspectral/LiDAR data. The background is area outside of the 
flightlines, represented by Landsat band 4 (NIR), (b) tree species richness calculated at a 
30 m grain within the extent of airborne hyperspectral/LiDAR flightlines. The background 
is area outside of the flightlines, represented by Landsat band 4 (NIR), (c) Landsat-5 TM 
objects/segments falling within appropriate size thresholds and within the extent of 
airborne hyperspectral/LiDAR flightlines, and (d) 30 m tree species richness extrapolated 
beyond the extent of flightlines, wherein eight richness classes range from low to high. 

 

2.2.2. Tree Species Heterogeneity 

To facilitate the extrapolation of species-level data to the extent of the SGI, three measures of 
heterogeneity were calculated within increasingly coarser windows from 10–100 m: 
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(1) Tree species richness (R): the total number of species present 
(2) Simpson’s Index of diversity (D) as defined in [5]: 

𝐷𝐷 =  1 /Ʃ𝑃𝑃  𝑖𝑖2   
Where pi represents the percentage cover of species i. 
(3) Tree species evenness (E) as defined in [5]: 

E = D/R 
As heterogeneity calculations were based on 11 species, richness could range from 1–11. Similarly, 

diversity could range from 1–11; wherein the greater the value, the more species classes present and 
the more evenly distributed the classes. Diversity could only match richness if all species types were 
equally represented. Evenness could range from 1/R to 1, with 1 occurring when all cover types were 
uniformly represented [5]. 

2.2.3. Tree Species Dominance 

To facilitate a multi-scale comparison of the impact of coarsening species data using filtering (i.e., 
majority) versus heterogeneity measures, the majority (e.g., dominant) tree species was also 
determined within increasingly coarser windows, ranging from 10–100 m. Dominance was defined as 
the most common species within each window. As calculations were based on 11 possible species, the 
majority within each unit (i.e., pixel) at each scale was 1 of 11 possible classes. 

2.2.4. Landsat Data 

To facilitate the extrapolation of tree species heterogeneity, a broader scale landscape representation 
(coarser resolution and broader spatial extent) was provided by a Landsat-5 TM scene 
comprehensively covering the BC SGI (path: 47/row: 26) and encompassing the hyperspectral/LiDAR 
acquisition extent and timeframe (i.e., July, 2006). The image was delivered by MacDonald, Dettwiler 
and Associates (MDA) Ltd. precision georegistered, orthorectified, and resampled to a spatial 
resolution of 30 m, with an RMS error of 0.25. At-surface reflectance atmospheric correction was 
based upon the Cos(t) model [18], which estimated the effects of absorption by atmospheric gases and 
Rayleigh scattering and removed systematic atmospheric haze. All Landsat bands were masked to 
remove non-forest pixels. 

2.3. Landsat Segmentation 

To extract ecological units from the Landsat imagery [7] the image was segmented using 
eCognition Developer version 8.0.1 [12]. Objects or segments are formed by the creation of groups of 
similar homogenous pixels in a process called segmentation which merges pixels using a bottom-up, 
pair-wise, region-growing technique, which minimizes the heterogeneity within segments and 
maximizes their homogeneity [12]. Once segmented, objects can be characterized based on their 
inherent spectral and geometric properties, as well as by their location and position relative to other 
objects. Based on segment-level attributes, rules can be developed which define distinct classes to 
which all segments can be assigned membership [9]. 
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2.4. Targeting Segment Features as Independent Variables 

The characteristics of image segments (i.e., objects) considered for use in subsequent regression 
analyses included 19 aspects of geometry and 11 Landsat-layer specific statistics (Table 1). Landsat-layer 
statistics were derived from bands 1–5 and 7. This suite of 85 potential independent predictor variables was 
extracted from all Landsat segments completely within the extent of hyperspectral/LiDAR flightlines and 
imported into Statistica version 7.0 (StatSoft 2004) for analysis. Pearson-r correlation coefficients  
(p < 0.05) were calculated for all possible variable combinations. Based on coefficients of 
determination, an r2 threshold of 0.85 eliminated redundant variables. Where two or more variables 
were highly correlated, emphasis was placed on the simpler and/or more ecologically relevant variable [7]. 
Extremely small and large (outlier) segments were eliminated based on minimum and maximum 
segment sizes of 0.54 (i.e., 6 pixels) and 2.7 ha (30 pixels), respectively. 

