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Abstract: In this paper we show a fast, specialized hardware implementation of the 

wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is 

a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): 

international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It 

can simultaneously measure the wavefront phase and the distance to the light source in a 

real-time process. The pipeline algorithm is implemented using Field Programmable Gate 

Arrays (FPGA). These devices present architecture capable of handling the sensor output 

stream using a massively parallel approach and they are efficient enough to resolve several 

Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of 

processing time requirements. The FPGA implementation of the wavefront phase recovery 

algorithm using the CAFADIS camera is based on the very fast computation of two 

dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison 

between our very novel FPGA 2D-FFTa and other implementations. 

Keywords: plenoptic sensors; wavefront sensors; adaptive optics; real-time processing; 
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1. Introduction 

 

The resolution of ground-based astronomical observations is strongly affected by atmospheric 

turbulence above the observation site. In order to achieve resolution close to the diffraction limit of the 

telescopes, AO techniques have been developed to offset wavefront distortion as it passes through 

turbulent layers in the atmosphere. 

AO includes several steps: detection of the phase gradients, wavefront phase recovery, information 

transmission to the actuators and their mechanical movement. The next generation of extremely large 

telescopes (from 50 to 100 meter diameters) will demand significant technological advances to 

maintain the segments of the telescopes aligned (phasing of segmented mirrors) and also to offset 

atmospheric aberrations. For this reason, faster wavefront phase reconstruction seems to be of utmost 

importance, and new wavefront sensor designs and technologies must be explored. The CAFADIS 

camera presents a robust optical design that can meet AO objectives even when the references are 

extensive objects (elongated LGS and solar observations). The CAFADIS camera is an intermediate 

sensor between the Shack-Hartmann and the pyramid sensor. It samples an image plane using a 

microlens array. The pupil phase gradients can be obtained from there, and after that, the phase 

recovery problem is the same as in the Shack-Hartman. 

In this work, our main objective is to select a good and fast enough wavefront phase reconstruction 

algorithm, and then to implement it over the FPGA platform, paving the way for accomplishing the 

computational requirements of the ELT's number of actuators within a 6 ms limit, which is 

atmospheric response time. 

The modal estimation of the wavefront consists in using the slope measurements to fit the 

coefficients of an aperture function in a phase expansion of orthogonal functions. These functions are 

usually Zernike polynomials or complex exponentials, but there are other possibilities, depending on 

the pupil mask. Very fast algorithms can be implemented when using complex exponential 

polynomials because the FFT kernel is the same [1,2]. Zonal reconstruction consists in estimating a 

phase value directly instead of the coefficients of an expansion, and they require an iterative process. 

The modal algorithms produce more precise results than the zonal solution and –this is crucial- are 

suited to parallelization. Consequently, this is the preferred estimation to accomplish the phase 

reconstruction on technologically advanced platforms such as FPGAs or graphical processing units 

(GPUs) [3]. Once the algorithm based on the expansion over complex exponential polynomials has 

been selected, an efficient FFT implementation in FPGA is the core of an optimal phase reconstruction.  

We will start by describing the modal Fourier wavefront phase reconstruction algorithm, and how 

the Fast Fourier Transform tallies with the FPGA architecture, analyzing the obtained efficiency and 

comparing it to implementations in other technologies and platforms. We design an initial 64 × 64 full 

pipeline phase recovery prototype using the synthesized 2D-FFT module. The system was satisfactorily 

circuit-tested using simulation data as phase gradients. Finally, we analyze the obtained efficiency and 

compare it to the modal wavefront using high-end CPU. 
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2. Background 

 

The CAFADIS plenoptic sensor samples the signal Ψtelescope(u,v)
 

(complex amplitude of the 

electromagnetic field) to obtain the wavefront phase map ),( vuφ . A microlens array is placed at the 

focal point of the telescope (as in a pyramid sensor), sampling the image plane instead of the pupil 

plane (as in a Shack-Hartmann sensor). If the f-numbers of both telescope and microlens are the same, 

the detector will be filled up with images of the pupil of maximum size without overlapping. 

