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Abstract: Further advances in molecular medicine and cell biology also require new 
electrochemical systems to detect disease biomarkers and therapeutic compounds. 
Microelectronic technology offers powerful circuits and systems to develop innovative and 
miniaturized biochips for sensing at the molecular level. However, microelectronic biochips 
proposed in the literature often do not show the right specificity, sensitivity, and reliability 
required by biomedical applications. Nanotechnology offers new materials and solutions to 
improve the surface properties of sensing probes. The aim of the present paper is to review 
the most recent progress in Nano-Bio-Technology in the area of the development  
of new electrochemical systems for molecular detection in personalized therapy and cell  
culture monitoring. 
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1. Introduction 

One of the main objectives in personalized therapy is to inject drug doses in the right amount with 
respect to a patient’s metabolic conditions. This is a key-point because patients can express depleting 
isoforms of cytochrome P450 accordingly to their genotype. Cytochrome P450 is a central protein in 
human metabolism. It has been already proven that different patient's genotype groups present 
different amounts of mean plasma concentration after injection of the same amount of drug [1]. For 
that purpose, Roche has developed a genetic test called AmpliChip [2]. The Roche test may detect 
depletion of the two genes related to protein expression of the 2D6 and 2C19, which are different 
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isoforms of the cytochrome P450. The AmpliChip received FDA approval and it is now on the market. 
Although it is a powerful tool to identify four different patient’s classes, the test identifies their genetic 
predisposition to metabolize drugs catalyzed by only these two P450 isoforms, while the human 
metabolism involves more than three-thousand different P450 isoforms. Moreover, human metabolism 
is not only related to genetic predisposition, but also to (varying) daily conditions of the patients. A 
proof of that complex situation is that only 20–50% of patients receive any benefit from therapies 
where most effective compounds are employed [3]. Nowadays, therapeutic drug monitoring is possible 
only in specialized laboratories, and it requires large equipments and clinical feedback is only 
available after several days, so new point-of-care or portable technologies are absolutely required for 
monitoring drug metabolism in blood or in serum in order to proceed forward in personalization of  
the therapies. 

Cell therapy and regenerative medicine are other highly innovative branches of modern medicine. 
In some cases, damaged tissues may be replaced by using engineered ones obtained from stem  
cells [4]. To that end, new automated factories are under development in order to improve the 
fabrication processes of such engineered tissues [5]. New molecular compounds have been 
investigated to improve cell feeding [6]. New tools for cells sorting are under development using 
magnetic fields as driving forces [7]. Electric fields were investigated as further physical parameters 
pushing differentiation toward electrically specialized cells [8]. However, many biochemical 
mechanisms taking place during cell differentiation are still missing. Therefore, a deep understanding 
of cell metabolism during differentiation is highly required to clarify many details in stem cell biology 
and to provide improved control in tissue engineering. 

Microchip technology may provide new circuits and systems to address these arising demands. 
Implantable biosensors for glucose monitoring [9], label-free biochips for DNA detection [10],  
point-of-care devices for drug testing in saliva [11], and for glucose measurements in cell  
cultures [12] are good examples. However, more often sensitivity is not in the right range, specificity 
is poor, and the proposed systems are not stable enough for real-time applications. Therefore, new 
efforts are required to improve biochip performance. Nanotechnology may provide new materials and 
solutions to enhance biochip characteristics. 

“Biology is not simply writing information; it is doing something about it. A biological system can 
be exceedingly small. Many of the cells are very tiny, but they are very active” said Richard Phillip 
Feynman in his famous lecture on Nanotechnology at Massachusetts Institute of Technology in 1959. 
According to him, nanotechnology should learn from biology. So, the best “Nanotechnology” seems to 
be the “Nano-Bio-technology”, which also provides new opportunities to improve nano-bio-chips, i.e., 
new bio-materials fabricated with control at the nano-scale. 

In this paper, biological and organic structures at the nanometer scale will be considered as building 
blocks. Their working advantages in the field of biochips will be demonstrated by considering some 
examples. 2D, 1D, and 0Dimensional systems made with these building blocks will be conceptually 
discussed and their experimental investigations will be briefly summarized. Advantages provided by 
these nano-structures will be evaluated by means of comparisons with bulk materials. Applications to 
detection in metabolism, cancer markers, and DNA will be used to show enhanced performances due 
to nano-bio-technology. The biophysics of the related interfaces between sensing surfaces and 
biological samples will be deeply argued. Successful examples will be used to show increased 
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sensitivity, specificity, and detection capability. Some new and innovative ideas will be briefly 
presented about applications of nano-bio-chip in personalized therapies and cell biology. 