Table 1. Aspects of segment geometry and segment-level spectral (i.e., Landsat) features 
considered as independent predictor variables. Segment-level statistics (i.e., layer 
summaries) were derived from bands 1–5 and 7. 

Layer summaries Geometry/shape 
mean area (meters) 
standard deviation area (pixels) 
skewness border length 
minimum length 
maximum  length/width 
mean inner border volume 
mean outer border width 
border contrast asymmetry 
contrast to neighbor pixels border index 
edge contrast to neighbor pixels compactness 
standard deviation to neighbor pixels density 

 
elliptic fit 

 
main direction 

 
radius of largest enclosed ellipse 

 
radius of smallest enclosed ellipse 

 
rectangular fit 

 
roundness 

 
shape index 

2.5. Extraction of Segment-Level Heterogeneity Values (Dependent Variables) 

Richness, diversity, and evenness values were determined for all Landsat derived segments within 
the extent of flightlines. Segment-level heterogeneity values initially facilitated comparison with pixel-level 
heterogeneity values, which aimed to establish the merits of image segmentation. In addition,  
segment-level heterogeneity values served as the response variables in regression tree analysis and 
subsequent extrapolation using an object-based approach. 
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2.6. Model Creation and Validation 

Regression tree analyses [19,20] established which independent predictor variables exhibited 
relationships with and explained variance in species heterogeneity and further served to define rules 
for object-based extrapolation. Regression trees recursively partition a dataset into increasingly 
homogenous subsets, determining which of a candidate pool of independent variables (i.e., geometric 
and/or statistical properties of Landsat segments) can be used to predict a response (dependent) 
variable (i.e., tree species heterogeneity measures), and how much variance each predictor variable 
accounts for, which is the equivalent of an accuracy statement. Resulting trees supply a series of 
Boolean statements based on specific value thresholds of important predictor variables, ending in 
terminal nodes which define distinct classes, permitting a transparent, straightforward interpretation of 
results [10,21]. In addition to transparency, regression trees accommodate high dimensionality data 
and make no assumptions about input variables or their statistical distributions [10,22]. A regression 
tree was constructed to predict each measure of heterogeneity (i.e., richness, diversity, and evenness), 
wherein segment-level geometric properties and/or statistical summaries of Landsat data were the 
independent predictor variables. For each tree, rules defined the membership parameters for distinct 
classes of heterogeneity based on specific thresholds corresponding with specific predictor variables. 
K-fold cross-validation (K = 10) determined optimal tree size and accuracy for each tree [23], wherein 
explained variance measured how well each tree fit the data. 

2.7. Extrapolation through an Object-Based Approach 

Using the rules generated through regression tree analyses, all image segments were assigned 
memberships to richness, diversity, and evenness classes through an object-based approach, resulting 
in three coverages representing each measure of heterogeneity (i.e., richness, diversity, and evenness) 
for the extent of the BC SGI. As class assignment was based entirely on defined rules, the accuracy of 
resulting maps reflected the amount of variance explained by each associated regression tree, and therefore, 
additional accuracy assessment was not conducted. Using this transparent rule-based object-based 
approach avoided salt-and-pepper effects common to traditional pixel-based approaches [24], 
permitting more realistic final products. In addition, using segments instead of pixels as the unit of 
analysis reduced computational time by orders of magnitude [9]. 