Wavefront phase gradients at telescope pupil plane are extracted from the plenoptic frame taken by the 

CAFADIS, and wavefront maps from different viewpoints are obtained. Hence, tomographic wavefront 

reconstruction could be accomplished from only one plenoptic frame (Figure 1) [4]. For example, 

Figure 2 shows a section of the plenoptic frame obtained for CAFADIS, containing data from five 

artificial laser guide stars (data simulation assuming a 10 m diameter telescope, and every subpupil 

sampled by 32 × 32 pixels [4]). With this information, the CAFADIS camera has the capability of 

refocusing at several distances and selecting the best focus as object distance. 

Figure 1. Outline of the Plenoptic camera used as wavefront sensor. 

 

 

The final phase resolution depends on the number of pixels sampling each microlens, but depth 

resolution also depends on the same quantity. This implies that, increasing the phase resolution, higher 

height resolution is obtained at the same time. In the extreme case, when using a pyramid sensor  

(2 × 2 microlens), the phase and height resolution are maximized. At the other extreme, when using a 

Shack-Hartmann wavefront sensor, the phase resolution depends on the number of subpupils, and 

height resolution is minimized (and even lost). 

A compromise solution might be taken: a unique plenoptic sensor, comprised by 6 × 6 subpupils 

sampled by 84 × 84 pixels would be enough to get phases with 84 × 84 pixel resolution using only  

one 504 × 504 pixels detector. Or even, in order to avoid detector contamination due to the neighboring 

LGS images, the plenoptic image could be sampled by 12 × 12 subpupils. In this case, a 1,008 × 1,008 

detector is needed [4]. 



Sensors 2010, 10              

 

 

4

Figure 2. Section of the plenoptic frame showing the LGS on axis. The remaining, off-axis 

LGS present a similar aspect. 

 

 

The phase gradients at pupil plane are calculated from this plenoptic frame using the partial 

derivates of the wavefront aberration estimated in [5] and implemented in FPGA in [6]. From these 

gradient estimation, the wavefront phase ),( vuφ  can be recovered using an expansion over complex 

exponential polynomials, allowing application of 2D-FFT: 
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where S
r

 are experimental data, the coefficients apq of the complex exponential expansion in a modal 

Fourier wavefront phase reconstructor (spatial filter) can be written as: 
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(4)  

The phase can then be recovered from the gradient data by reverse transformation of the 

coefficients: 

][),(
1

pqaFFTvu
−=φ

 (5)  

A filter composed of three two-dimensional Fourier transforms therefore must be calculated to 

recover the phase. In order to accelerate the process, an exhaustive study of the crucial FFT algorithm 

was carried out which allowed the FFT to be specifically adapted to the modal wavefront recovery 

pipeline and the FPGA architecture.  
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3. Control System 

 

The global control system to be developed is shown in Figure 3. The functional architecture has 

three sub-modules. At the front of the system the camera link module receives data from CAFADIS in 

a serial mode. The following stages perform the digital data processing using FPGA resources. The 

estimation of the phase gradients is a very simple computation which can be conducted using 

correlation or  

Clare-Lane algorithms [5,6]. The main computing power is carried out by the wavefront phase 

recovery. Thus, efficient implementation is crucial in order to carry out the loop within the atmospheric 

time limit for the new ELTs and our work has centered its efforts on this module. Finally, the estimated 

recovered phase can be monitored via a VGA controller. 

Figure 3. Modules of the control system. 

 

 

4. Algorithm to Hardware 

 

We will focus on the FPGA implementation from Equations (4) and (5) to improve processing time. 

These equations can be implemented using different architectures. We could choose a sequential 

architecture with a single 2D-FFT module where data values use this module three times in order to 

calculate the phase. This architecture represents an example of an implementation using minimal 

resources of the FPGA. However, we are looking for fast implementation of the equations in order to 

stay within the 6 ms limit of the atmospheric turbulence. Given these considerations, we chose a 

parallel, totally pipeline architecture to implement the algorithm. Although the resources of the device 

increase considerably, we can maintain time restrictions by using extremely high-performance signal 

processing capability through parallelism. We therefore synthesize three 2D-FFTs instead of one 2D-

FFT. 