2. 2D Nano-Structures Improving DNA-and Immuno-Chip 

Referring to the fabrication of nano-structures, a 2D system may be obtained by keeping one of its 
dimensions in the nano-scale. For example, a surface can be conceptually thought of as a cube with a 
height equal to zero in the z-dimension. Thus, a 2D nano-structure might be seen as a sheet of material 
where one dimension is in the nano-scale while the other two are in the micro or millimeter scale. 
Good examples are molecular mono-and multi-layers built by using Langmuir-Blodgett [13] or  
Self-Assembly [14] techniques. In the first case, an ordered mono-molecular layer is firstly obtained at 
the air/water interface and then transferred onto a solid substrate. By repeating this step, multi-layers 
may be assembled. A highly ordered structure at the nano-scale may be obtained by intercalating 
proteins and amphiphilic molecules (such as fatty acids or alkanethiols) [15]. In the case of  
self-assembly, a molecular layer may be obtained by leaving substrates into molecular solutions  

over-night, and enabling the molecules to form stable chemical bonds onto the substrate’ surfaces. An 
ordered nano-scale structure may be obtained by intercalating both proteins and amphiphilic  
molecules [16], too. In both the cases, multi-layers may include both protein functionalities and 
amphiphilic features and they may provide improved specificity and more reliable performance in 
biochips for DNA or antigen detection. More often, published papers related to label-free detection 
present systems that lack in specificity and reliability. A label-free technology largely proposed for 
fully-electronics DNA detection consists in measuring capacitance or impedance variations upon DNA 
hybridization onto a sensing surface. This technique has been initially proposed for antigen [17], and 
then for DNA [18] detection. VLSI architectures were proposed for fully-electronic readers in  
DNA-Chips [10]. However, specificity was not very high [10,19], reproducibility between electrodes 
was close to 40% [19], detection errors were comparable with signal amplitude [10], data points were 
largely scattered [17,18], and time-series presented very large time-drifts [17,20]. All those serious 
drawbacks were related to not well insulated probe surfaces. It has been shown that nano-sized 
grooves crossing the film are related to capacitance time-drift [21] and they provide conducting 
pathways, which affect the ideality of the electrochemical interface [22]. Figure 1 (A) schematically 
shows the profile of such grooves on a probe surface, while Figure 1 (B) displays the film profile at the 
nano-scale of a probe surface obtained by thiolated ss-DNA directly immobilized onto gold by 
following well known procedures [23]. The AFM profile clearly shows deep grooves crossing the 
whole film thickness. Such grooves represent nano-scale apertures through the probe film, which allow 
solution ions to penetrate into the film and directly discharge at the electrode surface.  
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Figure 1. (A) A model describing nano-scale groves that provide direct conducting 
pathways through the whole probe film. (B) AFM microscopy profile of groves registered 
on a surface of ss-DNA probes directly immobilized onto gold. 

 

This phenomenon results in two main drawbacks for detection: first, it shows an undesired 
behavior in terms of film resistivity, which also affects the frequency-dependence behavior of the film 
capacitance [22]; second, it provides an unstable electrochemical interface that affects time-stability of 
capacitance measurements [21]. To avoid these two effects, different strategies have been proposed. 
The most established technique is to close conducting pathways by using some blocking agents, as 
shown schematically in Figure 2(A).  

Figure 2. (A) A model describing diminished nano-scale groves by using blocking agents 
to close direct conducting pathways in probe film. (B) AFM microscopy profile of lesser 
frequent groves registered on a surface of ss-DNA probes onto gold co-immobilized with 
lipoate-molecules. 