3. Results 

3.1. Impact of Majority Filtering in Tree Species Dominance 

Increasingly coarser majority filters applied to the original 2 m species data (Figure 2a) (derived 
from and within the extent of hyperspectral/LIDAR flightlines changed the amount (%) of forested 
land occupied by each species (Figure 3) in five key ways, (1) the overall amount of forested land 
occupied by a species continuously decreased at each coarser spatial resolution, the most common 
scenario, impacting five species (i.e., black cottonwood, grand fir, red alder, Western hemlock and 
bigleaf maple), (2) the overall amount occupied increased, but eventually decreased, as demonstrated 
by trembling aspen and Western redcedar, (3) the amount of forested land occupied continuously 
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increased, as exhibited by arbutus, (4) the amount of the forested land occupied initially decreased, but 
eventually increased, as seen with Douglas-fir, or (5) the amount fluctuated, trending towards an 
increase, but ending up approximately the same (i.e., lodgepole pine and Garry oak). Increasingly coarser 
spatial resolution typically resulted in an increase in the most dominant species (i.e., Douglas-fir), with 
decreases in rarer species (e.g., black cottonwood, trembling aspen, grand fir, Western hemlock, 
bigleaf maple). Coarsening to the spatial resolution of Landsat (i.e., 30 m) exaggerated the proportion 
of Douglas-fir, trembling aspen, Garry oak, lodgepole pine, arbutus and grand fir by 10, 25, 51, 69, 96 
and 307%, respectively, while other species exhibited reductions of 5, 16, 38, 45 and 61% (i.e., 
Western redcedar, red alder, bigleaf maple, black cottonwood, Western hemlock, respectively).  

Figure 3. The effect of coarsening spatial resolution on the amount (%) of forested land 
occupied by each species. 

 

3.2. Tree Species Heterogeneity Calculated at the Pixel-Level 

Calculating species heterogeneity at increasingly coarser spatial resolutions resulted in markedly 
different representations of richness, diversity and evenness (Table 2). Minimum species richness 
remained 1 regardless of resolution, while the maximum, mean and standard deviation steadily 
increased as spatial resolution increased from 10 (7, 1.48 and 0.71 respectively) to 100 m (11, 4.68 and 
2.1, respectively). Minimum diversity also exhibited no change across scales, and similar to richness, 
the mean and standard deviation steadily increased as spatial resolution increased from 10 (1.25 and 0.44) 
to 100 m (1.62 and 0.67). Although maximum diversity fluctuated, it did not increase consistently. 
While maximum species evenness remained consistent at all scales, the minimum and mean consistently 
decreased as spatial resolution increased from 10 (0.31 and 0.9) to 100 m (0.12 and 0.42). 
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Table 2. The effect of coarsening spatial resolution (i.e., pixel size in meters) on three 
measures of tree species heterogeneity (i.e., richness, diversity, and evenness). 

Spatial 
Resolution 

Heterogeneity Minimum Maximum Mean 
Standard 
deviation 

10 Richness 1 7 1.48 0.71 

 
Diversity 1 5.45 1.25 0.44 

  Evenness 0.31 1 0.9 0.16 
20 Richness 1 9 2.04 1.08 

 
Diversity 1 6.17 1.4 0.56 

  Evenness 0.21 1 0.77 0.22 
30 Richness 1 10 2.5 1.33 

 
Diversity 1 5.88 1.48 0.62 

  Evenness 0.19 1 0.67 0.25 
40 Richness 1 9 2.94 1.5 

 
Diversity 1 5.61 1.52 0.64 

  Evenness 0.16 1 0.6 0.24 
50 Richness 1 10 3.33 1.64 

 
Diversity 1 5.86 1.55 0.65 

  Evenness 0.14 1 0.55 0.24 
60 Richness 1 10 3.67 1.76 

 
Diversity 1 5.83 1.57 0.66 

  Evenness 0.13 1 0.51 0.24 
70 Richness 1 10 3.96 1.86 

 
Diversity 1 5.56 1.59 0.67 

  Evenness 0.13 1 0.48 0.24 
80 Richness 1 11 4.21 1.95 

 
Diversity 1 5.83 1.6 0.67 

  Evenness 0.13 1 0.45 0.23 
90 Richness 1 10 4.45 2.02 

 
Diversity 1 6.19 1.61 0.67 

  Evenness 0.12 1 0.44 0.23 
100 Richness 1 11 4.68 2.1 

 
Diversity 1 5.69 1.62 0.67 

  Evenness 0.12 1 0.42 0.23 

3.3. Tree Species Heterogeneity: Comparison of Pixel- To Segment-Level 

Segmentation resulted in 8190 segments of which 1818 were within the area of the 
hyperspectral/LiDAR flightlines (example segments are shown for a portion of the study area in  
Figure 2c). Segment size ranged from 0.54–2.7 ha, averaging 1.23 ha (±0.54). Table 3 compares 
average pixel with segment-level statistics. Focusing on the spatial resolution of Landsat (i.e., 30 m), 
Figure 2b provides an example of tree species heterogeneity (richness) calculated within the extent of 
hyperspectral/LiDAR flightlines for a portion of the study area. At this scale, no single segment 
contained all 11 species classes, with richness values ranging from 1–10 (Table 3, Figure 4a), however, 
richness averaged 2.60 (±1.33, 1 standard deviation). Similarly, no single pixel contained species with 



