Appendix 1
John Wares € Paula Pappalardo
09 septiembre, 2015

R code to simulate populations and estimate genetic diversity pa-
rameters

We simulated populations evolving under the coalescent using Hudson’s ms software (Hudson 2002). We
called the ms program using the gap (Zhao 2015) package in R (R Core Team 2015). We used the package
PopGenome to estimate haplotype diversity and check Tajima’ss.

We simulated three populations of 1000 individuals, with theta equal to two, ten and twenty. From each of
the populations we sampled without replacement to simulate our “field samples” of known sampling size
(2,4,8,16,32,64 and 128 individuals), we repeated the sampling 100 times to have replicates within each
sampling size. For each sample we estimated the number of haplotypes and the number of segregating sites.

NOTE: the original R files are available upon request from the authors.

Simulating source populations
Below the code used to simulate populations and estimate summary statistics for each of the populations.

library(gap)
library (PopGenome)
library (knitr)

- gap———-
we call ms from R

with -t we set the mutation rate theta
we stmulated 1 population of 1000 individuals

Simulating our source populations

theta2NoGrowth <- system('"ms 1000 1 -t 2", intern=TRUE)
thetalONoGrowth <- system('"ms 1000 1 -t 10", intern=TRUE)
theta20NoGrowth <- system('"ms 1000 1 -t 20", intern=TRUE)

ONLY ONCE: write the outputs so we can Tead them using PopGenome

#write (theta2NoGrowth, "thetal2NoGrowth. out")
#uwrite (thetalONoGrowth, "thetalONoGrowth. out")
#write (theta20NoGrowth, "theta20NoGrowth. out")

reading with PopGenome to calculate H and Tajima's D for each of the four populations
readMS ("theta2NoGrowth.out")->popgen.t2ng

readMS("thetalONoGrowth.out")->popgen.t10ng

readMS ("theta20NoGrowth.out")->popgen.t20ng

run F_ST stats and check haplotype diversity
F_ST.stats(popgen.t2ng)->popgen.t2ng
F_ST.stats(popgen.t10ng)->popgen.t10ng

F_ST.stats(popgen.t20ng)->popgen.t20ng

get haplotype diversity for each source population

unlist (popgen.t2nglregion.stats@haplotype.diversity)->hapDiv.t2ng
unlist (popgen.t10ng@region.stats@haplotype.diversity)->hapDiv.t10ng
unlist (popgen.t20ng@region.stats@haplotype.diversity)->hapDiv.t20ng

make a wvector with the haplotype diversities for each population
hapDiv<-c(hapDiv.t2ng,hapDiv.t10ng,hapDiv.t20ng)
hapDiv

run neutrality.stats to check Tajima's D
neutrality.stats(popgen.t2ng)->popgen.t2ng
neutrality.stats(popgen.t10ng)->popgen.t10ng
neutrality.stats(popgen.t20ng)->popgen.t20ng

Taj.t2ng<-popgen.t1l0Ong@Tajima.D
Taj.t1l0ng<-popgen.t1l0Ong@Tajima.D
Taj.t20ng<-popgen.t20ng@Tajima.D

make a vector with the Tajima's D value for each population
tajima<-c(Taj.t2ng,Taj.t10ng,Taj.t20ng)
tajima

make a summary table

thetas<-c(2,10,,20)

pops<-c("Population 1", "Population 2", "Population 3")

newhap<-round (hapDiv,2)

newtaj<-round(tajima,2)

sumTable<-cbind(pops,thetas,newhap,newtaj)

colnames (sumTable)<-c("Population","Theta","Haplotype diversity","Tajima's D")
kable (sumTable)

Now that we have our 3 populations and we have H and Tajima’s D for those, we need to take our “field
samples”.

Taking “field samples”

From the simulated populations we took “field samples” using the code below. Basically, we used the matrix
of the variables sites for the 1000 individuals and took samples without replacement of 2,4,8,16,32,64 and 128
individuals. We repeated the sampling 100 times for each combination of sampling size and theta.

library(gap)
library (PopGenome)

we read the files that were stimulated only once

popl <- read.ms.output("theta2NoGrowth.out",is.file=T)
pop2 <- read.ms.output("thetalONoGrowth.out",is.file=T)
pop3 <- read.ms.output("theta20NoGrowth.out",is.file=T)

vector with all the populations for loops

pop <- list(popl,pop2,pop3)

vector with the sizes we want to sample
popsizes <- c(2,4,8,16,32,64,128)

we extract the gametes matriz for each population
from there we sample and we put fill the list called "samples"”
the result for each population in saved in a list called "populations"”

populations <- list() #empty list to put results
set.seed(123) #set seed for random sampling

loop in each population to take the field samples, 100 replicates for each sampling size
for (i in 1:length(pop)){
ourpop <- popl[il] # pick a population
namepop <- paste("popOrigen",i,sep="")
mat <- t(ourpop$gametes[[1]]) # transpose matriz to have individuals as Tows
samples <- list() # empty list to put the sampling of each sample stize
for (j in popsizes){
name <- paste("sampleSize",j,sep="")
replicates <- list() # empty list to put each replicate (n=100)
for (k in 1:100){
namerep <- paste('replicate",k,sep="")
rep <- mat[sample(nrow(mat),size=j,replace=FALSE),] # take the sample
rep —> replicates[[namerep]]

}
replicates -> samples/[[name]]
}
samples->populations[[namepop]]

}

The object populations has 3 components (one for each population), each one include 7 lists (one for each
sampling size), and within each of the sampling sizes we have a list with the 100 matrix sampled.