 

It can be done in two different ways: by post-treatment of probe surfaces with blocking agents or 
by a co-immobilization of both probing and blocking molecules. The most popular blocking agent 
suggested in literature is mercaptohexanol, which has been widely used in the past. However, tests 
with redox reactions of potassium ferrocyanide on such surfaces clearly show that post treatment does 
not result in insulated surfaces, even if the blocking agents are the longer 1-dodecanethiols (see  
Figure 2 in reference [18]). Thus, new kinds of blocking agents have been recently proposed in order 
to improve reliability of probe films in capacitance DNA detection. It has been demonstrated that the 
number of grooves is largely reduced if probes are co-immobilized with lipoic acids [23].  
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Figure 3. (A) A model describing the absence of nano-scale grooves in a well-packed 
mono-layer precursor formed below the probes film. (B) AFM microscopy profile 
registered on a well-packed precursor mono-layer obtained with ethylene-glycol 
alkanethiols immobilized onto gold.  

 

Such molecules present two sulfur groups suitable for a strong anchorage of blocking agents onto 
gold surface. Moreover, the use of diethanolamines for the other side of this new blocking agent 
provides more hydroxyl groups, which are able to improve the stability of the electrochemical 
interface by coordinating and stabilizing more water molecules of the sample. The co-immobilization 
of ssDNA probes with lipoate-diethanolamines results in a highly diminished number of deep grooves, 
as shown in Figure 2(B), and it results in lower acquisition errors during measurement [23]. However, 
grooves crossing the film are detectable even in that case, as clearly demonstrated by the large AFM 
tip deflection reported in Figure 2(B) up to the value of 300 nm in the line distance. So, much more 
densely packed films are required to avoid such grooves in the probe films, as schematically shown in 
Figure 3(A). It has been already demonstrated that alkanethiol films do not allow stable capacitance 
measurements in time, even though they are made by molecules with alkyl chains as long as eleven 
methylene groups [17]. These films present deep grooves crossing the whole molecular structure [21], 
too. Stable capacitance measurements have been indeed registered by immobilizing probes onto 
precursor films formed with sixteen methylene groups [17,24], or formed with alkanethiols with eleven 
methylene groups and three ethylene-glycols [25]. It has been proven that mono-layers obtained by 
using such ethylene-glycol alkanethiols do not present any grooves and the average corrugation 
registered with AFM is very close to that registered on the substrates [21], as shown by figure 3(B). 
Such innovative ethylene-glycol monolayers were originally proposed to improve specificity in  
label-free protein-based SPR detection [16]. More recently, they have been proposed to obtain highly 
insulated surfaces (see Figure 9 in reference [25]). They also provide highly stable-in-time 
electrochemical properties [21]. These precursor films were very recently proposed to obtain 
innovative ss-DNA probe surfaces too [26]. In particular, it has been proven that ethylene-glycol 
functions improve the time stability of the electrochemical probe surface, and enhance detection 
specificity. The improved performance of such innovative ethylene-glycol films are reported in  
Figure 4. Different immobilization strategies are compared in terms of probe performance. Detection 
errors are almost negligible when DNA probes are immobilized onto the ethylene-glycol film, as 
shown in Figure 4(A). The detection errors are much smaller when antibody probes are immobilized 
onto the ethylene-glycol film than when they are immobilized onto non ethylene-glycol precursors. 
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The capacitance value is reduced by one order of magnitudes in the case of ethylene-glycol because of 
a longer molecular chain. Worth noting is the fact that capacitance changes result in the opposite 
direction after probe immobilization onto films with or without ethylene-glycol functions. This is due 
to the different amphiphilic characters of glycol groups compared with methylene groups. 

Figure 4. (A) Direct comparison between detection performances of ss-DNA probes 
directly immobilized onto gold and ss-DNA probes immobilized onto ethylene-glycol 
mono-layer. (B) Direct comparison between detection performances of antibody probes 
immobilized onto mono-layers without or with ethylene-glycol function (both figures are 
reprinted from reference [26] with permission from Elsevier, copyright 2008). 

 