Diversity 2014, 6 406 
 

 

equal or somewhat equal distribution, as diversity ranged from 1.00–5.90, averaging 1.48 (±0.61) 
(Table 3, Figure 4b). Species evenness ranged from 0.19–1.00, averaging 0.66 (±0.24) (Table 3, Figure 4c).  

Table 3. Comparison of descriptive statistics for tree species heterogeneity.  

 
Pixel Segment Pixel Segment Pixel Segment 

 
Richness 

 
Diversity 

 
Evenness 

 
Minimum 1 1 1 1 0.19 0.33 
Maximum 10 5.58 5.9 3.45 1 1 

Mean 2.6 2.66 1.48 1.48 0.66 0.64 
Standard deviation 1.33 0.9 0.61 0.4 0.24 0.12 

Figure 4. Comparison of frequency distribution for tree species heterogeneity values based 
on 30 m pixels for richness (a), diversity (b) and evenness (c), and for image objects for 
richness (d), diversity (e) and evenness (f). 
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For evenness, the maximum value (i.e., 1) occurred most often, representing pixels for which all 
species present were equally distributed. In contrast, at the segment-level, while minimum species richness 
remained 1, maximum richness was substantially more (i.e., 5.58 vs. 10.00) (Table 3, Figure 4a,d). 
Similarly, while minimum species diversity values were 1 at both scales, maximum segment diversity 
was 1.45 greater (i.e., 3.45 vs. 5.90) (Table 3, Figure 4b,e). For species evenness, maximum values 
were the same at both scales, however, minimum values were typically higher for segments. Mean 
values for all three metrics were similar if not the same at both scales, whereas standard deviations 
were typically lower for segments (Table 3, Figure 4c,f). 

3.4. Model Definition and Validation (Regression Tree Analysis) 

Based on pair-wise Pearson’s correlation coefficients, ecological significance, and preliminary 
relationship assessment (i.e., scatter-plots), 16 metrics representing the statistical properties of Landsat 
segments out of a total pool of 85 potential variables were retained for analysis as potential 
independent variables (Table 4). No geometric properties of Landsat segments passed the initial  
pre-selection criteria for consideration as potential variables. Regression tree analysis identified eight 
of 16 which partially explained variance within dependent response variables (i.e., measures of 
heterogeneity) (Table 4). For species richness, eight distinct classes were identified based on the 
statistical properties of Landsat bands 4 (NIR) and 5 (SWIR), with generated decision rules accounting 
for 48.9% of variance. Similar to richness, for diversity, a final model with eight terminal nodes was 
generated using bands 4 and 5, explaining 43.9% of variance. The importance of band 7 (SWIR) was 
also apparent. For species evenness, six terminal nodes defined rules which also indicated bands 4 and 5 
were important predictors, however, as compared with diversity and richness, much less variance was 
explained (i.e., 22%). 

Using richness as an example, Figure 5 shows the structure of a regression tree, wherein each node 
represents a decision rule generated based on the spectral reflectance properties of vegetation in the 
NIR and/or SWIR. The initial split was on average band 5 values of 0.09 (% reflectance/100), 
partitioning the image into segments with higher (>0.09) or lower (≤0.09) richness values. Segments 
with higher richness values were further partitioned based on minimum band 4 and 5 values, maximum 
band 4 values, and mean 5 band values. The highest richness classes were associated with minimum 
band 5 and 4 values of >0.09 and 0.23, respectively, isolating segments with the highest minimum 
reflectance thresholds for these spectral regions. In contrast, segments with lower richness values were 
further partitioned based on maximum values of 0.09 and 0.31 for bands 5 and 4, respectively. 
Segments with the least richness had maximum band 5 values ≤0.09, whereas segments with 
maximum 4 values >0.31 had slightly higher values. 
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Table 4. Independent variables representing spectral (i.e., Landsat) statistics, considered 
for and selected in regression tree analyses. An ‘x’ represents variables considered for but 
not selected in analyses, whereas an ‘xx’ represents selected variables. All other variables 
were not considered for analysis, based on pair-wise Pearson’s correlation coefficients (p < 
0.05), a lack of ecological significance, and/or preliminary relationship assessment (i.e., 
scatterplot analysis). 