The block diagram of the designed recoverer is depicted in Figure 4 where Sx and Sy represent the 

image displacement into each subpupil. The two-dimensional transforms of Sx and Sy have to be 

multiplied by 22
qp

ip

+
and 22

qp

iq

+
 respectively according to Equation 4. These two matrices are identical if 

we exchange rows and columns. We can therefore store a single ROM. The results of the adders  

(apq coefficients) are rounded appropriately to obtain 16 bits data precision according with the data 

input width of the inversed two-dimensional transform that is executed at the next stage. 
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Figure 4. Architecture of the synthesized phase recoverer. 

 

 

An analysis of the equations and a parallel architecture of its implementation are taken into account. 

We then break down the design into the following steps or stages: 

1. Compute two real forward 2D FFT that compute FFT (Sx) and FFT (Sy) 

2. Compute the complex coefficients 

3. Carry out a complex inverse 2D FFT on apq 

4. Flip data results 

 

4.1. Architecture of FFT Module 

 

Generally, each butterfly implies one complex multiplier and two complex adders. In particular, 

multipliers consume much silicon area of FPGA because they are implemented with adder trees. 

Various implementation proposals have been made to save area by removing these multipliers [7-10]. 

However, in order to implement an efficient multiplier, the last Virtex-4 FPGA devices incorporate 

specific arithmetic modules, called DSP48. Each DSP48 slice has a two-input multiplier followed by 

multiplexers and a three-input adder/subtractor. With these circuits, the FPGA only needs four clock 

cycles to calculate the complex multiplication with up to 550 MHz in XC4VSX35 Virtex-4 [11,12]. 

The complete pipeline radix-2 butterfly can be implemented with this specialized multiplier. It is 

necessary to use a FPGA Look-Up Table (LUT) (configured as SRL16 shift register) to preserve the 

synchronism. The butterfly implemented is depicted in Figure 5 and it needs only seven clock cycles to 

carry out the computation. 

A pipeline radix-2 FFT can be implemented using one butterfly at each stage. The twiddle 

coefficients used in each stage are stored in twiddle LUT ROMs in the FPGA. The logic resources and 

the clock cycles of the FFT module is reduced in our implementation using specific butterfly modules 

at the first and second stages. The first stage utilizes the feature of the twiddle factors related to the first 

stages of the pipeline: 

12/ =N

NW  (6)  
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Figure 5. Pipeline radix-2 butterfly in FPGA. 
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So, the first stage can be implemented in a very simple way with an adder/subtractor. In the second 

stage, the next twiddle factors are: 

jW
N

N =4/  (7)  

This twiddle suggests a similar splitting structure in the second pipeline stage as in the first one; 

however, the imaginary unit imposes a special consideration: two additional multiplexers change real 

and imaginary data, and the pipeline adder/subtractor works according to Equation 8: 

ajbbajjbja +−=−=+ )(  (8)  

Taking into account these features, the 1D-FFT architecture implementation is depicted in Figure 6. 

The swap-blocks arrange the data flow and preserve the pipeline feature. It consists of two multiplexers 

and two shift registers. These shift registers are implemented using look-up tables (LUT) in shift 

register mode (SRL16) for synchronization. 

Figure 6. Architectural block diagram of a pipeline radix-2 FFT. 
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The system performs the calculation of the FFT with no scaling. The unscaled full-precision method 

was used to avoid error propagations. This option avoids overflow situations because output data have 

more bits than input data. Data precision at the output is: 

1log2 ++= pointswidthinputwidthoutput  (9)  

The number of bits on the output of the multipliers is much larger than the input and must be 

reduced to a manageable width with the use of one-cycle symmetric rounding stages (Figure 6). The 

periodic signals of the swap units, op signal, and the address generation for the twiddle memories are 

obtained through a counter module that acts as control unit. 