3. 1D Nano-Structures Improving Enzyme-Chips 

A 1D nano-structure is a system with two dimensions are on the nano-scale. This results in a  
mono-dimensional system. It means that the system is developed along only one of the three spatial 
dimensions. In quantum physics, it might be though as a space region where quantum particles may 
travel only by following a one-dimensional track. For that reason, systems like that are called 
quantum-wires. Modern nanotechnology has provided us with several quantum-wires: silicon  
nano-wires [27] and carbon nanotubes [28] are good examples of systems where the majority of 
carriers are confined in a mono-dimensional space region. Carbon nanotubes are allotropes of carbon. 
They are highly organized carbon structures with cylindrical shapes. These carbon cylinders may be 
constituted by a single wall or have multi walls. In principle, carbon nanotubes might be seen as 
portions of graphene sheets rolled-up to obtain tubes, as schematically shown in Figure 5. Typically, 
their lengths are in the micro-scale while their diameters are in the nano-scale. Lengths are usually 
below 5 µm, while diameters are usually close to 2 nm for Single Walled and in the range between 2 
and 15 nm for Multi-Walled Carbon Nanotubes. The latter may also reach lateral sizes of 60 nm or 
more. Consequently, the huge form-factor of carbon nanotubes makes them suitable to confine carriers 
in almost mono-dimensional shaped space regions. This confinement of majority carriers in a  
mono-dimensional space region, combined with the graphene-like conductance bands, results in 
amazing properties. 
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Figure 5. Schematic model describing single-walled and multi-walled carbon nanotubes 
conceptually obtained from single graphene sheets (courtesy of K. Banerjee/ 
California University, Santa Barbara). 

 

Carbon nanotubes present maximum current densities larger than 109 A/cm2 [29], thermal 
conductivities over 3,000 W/mK [30,31], mean free-paths for charge carriers in the range  
of 1,000–25,000 nm [32,33]. They can be used as linear field emission sources [34] and their  
field-emission is enhanced by the adsorption of water molecules [35]. Thus, they are suitable 
candidates to promote electron-transfer processes from biochip electrodes to enzyme probes in water 
buffers. Figure 6(A) schematically shows the mediator action provided by carbon nanotubes in case of 
chemical detection using enzymes as probes. Enzymes are proteins which transform biochemical 
molecules (usually called enzyme’ substrates) by means of redox reactions. In such reactions, 
electrochemical species exchange electrons with electrode and it enables the detection. The 
enhancement of electron-transfer between probes and electrode results in an increased sensitivity. 

Figure 6. (A) Model describing the role played by carbon nanotubes in the  
electron-transfer between cytochromes and electrode. (B) Sensitivity enhancement due to 
carbon nanotubes in case of benzphetamine (a commonly used appetite suppressant drug) 
detected by the cytochrome P450 2B4 (reprinted from reference [36], with permission from 
IEEE Publishing, copyright 2009). 
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Figure 6(B) shows this improvement in the case of benzphetamine detected by the enzyme P450 
2B4 (also called CYP2B4). P450 belongs to a special category of enzymes, called cytochromes. The 
P450 family presents more than 3,000 different isoforms, which play a central role in all eukaryotic 
organisms, including humans. In fact, they are key-role proteins in any metabolic chain. Different 
isoforms have different substrates. In some cases, their substrates are endogenous compounds. In some 
other cases, the substrates are exogenous compound, e.g., pharmacological drugs. There are thousands 
of different P450 proteins, each of which may catalyze tens of different compounds. The cytochrome  
P450 2B4 also detects commonly-used anti-obesity drugs [36]. The isoform P450 2C9 may detect  
anti-inflammatory or anti-coagulant drugs [37]. The P450 3A4 may detect vasodilators or  
sedatives [38], or anti-cancer agents [36]. On the other hand, the P450 11A1 detects cholesterol [39], 
while the 4A11 detects testosterone [40], and the 2J2 detects arachidonic acid [41]. Thus, the above 
mentioned P450/compound couples show that there are plenty of opportunities to develop  
nano-bio-sensing applications by using enzymes from the P450 family. Moreover, the electron-transfer 
improvement due to carbon nanotubes has been already proven for the isoforms 11A1 [42] and  
2B4 [36]. An enhanced sensitivity of 1.12 µA/mM mm2 was registered in cholesterol sensing by using 
multi-walled carbon nanotubes [42] while only 0.69 µA/mM mm2 was found by using electrodes with 
other molecular mediators [39]. Sensitivity in benzphetamine detection was enhanced up to 20.5 nA/mM 
mm2 by using multi-walled carbon nanotubes, while only 5.1 nA/mM mm2

 was reached with bare 
electrodes [36]. 