 
Wavelength 

(µm) 
Minimum 

(Min) 
Maximum 

(Max) 
Mean 

Standard 
deviation (Stdev) 

Mean inner 
border (MIB) 

band 1 0.45–0.52 x 
    

band 2 0.52–0.60 x 
  

x 
 

band 3 0.63–0.69 x 
  

x 
 

band 4 0.76–0.90 xx xx 
 

x xx 
band 5 1.55–1.75 xx xx xx xx x 
band 7 2.08–2.35 xx 

  
x 

 

Figure 5. Decision rules generated through regression tree analysis, wherein tree species 
richness was the dependent response variable, and segment-level spectral properties of Landsat 
data were selected as independent predictor variables. Landsat values relate to the statistical 
properties of reflectance values in specific portions of the electromagnetic spectrum (i.e., bands). 

 

3.5. Extrapolation through an Object-Based Approach 

Based on generated decision rules, three maps were produced representing tree species richness, 
diversity and evenness for the extent of the BC SGI. An example of extrapolated richness is shown for 
a portion of the study area in Figure 2d, whereas Figure 6 presents extrapolated richness for the extent 
of the SGI, as represented by a Landsat-5 TM scene. 
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Figure 6. Tree species richness, derived from 2 m spatial resolution species distribution 
maps extrapolated to the extent of the British Columbian Southern Gulf Islands. The 
background image is Landsat band 4 (NIR) coverage. 

 

4. Discussion 

4.1. Tree Species Heterogeneity Compared with Majority Filtering 

Results suggest that heterogeneity measures were a more appropriate technique for coarsening the 
spatial resolution of detailed airborne data than simple majority filtering. While heterogeneity 
measures cannot discriminate how much of a sub-category type (e.g., species) actually exists within a 
predefined area, and increasingly coarser spatial resolutions can alter information content, their use 
resulted in less severe information alteration then majority filtering. Given the established links of 
heterogeneity with ecological structure and function, employing heterogeneity measures holds promise 
in coarsening finer spatial resolution products as a precursor to extrapolation. 

4.2. Tree Species Heterogeneity: Comparison of Pixel to Segment-Level 

There were notable differences in heterogeneity values at the scale of Landsat (i.e., 30 m pixels) 
versus the variable scale of segments. Owing to their multi-pixel nature, segments exhibited less range 
in richness, diversity and evenness values. Pixels with high values were typically reduced within larger 
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segments, thus reducing their overall range. In addition, at the pixel-level, there was a markedly higher 
frequency of low richness and diversity values, and high/maximum evenness values. This discrepancy 
is partly explained by the dominance of Douglas-fir, which occupies the majority of the forested 
landscape, regardless of scale (i.e., 79.1%, at 2 m, 79.2%, at 30 m, 84%, at 100 m). If only one species 
occupies a pixel, it is still assigned a maximum evenness score, whereas pixels occupied by fewer 
species receive lower richness and diversity scores. While many segments were dominated by 
Douglas-fir, other species were typically also present. In addition, very few segments were completely 
occupied by a single species, even Douglas-fir. In aggregate, differences in values imply that 
information loss and/or manipulation does occur with consideration at the segment versus pixel scale, 
however, these changes are required to represent the landscape based on definable landscape elements 
(e.g., forest stands) as opposed to arbitrary units (e.g., image pixels) [9,25]. In addition, the impacts of 
coarsening using heterogeneity measures are not as severe as they would be if employing standard 
filtering procedures (i.e., majority). 