 

4.2. Temporal Analysis for the Radix-2 FFT Module and Superior Radix 

 

Taking into account the clock cycles of each block in Figure 6, the latency of the FFT module can 

be written as:  
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where the first two stages are considered separately, and N and n are the number of points of the 

transform and the number of stages of the module respectively. Adding the geometrical series and 

grouping, finally: 

K,32,16,8,11log92 2 =−+= NNNlatency  (11)  

When the number of points of the FFT is a power of 4, it is computationally more efficient to use a 

radix 4 algorithm instead of radix 2. The reasoning is the same as in radix 2 but subdividing iteratively 

a sequence of N data into four subsequences, and so on. The radix-4 FFT algorithm consists of log4N 

stages, each one containing N/4 butterflies. As the first weight is 10 =NW , each butterfly involves three 

complex multiplications and 12 complex sums. Performing the sum in two steps, according to [13], it 

is possible to reduce the number of sums (12 to 8). Therefore, the number of complex sums to be 

performed is the same (Nlog2N) as the algorithm in base 2, but the multipliers are reduced by 25%  

(of (N/2) log2N to (3N/8) log2N). Consequently, the number of circuits for DSP48 use is  

reduced proportionally. 

When the number of points is a power of 4, the pipeline radix-4 FFT module has half the arithmetic 

stages, but the swap modules need twice the amount of clock cycles to arrange the data. Then, the 

latency is expressed as: 

K,1024,256,64,16,13log92)4( 4 =−+= NNNradixlatency  (12)  

This time estimation has been conducted for other radix, as shown in the following equations: 
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Figure 7 shows the clock cycles of each algorithm and the proposed CAFADIS resolution with a 

vertical line. All implementations are close to 2 when the number of points grows (Figure 7a). The 

improvement in terms of computing speed of the algorithm using other radix is relevant when the 

number of samples is small. For example, the improvement factor for a 1,024-point FFT is less than 

7% using a radix-32 algorithm and less than 3% using a radix-4 (Figure 7b). However, in our 

astronomical case the proposed size is relatively small and the improvement using superior radix is 

relevant. Examining Figure 7b, we can observe that the improvement factor is about 20% using radix-8 

and 30% using radix-16. Thus, we are considering the implementation of these algorithms in the future. 

Figure 7. (a) Normalized latency. (b) Relative improvement regarding radix-2 algorithm. 
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4.3. Comparison with Other Implementations 

 

Several radix-2 FFT were satisfactorily synthesized in a XC4VSX35 Virtex-4 FPGA. A comparison 

has been carried out between our design and other implementations. The combined use of the FPGA 

technology and the developed architecture achieves an improved performance if compared to other 

alternatives. This is shown in Figure 8 where our implementation executes a 1,024-point FFT operation 

in 10.64 µs.  

 

4.4. 64 × 64 2D-FFT Implementation 

 

For a first prototype of the phase recoverer, we have selected a plenoptic sensor with 64 × 64 pixels 

sampling each microlens. The fundamental operation in order to calculate the corresponding 64 × 64 

2D-FFT is equivalent to applying a 1D-FFT on the rows of the matrix and then applying a 1D-FFT on 

the columns of the result. Traditionally, the parallel and pipeline algorithm is then implemented in the 

following four steps: 

1. Compute the 1D-FFT for each row 

2. Transpose the matrix 

3. Compute the 1D-FFT for each column 

4. Transpose the matrix 
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Figure 9 depicts the diagram of the implemented transform module. The operation of the developed 

system takes place when image data is received in serial form by rows. These data are introduced in a 

block that carries out a one dimensional FFT. As this module obtains the transformed data, the 

information is stored in two double-port memories (real and imaginary data). To complete the  

two-dimensional FFT, the stored data is introduced in a second 1D-FFT in column format. The 2D-

FFT is then obtained from the output of this block. 