Oxidases may be used to detect endogenous metabolites too. They are another kind of enzymes that 
catalyze redox reactions involving substrates related to human metabolism. Hydrogen peroxide is 
produced in such reactions. The peroxide releases two electrons to polarized electrodes. The electrons 
may be then counted for stoichiometric detection of the oxidase substrate. Glucose, lactate, glutamate, 
and other metabolic molecules may be detected choosing their proper oxidase. Electron-transfer 
enhancement up to two orders of magnitudes was demonstrated due to carbon nanotubes in case of 
hydrogen peroxide detection [43]. Similar gains in terms of sensitivity improvements have been 
obtained by using carbon nanotubes in biosensors based on oxidases. Sensitivity in glucose detection 
was enhanced up to 171,2 μA/mM cm2 [44] by using multi-walled carbon nanotubes, while  
only 15 μA/mM cm2 was obtained by using sol-gel films [45]. Sensitivity in lactate detection was 
improved to 2.1 [46], 8.3 [47], and 19.7 [43] µA/mM cm2 by using multi-walled carbon nanotubes, 
while only 0.24 µA/mM cm2 was reached by using titanate nanotubes [48]. 

These sensitivity enhancements are not only related to an increase of the effective area due to  
nano-structured morphology of the electrodes. Phenomena like the increase of capacitive currents [49], 
peaks enhancement in voltammetry [42], peak potential shifts [50], increased layering [51], and  
super-capacitance effects [52] take place, too. 

4. 0D Nano-Structures Improving Enzymes-Chip 

A 0D nano-structure is a system where all the dimensions are on the nano-scale. It might be seen as 
a 0-dimensional system, like a box with negligible size. In quantum physics, it might be though as a 
space region where quantum particles may be trapped.  
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For that reason, such systems are called quantum-dots. Modern nanotechnology have provided us 
with quantum-dots by fabricating nano-particles with very simple chemical procedures. Although  
nano-particles may be fabricated by physical processes, they may be more easily grown by atom 
aggregation in liquid or quasi-liquid conditions and further stabilized by organic matrices. Here two 
different techniques will be briefly summarized: metallic-particle growth in liquid and semi-conducting 
particle growth in Langmuir-Blodgett films. In the latter case, an ordered mono-layer is obtained by 
compressing amphiphilic molecules at the air/water interface. Then, the layer is transferred onto a 
solid substrate by vertical dipping (Langmuir-Blodgett technique). Repetition of the transfer step 
results in multi-layers formed on a solid substrate. Multi-layers made by arachidic acid may be used to 
grow semi-conducting nano-particles within the film. An atmosphere of hydrogen sulfide is used to 
aggregate atoms into the arachidic acid matrix, as shown in Figure 7(A). By following this technique, 
semi-conducting nano-particles of CdS [53], PbS [54], and CuS [55] may be fabricated. 

Figure 7. (A) Schematic model describing the role of hydrogen sulfide (H2S) in creating 
semi-conducting nano-particles inside a Langmuir-Blodgett mono-layer made of arachidic 
acid. (B) Schematic model describing the role of alkanethiols in stabilizing metallic  
nano-particles in a solution which contains gold salts (HAuCl4). 

 

Metallic nano-particles may be indeed formed under liquid conditions. Starting from metallic salts 
in solution, the particle formation proceeds till a nugget is formed when the solution reaches proper 
conditions for atom aggregation. To avoid big particles, alkanethiols are added into the salt solutions. 
As shown in Figure 7(B), thiols also aggregate forming cores. The alkyl chains create an organic shell 
surrounding the core, which provides a repelling coating to hinder further incoming atoms. The result 
is a solution of mono-dispersed metallic nano-particles. Is has been shown that gold [56],  
silver [57], rhodium [58], platinum and ruthenium [59] nano-particles may be fabricated by using this 
simple technique. Most importantly, the size of such particles may be precisely driven by changing the  
salts-to-thiols ratio. Gold nano-particles were precisely fabricated with different diameters from 1.5  
to 5.2 nm by adjusting such ratio [60], as demonstrated by Scanning Electron Microscopy results shown 
in Figure 8(A). 
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Figure 8. (A) SEM image of thiols capped gold nano-particles with size close to 5 nm.  
(B) Mass changing during nano-particles formation induced by injection of hydrogen 
sulfide (H2S) inside a Langmuir-Blodgett multi-layer made of cadmium arachidate. 