4.3. Regression Tree Results 

For all three heterogeneity measures, independent explanatory variables were consistently Landsat 
bands 4, 5 or 7, demonstrating the importance of vegetation’s reflective properties in certain NIR and 
SWIR spectral regions. In band 4 (i.e., NIR: 0.76–0.90 micrometers (µm)), reflectance is primarily 
regulated by internal leaf structure [26], whereas in bands 5 (i.e., SWIR: 1.55–1.75 µm) and 7 (SWIR: 
2.08–2.35 µm), reflectance is much lower than in the NIR and dominated by the presence of moisture 
and various canopy biochemicals (e.g., protein, lignin, cellulose) [27,28]. Established associations 
between vegetation and spectral reflectance in the NIR and SWIR permit informed and meaningful 
ecological characterization of image segments. Using richness as an example, segments with band 5 
values >0.09 exhibited higher values, meaning they contained multiple tree species. Multi-species 
segments are more prone to host coniferous and broadleaved species. Due to the comparatively higher 
levels of biomass associated with broadleaves, segments containing broadleaved species should exhibit 
higher SWIR reflectance values. Therefore, segments with higher SWIR values were more likely to be 
richer and contain broadleaved tree species. In addition to high SWIR values, highest richness classes 
were also associated with highest NIR values. Similar to the SWIR, healthy broadleaves exhibit higher 
reflectance than conifers in the NIR. Therefore, because segments with higher richness values are more 
likely to contain broadleaved species, they will typically exhibit higher SWIR and NIR reflectance. 
Exceptions to these associations could include, (1) segments containing trees exhibiting signs of stress 
and/or (2) a disproportionate dominance of multi-specied segments known to contain none or few 
broadleaved trees, however, previous studies [17,29] indicate these exceptions are rare in the SGI. 

4.4. Implications of Object-Based Extrapolation 

Regression rules generated based on specific reflective aspects of NIR and SWIR bands 
transparently facilitate the extrapolation of heterogeneity to the extent of the BC SGI by guiding the 
assignment of membership into distinct classes for all image segments. For managers in the SGI, 
object-based extrapolation results supply broad scale tree species heterogeneity information. This 
information can aid a range of ongoing restoration and conservation tasks [29,30]. While similar 



Diversity 2014, 6 411 
 

 

heterogeneity measures could be calculated on a per-unit basis from aerial photo attributes, as detailed 
in [29], our heterogeneity measures were derived from comparatively more detailed and accurate tree 
species distribution information (i.e., 2 m spatial resolution maps derived from airborne 
hyperspectral/LiDAR data). In addition, even after factoring in the time associated with 
parameterization, image segmentation and extrapolation require significantly less time and labor than 
conventional methods. Aerial photo interpretation also requires non-automatable manual labor, which 
relies on increasingly less available skilled analysts [11], and therefore, once established, final scaling 
parameters permit transparent, timely replication. As such, established relationships could form the 
basis for extrapolation to archival, and/or newly acquired Landsat scenes, facilitating historic mapping 
and long-term monitoring of landscape-level tree species heterogeneity. 

In terms of costs, it has previously been demonstrated that the acquisition, processing and interpretation 
costs of hyperspectral and LiDAR data in the SGI are half the price of aerial photographs [30]. While this 
will not be the case everywhere, the costs of these technologies have been found comparable in 
numerous and variable environs (Wulder et al., 2008) [31]. Within this monetary context, it is 
important to note that the advanced airborne data used in this study were collected in transects vs. the 
wall-to-wall acquisition of aerial photographs. However, relationships with Landsat segments 
facilitated low-cost extrapolation from the limited extent of detailed airborne measurements. 

5. Conclusions 

Image segmentation, regression tree analyses provided a transparent and effective means for 
extrapolating certain measures of tree species heterogeneity beyond the boundaries of non-contiguous 
hyperspectral and LiDAR flightlines to the wall-to-wall coverage provided by a Landsat scene. While 
heterogeneity measures cannot discriminate how much of a species exists within a predefined area, and 
increasingly coarser spatial resolutions can alter information content, their use involved less severe 
information alteration then majority filtering. This finding has important ramifications, given the 
common use of filters such as the majority for coarsening fine spatial resolution environmental data as 
a pre-cursor to extrapolation. At the segment scale, calculating heterogeneity results in definable forest 
units containing tangible heterogeneity values, which as units of analyses, have pertinence to a variety 
of ongoing and/or potential management initiatives. Image segmentation permits this comparatively 
superior landscape representation, and based on transparent relationships with spectral properties of 
Landsat data deduced through regression tree analyses, an object-based approach permits 
extrapolation, resulting in unprecedented heterogeneity information for the extent of the SGI 
explaining nearly half the variance in tree species richness and diversity. 