Figure 8. Execution times in microseconds for various algorithms of 1024-points FFT 

using different technologies.  
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Continuous data processing using a single dual-port memory (real and imaginary) is not possible. 

Therefore, the new transformed data must wait for the old data to be introduced in the second FFT 

block, otherwise data are overwritten. As a result, the pipeline property of the FFT architecture cannot 

be used. This problem can be avoided by using two memories instead of one, where memories are 

continuously commuting between write and read modes. When the odd memory is reading and 

introducing data values in the second FFT module, the even memory is writing data which arrives from 

the first FFT. So, data flow is continuous during all of the calculations in the two-dimensional 

transform. The memory modes are always alternating and the function is selected by the counter. The 

same signal is used to commute the multiplexer that selects the data entering the column transform 

unit. 

It is worth mentioning that the transposition step defined above (Step 2) is implemented 

simultaneously with the transfer of column data vector to the memory with no delay penalty. In this 

way, the counter acts as an address generation unit. The last transposition step (Step 4) is not 
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implemented in order to save resources and obtain a fast global system. So, the last transposition step is 

taken into account only at the end of the algorithm described in Equations (4) and (5) and shown in 

Figure 4  

(Flip-RAM module). 

Row 1D-FFT block and column 1D-FFT block are not identical due to the unscaled data precision. 

So, a 64 × 64 2D-FFT for the phase recoverer must meet certain requirements. If the precision of data 

input is 8 bits, the output data of 1D-FFT of the rows has to be 15 bits according Equation (9). 1D-FFT 

of the columns accepts a 15 bits data format and 22 bits at the output.  

Figure 9. Block diagram of the implemented 2D-FFT. 

 

 

Several FFTs were implemented over a XC4VSX35 Virtex-4 device and numerical results were 

satisfactorily compared with MatLab simulations. As we show in Equations (4) and (5), three 2D-FFTs 

are needed to implement a pipeline wavefront phase reconstructor. It can only recover the phase with a 

sensor up to 64 × 64 subpupils using 8 bits precision and up to 32 × 32 with 16 bits precision. This size 

is sufficient at this time for the prototype; however, if we want to implement a greater recoverer, we 

should select an FPGA with more resources. 

 Taking into account the latency of the FFT (Equation 15) and the pipeline operation of the memory 

modules, the latency of the 2D-FFT module can be written as: 

K,32,16,8,22log184 2

2 =−++= NNNNlatency  (15)  

Table 1 shows a performance comparison of existing 2D-FFTs implementations using FPGA and 

others technologies for matrix sizes 64 × 64 and 128 × 128. Rodríguez-Ramos et al. [3] implemented 

2D-FFT on a CPU AMD XP 3500+, 2211 GHz, with 512 KB L2 cache and on a GPU nVidia  

GeForce 7800 GTX graphical engine with 256 MB RAM. Uzun et al. [15] implemented several 

algorithms on a Virtex-2000E FPGA chip where the fastest design is depicted in the table. Evidently, 

our design shows improvements when compared to [3] and [15] in terms of frame rate performance. 
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Table 1. 2D-FFT performance comparison with other designs. 

2D-FFT 
Rodríguez-Ramos et al. [3] FPGA 

Uzun et al. [15] 

FPGA 

Proposed CPU GPU 

64 × 64 114.5 µs 1,580 µs - 44.4 µs 

128 × 128 811.0 µs 1,680 µs 2,380 µs 170.8 µs 

 

5. Results, Analysis and Comparative Study 

 

The design of a 64 × 64 phase recoverer was programmed using the VHDL hardware description 

language [17] and XST was used to synthesize these modules [18] into a XC4VSX35 Virtex-4 FPGA. 

The complete system was successfully circuit-tested using ChipScope Pro software (using phase 

gradients obtained in simulations) that directly inserts a logic analyzer and bus analyzer into the design, 

allowing any internal signal to be viewed. Signals are captured at operating system speed and brought 

out through the programming interface. Captured signals can then be analyzed with the PC that acts as 

a logic analyzer. The numeric results were also successfully compared with those obtained in Matlab. 