 

This technique is also known with the name of “Brust method”, after the first scientist who 
proposed this procedure to obtain colloidal mono-dispersed gold nano-particles under liquid  
conditions [61]. The two above-mentioned techniques are suitable for fast, easy, low-cost fabrications 
of 0D nano-structures with conducting or semi-conducting character. They are low-cost since they 
require only simply organic chemistry equipment. Large and expensive under-vacuum systems are 
avoided in these fabrication processes. They are easy because only simple and safe chemical protocols 
are envisaged. They are fast because the required production time is on the hours or minutes scale. 
Figure 8(B) shows mass growth during nano-particles formation within forty multi-layers of cadmium 
arachidate. All the CdS particles are formed in the organic matrix within 35 minutes. Semi-conducting 
particles mono-dispersed in solution may be obtained by removing the arachidic matrix with 
commonly used solvents. 

These extremely small particles are good quantum-dots able to trap conducting carriers. The theory 
of Coulomb Blockade, developed by Averim and Likharev in the ’80s [62], foresees that electrons may 
be trapped in a quantum-dot if the electrostatic energy keeping them in the dot is larger than its 
thermal excitation. If the electrostatic energy is smaller, then the electrons might drop out from the dot. 
A simple semi-classical explanation may give an idea of the system physics. When an electron has 
enough energy to be trapped inside the dot, the further incoming electron is under its electrostatic 
repulsion. Thus, we might expect a current suppression in a current/voltage curve for those bias 
voltages close to each single trapping event. Therefore, current/voltage curves look like curve (a) in 
Figure 9(A), which presents steps equally distributed in voltage. Such curves were initially registered 
at very low temperature [63] and successively at room temperature in smaller particles [64]. This is 
due to the relationship between the electrostatic energy and the dot size. The smaller the dot size is, the 
larger the electrostatic energy of trapped electrons is, and easier it is to overcome the thermal 
excitation, even at room temperature. Equally distributed oscillations were also observed at room 
temperature [65], similar to those reported in curve (b) of Figure 9(A). They were related to Coulomb 
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Blockade in nano-clusters, too. The shift between curve (a) and curve (b) on the same nano-particle has 
been demonstrated by varying the tunneling barrier between the probe tip and the particle [66] or by 
varying the particles size [67]. 

Figure 9. (A) Schematic curves showing staircase curve (a) and curve with oscillations  
(b) related to charge trapping within a quantum-dot. (B) Schematic model describing the 
role played by thiols capped gold nano-particles in electron-transfer between cytochromes 
and electrode. 

 
 
Such kinds of carrier trapping may be used to enhance charge storage, current transport, and 

electron-transfer in systems structured with quantum-dots. For example, Figure 9(B) schematically 
shows how gold nano-particles may be used as mediators to enhance the electron-transfer between 
cytochromes and electrodes. A gain in terms of sensitivity of 6.5 µA/mM mm2 in cholesterol detection 
by using cytochromes P450 and gold nano-particles of 12 nm has been already demonstrated [68]. 
Similar improvements in sensitivity were also obtained in oxidase-based biosensors: 16.5 µA/mM mm2 
for glucose [69], 500 µA/mM mm2 for lactate [70], and 70.4 µA/mM mm2 for phenol [71] by working 
with electrodes structured with nano-particles. 

5. New Electrochemical Systems for Personalized Therapies and Cell Biology 

In personalized therapy, one key-strategy is to supply drugs to patient in the right amount by 
monitoring disease progress, drug efficacy, and the patient’s metabolism. For this reason, precise 
measurements of bio-markers and drugs concentration in patient’s blood are highly required.  