In the SGI, the spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm), 5 (i.e., SWIR: 
1.55–1.75 µm) and 7 (SWIR: 2.08–2.35 µm) were consistently selected as independent predictor 
variables, underscoring the importance of including NIR and SWIR channels in terrestrial forested 
ecosystem landscape-level analyses. Of the three measures of heterogeneity, richness performed best, 
followed closely by diversity. While evenness was predicted comparatively worse, future work 
involving additional independent variables may exhibit stronger relationships. Incorporating additional 
independent predictor variables may also explain more variance in richness and diversity. In addition, 
generalizing the relationships exhibited between richness, diversity and properties of the NIR and 
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SWIR remains untested, however, based on known properties of vegetative reflectance in these 
spectral regions, further evaluation in comparable and/or disparate environs is anticipated to yield 
similar results, and the object-level analysis of tree species heterogeneity moves beyond the arbitrary 
pixel-scale into the realm of definable forest units, a scenario which most likely holds great promise 
for a wide range of environs for the extrapolation of other types of products derived from fine spatial 
resolution data. 

Acknowledgments 

Components of this research were supported by Parks Canada Ecological Integrity Funding and a 
University of British Columbia University Graduate Fellowship. Thanks to Catherine Ohler from the 
Integrated Remote Sensing Studio for assistance with manuscript formatting. 

Author Contributions 

All authors contributed to this manuscript significantly and in their listed order. This research was 
designed by Jones, Coops and Gergel, with important contextual information about the study area 
provided by Sharma. The preparation and analysis of the data and interpretation of results was 
undertaken by Jones, with important input from Coops and Gergel.  The manuscript was primarily 
written by Jones, with considerable input from Coops, Gergel and Sharma.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. 
Bioscience 2004, 54, 535–545. 

2. Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; 
Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008,  
320, 1011. 

3. Huang, C.; Asner, G.P. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 
2009, 9, 4869–4889. 

4. Thompson, S.D.; Gergel, S.E. Conservation implications of mapping rare ecosystems using high 
spatial resolution imagery: Recommendations for heterogeneous and fragmented landscapes. 
Landsc. Ecol. 2008, 23, 1023–1037. 

5. Hill, R.A.; Smith, G.N. Land cover heterogeneity in Great Britain as identified in Land Cover 
Map 2000. Int. J. Rem. Sens. 2005, 26, 5467–5473. 

6. Lindenmayer, D.B.; Franklin, J.F.; Fischer, J. General management principles and a checklist of 
strategies to guide forest biodiversity conservation. Biol. Conserv. 2006, 131, 433–445. 

7. Morgan, J.L.; Gergel, S.E. Quantifying historic landscape heterogeneity from aerial photographs 
using object-based analysis. Landsc. Ecol. 2010, 25, 985–998. 



Diversity 2014, 6 413 
 

 

8. Castilla, G.; Hay, G.J. Image objects and geographic objects. In Object-Based Image Analysis: 
Spatial Concepts for Knowledge-Driven Remote Sensing Applications Series; Blaschke, T., Lang, 
S., Hay, G., Eds.; Springer-Verlag: Berlin, Germany, 2008; pp. 91–110. 

9. Hay, G.J.; Castilla, G. Geographic object-based image analysis (GEOBIA): A new name for a 
new discipline. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote 
Sensing Applications Series; Blaschke, T., Lang, S., Hay, G., Eds.; Springer-Verlag: Berlin, 
Germany, 2008; pp. 75–89. 

10. Chubey, M.S.; Franklin, S.E.; Wulder, M.A. Object-based analysis of Ikonos-2 imagery for 
extraction of forest inventory parameters. Rem. Sens. Environ. 2006, 72, 383–394. 