Calculating haplotypes

Now we are going to calculate the number of haplotypes and number of segregating sites for each of the
replicates in each of the samples in each of the 3 populations. The loops may take a while depending the
computer.

the haplotype number can be exztracted by doing unique() of the gametes matriz
hapResults <- list()
for (i in 1:length(pop)){
popnow <- populations[[i]]
namepop <- paste("popOrigen",i,sep="")
samples <- list()
for (j in 1:length(popsizes)){
namesample <- paste('"sampleSize",j,sep="")
samplenow <- popnowl[[j]]
for (k in 1:100){
sapply (samplenow,function(x) nrow(unique(x))) -> result
unlist(result) -> replicates

X
replicates -> samples[[namesample]]
}
samples -> hapResults[[namepop]]
3
now hapResults %s a list of vectors
with the haplotypes number for each population, in each sample size

Since this process is really time consuming, we want to save our results in a dataframe.

we want to loop in the vector "hapresults”
and for each population extract the number of haplotypese

library(reshape)

create dataframe to hold the data
zerodata <- data.frame(Pop=NA,Theta=NA,variable=NA,value=NA)
thetas <- c("two","ten","twenty")

loop through populations and rbind data

for (i in 1:length(pop)){
hapResults[[i]] -> pophaps
haps <- data.frame(do.call(rbind, pophaps))
as.data.frame(t(haps)) -> datahaps
datahaps$Theta <- thetas[i]
datahaps$Pop <- i
newdata <- melt(datahaps,id=c("Pop","Theta"))
rbind(zerodata,newdata) -> zerodata

organize and save data

zerodata[complete. cases(zerodata$Pop) ,]->numHaps

as.factor (numHaps$variable)->numHaps$variable

names (numHaps) <-c ("Pop","Theta","samplingSize","n.haplotypes")
levels (numHaps$samplingSize)<-c("2","4","8","16","32","64","128")

run only once
#write. csv(numHaps, "numberHaplotypes. csv")

The final product is the .csv file with the dataframe “numberHaplotypes” that for each row has information

on theta, sampling size and number of haplotypes.

Calculating segregating sites

We are going to do a similar procedure to estimate the number of segregating sites. We first created a function
to estimate the number of segregating sites from the gametes matrix provided by the MS simulation. And
then we applied the custome function (called “estimate.segSites”) in a loop over our samples.

define and load the function

estimate.segSites <- function (myMatrix){
this function takes a matrixz of gametes from a MS simulation
and returns a numeric value, the number of segregating sites

answers <- rep(NA, (nrow(myMatrix)-1))
sites <- rep(NA,ncol(myMatrix))
for (j in 1:ncol(myMatrix)){
for (i in 1:(nrow(myMatrix)-1)){
(myMatrix[i+1,j] == myMatrix[1,j]) -> answers[i]
}
if (all(answers) == TRUE) {0->sites[jl}
else {1 -> sites[jl}
}
sum(sites,na.rm=T) -> segSites
return(segSites)

}

use the function in a loop to get segreating sites
segResults <- list()
for(i in 1:length(pop)){
populations[[i]] -> popnow
namepop <- paste("popOrigen",i,sep="")
samples <- list()
for (j in 1:length(popsizes))q{
namesample <- paste("sampleSize",j,sep="")
popnow[[j]] -> samplenow
sapply (samplenow,function(x) estimate.segSites(x)) -> result
result -> samples[[namesample]]
}

samples —-> segResults[[namepop]]

now segResults is a list of 3 lists (one for each population)
within each there %s a list of 7 wvectors, one for each sample size
the wvector length is 100, with each component of the wector
holding the number of segregating sites for that replicate.

£ S e

To save our results in a dataframe:

we want to loop in "segResults" and for each population exztract
the number of segregating sites and put all in the same dataframe
library(reshape)

create dataframe to hold the data
zerodata <- data.frame(Pop=NA,Theta=NA,variable=NA,value=NA)
thetas <- c("two","ten","twenty")

loop through populations and rbind data

for (i in 1:length(pop)){
segResults[[i]] -> popsegs
segs <- data.frame(do.call(rbind, popsegs))
as.data.frame(t(segs)) -> dataseg
dataseg$Theta <- thetas[i]
dataseg$Pop <- i
newdata <- melt(dataseg,id=c("Pop","Theta"))
rbind (zerodata,newdata) -> zerodata

organize and save data

zerodata[complete.cases(zerodata$Pop),] -> numSegSites
as.factor(numSegSites$variable) -> numSegSites$variable

names (numSegSites) <- c("Pop","Theta","samplingSize","n.seg.sites")
levels(numSegSites$samplingSize) <- c("2","4", "8" "16","32","64","128")

run only once
#write.csv(numSegSites, "numberSegSites.csv")

The final product is the .csv file with the dataframe “numSegSites” that for each row has information on
theta, sampling size and number of segregating sites.

References

Hudson, R. R. 2002. “Generating Samples Under a Wright-Fisher Neutral Model of Genetic Variation.”
Journal Article. Bioinformatics 18 (2): 337-8. http://www.ncbi.nlm.nih.gov/pubmed/11847089.

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. http://www.R-project.org/.

Zhao, J. H. 2015. Gap: Genetic Analysis Package. http://cran.r-project.org/package=gap.

http://www.ncbi.nlm.nih.gov/pubmed/11847089
http://www.R-project.org/
http://cran.r-project.org/package=gap

	R code to simulate populations and estimate genetic diversity parameters
	Simulating source populations
	Taking ``field samples''
	Calculating haplotypes
	Calculating segregating sites

	References