The squamous cell carcinoma antigen (SCCA) bio-marker is over-expressed in hepatocarcinoma 
with concentrations in serum from 14.9 fM to 18.9 fM [72]. The α-fetoprotein is also over-expressed 
in hepato-cellular carcinoma with serum concentrations close to 0.7 nM [73]. The possibility to detect 
close to fM concentration ranges has been already demonstrated by using a capacitance-based technique 
in sensing of metal ions [74]. A fully-electronic capacitance based bio-chip was also developed [10]. 
However, low specificity [10,19], low reproducibility [10,17-19], very large time-drift [17,20] all 
seriously affect the applicability of this technique. New solutions from nano-bio-science were recently 
demonstrated by using probe surfaces structured with 2D glycol nano-layers and they could pave the 
way for improved portable device systems in cancer markers detection [25]. 
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Therapeutic values of drug concentration in blood or plasma are different on a drug-by-drug basis. 
Typically they go from a few nM up to hundreds of µM. Cyclophosphamide, an anti-cancer agent, 
varies from 2.6 µM up to 76.6 µM [75]. Erythromicin, a well known macrolide antibiotic, ranges  
from 13.6 nM up to 68 µM [76]. Triazolam, a quite famous sedative to treat insomnia, varies from 0  
to 10 nM [77]. Cyclosporin, one of the possible anti-inflammatory drugs, goes from 160 nM  
to 490 nM [78]. Moreover, patient-to-patient responses to nortriptyline vary from 2 µg/L up to 15 µg/L 
for the same injected amount of drug [1]. Thus, precise measurements of large concentration ranges are 
strictly required to succeed in developing bio-chips for drug monitoring in personalized therapy. 
Electrochemical detection of drugs was already investigated by using P450 cytochromes. It is also 
suitable for on-line monitoring, as enzymes are suitable for continuous catalysis of chemical reaction. 
However, the concentration range of a sensor for detection of verapamil, an antihypertensive drug, was 
from 400 µM to 3 mM [38] while its therapeutic range is below 0.3 µM [79]. Thus, new solutions from 
nano-bio-science are required to improve bio-chip sensitivity in order to reach the required drug 
concentration ranges and to develop fully-electronic bio-chips to be fruitfully used in personalized 
therapy [36]. 

Key-metabolites of cellular metabolism are glucose and lactate. The first is the “cellular fuel”, 
while the second is often associated to cell suffering. More important, they are sometimes  
cross-correlated and their detection can be important to understand cellular phenomena. For example, 
it has been assumed that neurons may use lactate produced by glia in case of glucose deprivation [80]. 
Such a model is actually important to understand what happens, e.g., in the case of brain ischemia. 
Moreover, other metabolites such as ethanol and galactose were recognized as important biomarkers of 
cellular metabolism [81]. Detection technologies available in biology laboratories to sense glucose and 
lactate are usually based on spectrophotometry with working range in hundreds of µM while glucose 
concentration in cell cultures may vary from 20 mM down to few mM during cell proliferation. The 
instrumentation is bulky and costly, and the tests are time-consuming. Moreover, spectrophotometer 
assays are not suitable for real-time monitoring, since they require off-line measurement of samples 
because of the chemical processing with colorimetric substrates. On the other hand, many different 
oxidases and dehydrogenases are naturally available and they may be used to develop low cost, highly 
integrated, continuous monitoring sensors. For example, glucose oxidase is widely used in both 
portable and implantable biosensors for diabetic patients. Therefore, improved solutions to develop 
fully-electronic bio-chips for real-time monitoring in cell cultures are now possible by integrating 
enzymes for continuous monitoring, 1D or 0D nano-structures for sensitivity enhancement, and novel 
CMOS designs to improve chip functionalities [50].  

6. Conclusions 

In this paper, we have seen different available technologies for building nano-structures where one, 
or two, or all the three physical dimensions are at the nano-scale. By following the well-know 
conventional terminology, we can refer to those systems as 2D, 1D, and 0D systems because they are 
developed only in 2, or, 1, or 0 dimensions. We have seen different examples of such nano-systems, 
like highly-ordered and densely-packed organic mono- and multi-layers (2D structures), single-walled 
and multi-walled carbon nanotubes (1D), semiconducting and conducting nano-particles embedded in 
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organic matrices (0D). All the above mentioned nano-structures provide new functionalities with 
respect to the same material structured at the macro-scale. Highly-packed ethylene-glycol 2D  
nano-layers have shown amazing stable electrical properties suitable for highly reproducible 
capacitance bio-detection with improved specificity. 1D nano-tubes made of carbon atoms have  
shown amazing electrical conductivities resulting in sensitivity enhancements when applied to  
bio-detection. 0D nano-particles made of metallic or semi-metallic materials have been used to trap 
electrical conductive carriers, which results in an improved sensitivity when applied to bio-detection. 
The comparison between the emerging demands in biomedicine (e.g., detection ranges) and the 
performances of state-of-the-art bio-sensors (e.g., detection limits) clearly shows that nanotechnology 
may widely contribute in developing new electrochemical systems for monitoring in personalized 
therapy and cell biology. 
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