11. Wulder, M.A.; White, J.C.; Hay, G.J.; Castilla, G. Pixels to objects to information: Spatial context 
in forest characterization with remote sensing. In Object-Based Image Analysis: Spatial Concepts 
for Knowledge-Driven Remote Sensing Applications Series; Blaschke, T., Lang, S., Hay, G., Eds.; 
Springer-Verlag: Berlin, Germany, 2008; pp. 345–363. 

12. Definiens Developer 7 User Guide. Definiens: Munchen, Germany, 2010. 
13. Wulder, M.A.; Seemann, D. Forest inventory height update through the integration of LiDAR 

data with segmented Landsat imagery. Can. J. Rem. Sens. 2003, 29, 536–543. 
14. British Columbian Ministry Of Forests and Range. Biogeoclimactic Zones of British Columbia. 

Available online: http://www.for.gov.bc.ca (accessed on 1 January 2012). 
15. British Columbia Conservation Data Centre. Available online: http://a100.gov.bc.ca/pub/eswp/ 

(accessed on 1 January 2012). 
16. Green, R.N. Terrestrial Ecosystem Mapping of the Southern Gulf Islands; B.A. Blackwell and 

Associates Ltd.: North Vancouver, BC, Canada 2007. 
17. Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR 

data for species distribution mapping in the coastal Pacific Northwest. Rem. Sens. Environ. 2010, 
114, 2841–2852. 

18. Chavez, P.S. Image-based atmospheric corrections: Revisited and improved. Photogramm. Eng. 
Rem. Sens. 1996, 62, 1025–1036. 

19. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; 
Wadsworth: Belmont, California, USA, 1984. 

20. Steinberg, D.; Colla, P. CART: Tree-Structured Non-Parametric Data Analysis; Salford Systems: 
San Diego, CA, USA, 1995; pp. 336. 

21. Bater, C.W.; Coops, N.C. Evaluating error associated with lidar-derived DEM interpolation. 
Comput. Geosci. 2009, 35, 289–300. 

22. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; 
Chapman and Hall: London, UK, 1998. 

23. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer-Verlag: New York, NY, 
USA, 2002. 

24. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object based detailed 
vegetation classification with airborne high spatial resolution remote sensing imagery. 
Photogramm. Eng. Rem. Sens. 2006, 72, 799–811. 

  



Diversity 2014, 6 414 
 

 

25. Smith, G.M. The development of integrated object-based analysis of EO data within UK national 
land cover products. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven 
Remote Sensing Applications Series; Blaschke, T., Lang, S., Hay, G., Eds.; Springer-Verlag: 
Berlin, Germany, 2008; pp. 513–528. 

26. Sinclair, T.R.; Hoffer, R.M.; Schreiber, M.M. Reflectance and internal structure of leaves from 
several crops during a growing season. Agro. J. 1971, 63, 864–868. 

27. Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging spectrometry in vegetation science. In 
Imaging Spectroscopy: Basic Principles and Prospective Applications; Van der Meer, F.D., de 
Jong, S.M., Eds.; Springer Publishers: Dordrecht, Netherlands, 2006; pp. 111–155. 

28. Van der Meer, F.D. 2006. Basic principles of spectrometry. In Imaging Spectroscopy: Basic 
Principles and Prospective Applications; Van der Meer, F.D., de Jong, S.M., Eds.; Springer 
Publishers: Dordrecht, Netherlands, 2006; pp. 3–16. 

29. Jones, T.G.; Coops, N.C.; Sharma, T. Exploring the utility of hyperspectral imagery and LiDAR 
data for predicting Quercus garryana ecosystem distribution and aiding in habitat restoration. 
Restor. Ecol. 2011, 19, 245–256. 

30. Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR 
data for species distribution mapping in the coastal Pacific Northwest, Canada. Rem. Sens. 
Environ. 2010, 114, 2841–2852. 

31. Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in 
sustainable forest management. Forest. Chron. 2008, 84, 1–19. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


	1. Introduction
	2. Experimental Section
	4.2. Tree Species Heterogeneity: Comparison of Pixel to Segment-Level