Figure 10 shows the results of several wavefront reconstructions using a 64 × 64 subpupil recoverer. 

Each row shows the phase gradients (Sx, Sy) given to the module. Below are the incoming phases at 

the CAFADIS camera and, finally, the phase obtained with the algorithm implementation in the Virtex-

4 where the error is less than 3.5%. 

Table 2 shows the total time broken down into the stages of the total system (depicted in  

Figure 4). 12,980 clock cycles are necessary for phase recovery, going from data reception to the 

activation of the ready signal. This value is the latency time for the phase recoverer. At a 100 MHz 

frequency clock, the system needs less than 130 µs to recover the phase. Table 3 shows Virtex-4 

resource utilization and the maximum operating frequency (pre-synthesis). 

Table 2. Execution time (latency) for the different stages of the phase recoverer. 

Module Cycles Duration (@ 100MHz) 

2D-FFT (Sx and Sy) 4,438 44.38 µs 

Multipliers 4 0.04 µs 

Adder 1 0.01 µs 

2D-IFFT 4,438 44.38 µs 

Flip-RAM 4,096 40.96 µs 

Rounding (3) 3 0.03 µs 

Total 12,980 129.8 µs 

Table 3. Virtex-4 resources. 

Slices Slices FFs 4-LUT IOB BRAM DSP48 Fmax 

13993  

(91%) 

13201 

(62%) 

19478 

(63%) 

39 

(8%) 

74 

(38%) 

53 

(27%) 
189.519 MHz 
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Figure 10. Phase gradients and original and recovered phase for a CAFADIS camera with 

64 × 64 subpupils. 

 

 

The implemented architecture is pipeline. This architecture allows phase data to be obtained for  

each 4,096 clock cycles (this number coincides with the number of points of the transforms, that is, the 

number of subpupils, 64 × 64, of the CAFADIS camera). Using the 100 MHz clock, the prototype 

provides new phase data each 40.96 µs. 

These results can be compared with other works. Rodriguez-Ramos et al. implemented a 64 × 64 

phase recoverer using GPU [3]. In this technology, the wavefront reconstruction needs 3.531 ms. The 

FPGA implementation results almost 30 times faster. Baik et al. [28] implemented a wave 

reconstruction with a 14 × 14 Shack-Hartmann array, an IBM PC and a Matrox Meteor-2 MC image 

processing board. The wavefront correction speed of the total system was 0.2 s. Although the system 

includes the gradient estimation, it can be seen that the execution times are slower than in the proposed 

implementation. Seifer et al. [29] used a sensor with 16 × 12 subpupils and a Pentium M, 1.5 GHz. 

The wavefront reconstruction in this case was 50 ms using Zernike polynomials to adjust to the 

coefficients of the aperture function. Again, our implementation using FPGA technology is 

comparatively faster.  
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6. Conclusions 

 

A 64 × 64 wavefront recoverer prototype was synthesized with a Xilinx XC4VSX35 Virtex-4 as 

sole computational resource. This FPGA is provided in a ML402 Xtreme DSP evaluation platform. 

Our prototype was designed using ISE Foundation 8.2 and ModelSim 6.0 simulator. The system has 

been successfully validated in the FPGA chip using simulated data. 

A two-dimensional FFT is implemented as nuclei algorithm of the recoverer: processing times are 

really short. The system can process data in much lower times than the atmospheric response. This 

feature allows more phases to be introduced in the adaptive optical process. Then, the viability of the 

FPGAs for AO in the ELTs is assured. 

Future work is expected to be focused on the optimization of the 2D-FFT using others algorithms 

(radix-8, radix-16) and the implementation of a larger recoverer into Virtex-5 and Virtex-6 devices for 

the necessary 84x84 recoverer using CAFADIS camera. The prototypes could be four times faster than 

with Virtex-4 FPGA devices. Moreover, the system should be tested in a telescope expected soon.  
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